Folien zum Lehrmodul

Einfilhrung in die
modellgetriebene
Software-Entwicklung



Lernziele:

— Prinzipien der modellgetriebene Software-Entwicklung verste-
hen

— Einsatzmoglichkeiten und -grenzen verstehen

— wesentliche Produkte / Standards einordnen kénnen



[ nhaltsverzeichnis

Inhaltsverzeichnis
[ Motivation

|2 Grundlegende Ansatze|

2.1  Ubersetzungsansatz| . . . . . . . ..

12.2  Interpreteransatz| . . . . . .. ...

14
18

19
19
21
23



l Motivation 4

1 Motivation

Modellgetriebene Software-Entwicklung
(model driven (software) development, MDD)

— wird angepriesen als wichtiger zukiinftiger Trend der Software-
entwicklung

— allgemeinste Definition: Einsatz von Modellen zu Beschleu-
nigung / Effizienzverbesserung / Qualitdtsverbesserung der
Software-Entwicklung



Grundlegende Ansitze 5

2 Grundlegende Ansitze

Voraussetzung: MBSE un-
terstellt eine stufenweise Kon-
kretisierung eines System

(im Phasenmodell 1*, beim
evolutiondren Vorgehen viel-
fach durchlaufen):

1. Analyse-Modell i |

2. Entwurfsmodell, das zumindest Teile des zu entwickelnden Sy-
stems prdzise beschreibt

Analyse und
Definition
Kodierung und|
Modultest

Integration

Einsatz und
Wartung

3. Programmcode



Grundlegende Ansitze 6 ‘

Idee: Codieraufwand reduzieren, indem man

a. moglichst grofie Teile des Programmcodes durch Ubersetzen
des Modells generiert

oder

b. ein generisches Programm realisiert, das ein konkretes Modell
interpretiert



’ Grundlegende Ansitze / Ubersetzungsansatz 7

2.1 Ubersetzungsansatz

Annahme: Gesamtsystem besteht aus:

1. generierten Teilen
2. von Hand realisierten Teilen
3. konstanten Teilen (fiir eine bestimmte Applikationsdoméne)

Ubersetzungsstrategie:

— in mehreren Schritten iibersetzen

— jeweils nur eine Technologieentscheidung umsetzen



Grundlegende Ansitze / Ubersetzungsansatz 8 ‘

erforderliche MBSE- generiert Infrastruktur (itber die ohnehin

notwendigen Editoren, Prifwerkzeuge usw. fir Modelle hin-
aus):

— diverse Ubersetzer fiir Modelle

— ggf. Bibliotheken / Standardpakete



l Grundlegende Ansitze / Interpreteransatz

2.2 Interpreteransatz
— erfordert einen Interpreter,

— der die Modelle einlesen und “verstehen” kann und
— die generische Programmfunktionalitat definiert (die sonst
der “restliche Programmcode” definieren wiirde)

= “Meta-Applikation”

Beispiel:
ein generischer Editor fiir Graphen, deren Knoten, Kanten und
Attribute durch ein Klassendiagramm spezifiziert sind.



Grundlegende Ansitze / Interpreteransatz 10

— Eingabedaten des Interpreters:
1. ein Modell (ggf. mehrere)

2. dazu passende Nutzdaten

— Interpreteransatz ist fir Nutzer des Interpreters einfacher
handhabbar, aber weniger flexibel als der Ubersetzungsansatz



Grundlegende Ansétze / Einsatzkriterien 11

2.3 Einsatzkriterien

Beide Ansiitze sind aufwendiger (!) als die direkte Implementie-
rung eines Systems

Wann lohnt sich die modellgetriebene Software- Entwicklung?

1. wenn sich Implementierungstechnologien hdufig dndern und
dann umfangreiche Anpassungsarbeiten anfallen
2. wenn die gleiche Applikation fiir mehrere Zielplattformen rea-

lisiert werden mus (“model once, run anywhere”);
Kernidee des MDA-Ansatzes der OMG; vgl. CORBA



Grundlegende Ansétze / Einsatzkriterien 12 ‘

3. wenn eine grofle Zahl dhnlicher Systeme erstellt werden muf
(z.B. Systemfamilie)
gemeinsame Funktionalitit = generische Programmfunktiona-

litdt des Interpreters bzw. “restlicher Programmcode”, der ggf.
als Bibliothek gehandhabt wird

4. wenn beim evolutionidren Vorgehen wiele Varianten eines Sy-
stems erstellt werden

5. wenn man auf diese Weise billig einen schnellen Prototypen
realisieren kann



Grundlegende Ansétze / Einsatzkriterien 13 ‘

6. wenn verschiedene Personen verschiedene Kenntnisse beitra-
gen:

— Kenntnis der konkreten Applikation (ggf. Sachbearbeiter)
— Modelle

— Kenntnis der Applikationsdomdne und der Implementie-
rungstechnologien (Informatiker) — Gestaltung technischer
Details, Implementierung gemeinsamer Funktionalitat

~ “aspektorientierte” Arbeitsteilung



Grundlegende Ansédtze / Modelltransformationen und MDA 14 ‘

2.4 Modelltransformationen und MDA

Idee: Modell nicht in einem Schritt in Code zu iibersetzen, sondern
in mehreren Schritten Zwischenstufen erzeugen

Modell-Sequenz gemiafl OMG MDA—AnsatzH

1. Computation Independent Model (CIM) - sehr abstrakt,
z.B. Use-Case-Diagramme, Glossar (iibersetzbar???)

2. Platform Independent Model (PIM) - abstrahiert von géin-
gigen Plattformen

3. Platform Specific Model (PSM) - plattformabhéngiges Mo-
dell; Plattform = Programmiersprache, Protokolle, weitere Ba-
sistechnologien

1s. MDA Guide Version 1.0.1, http://www.omg.org/docs/omg/03-06-01 . pdf



Grundlegende Ansédtze / Modelltransformationen und MDA 15 ‘

Thema unsaubere Begriffe und deren Folgen:

— MDA = Modellgetriebene Architektur — kénnen sich Architek-
turen iiberhaupt bewegen???
wenn iiberhaupt, ist ein Interpreter modellgetrieben oder mo-
dellbasiert oder modellgesteuert

— MDA Guide, 2.1.1 Background: “ Model Driven Architec-
ture (TM) or MDA ... is not, like the OMA and CORBA, a
framework for implementing distributed systems. It is an ap-
proach to using models in software development. ”



l Grundlegende Ansédtze / Modelltransformationen und MDA 16 ‘

— MDA Guide, 2.2.3 Model-Driven: “MDA is an approach to sy-
stem development, which increases the power of models in that
work. It is model-driven because it provides a means for using
models to direct the course of understanding, design, construc-
tion, deployment, operation, maintenance and modification”

— MDA Guide, 2.2.4 Architecture: “The architecture of a system
1s a specification of the parts and connectors of the system and
the rules for the interactions of the parts using the connectors.

was nun?? ...is a specification of the parts ... oder ... is an
approach to using ...



Grundlegende Ansédtze / Modelltransformationen und MDA 17 ‘

— Note: Mangelhaft.
— notorische Konfusion, worin der Unterschied zwischen MDA
und MBSE besteht (kein wesentlicher)

Abgesehen von der vollig mifiratenen Bezeichnung MDA ist der
MDA Guide sehr lesenswert!

(“Model Driven [Software] Development” oder “MDD” kommt auf
den 62 Seiten nicht vor)



l Modelltransformationen und MDA / MDA Guide revision 2.0

18

2.4.1 MDA Guide revision 2.0

nur noch 15 Seiten!

http://www.omg.org/mda/
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01

http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf



l MBSE-Infrastrukturen / Entwicklung einer MBSE-Infrastruktur 19

3 MBSE-Infrastrukturen

3.1 Entwicklung einer MBSE-Infrastruktur

1. Basis: Kenntnis der Applikationsdomdne (oder Systemfamilie)
und der Gemeinsamkeiten der Einzelprodukte

2. Implementierung vorhandener Einzelprodukte analysieren und
folgende Codeteile unterscheiden:

a. in allen Einzelprodukten identisch oder fast identisch auf-
tretende Codeteile

b. aus Modellen ableitbare Codeteile (“schematische” Codetei-
le, Pattern-Instanzen)

c. individueller Code



l MBSE-Infrastrukturen / Entwicklung einer MBSE-Infrastruktur 20 ‘

4. Ableitung einer Standardarchitektur, Identifizierung von Stan-
dardmodulen (Bibiotheken), Konfigurationsparametern

5. Technologieauswahl der MBSE-Infrastruktur:
- Modellierungssprache (Metamodell, konkrete Syntax)
- Modelliibersetzer(technologie)
- ggf. Auswahl von Zielplattformen

6. Portierung eines Einzelprodukts in die MBSE-Infrastruktur,
Evaluierung



’ MBSE-Infrastrukturen / Modelltransformatoren und -Ubersetzer 21 ‘

3.2 Modelltransformatoren und -Ubersetzer

Modelltransformator: gibt wieder Modell aus (verfeinertes Mo-
dell)

Modelliibersetzer: gibt Programm-Quelltext aus

arbeiten alle auf Représentationen der Modelle (z.B. als XML-
Datei)

— unterstellen / benutzen konzeptuell ein Dokumentschema (=
Metamodell)



’ MBSE-Infrastrukturen / Modelltransformatoren und -Ubersetzer 22

Einzelwerkzeuge fiir einen speziellen Modelltyp:

— haben i.d.R. Dokumentschema “hart verdrahtet”

— Bsp: viele Ubersetzer

Meta-Werkzeuge, die fir mehrere dhnliche Modelltypen &hnli-
che Funktionen anbieten:

— Grundidee der modellgetriebenen Software-Entwicklung auf
die Werkzeuge anwenden!
— Interpreter- oder Ubersetzeransatz wéhlen .....

— brauchen Reprasentationen der Metamodelle
— unterstellen / benutzen konzeptuell ein Dokumentschema
der Metamodelle (= Meta-Metamodell)



l MBSE-Infrastrukturen / Beispiele fiir MBSE-Infrastrukturen 23

3.3 Beispiele fiir MBSE-Infrastrukturen

Eclipse Modeling Framework (EMF)

— ist vor allem ein Ubersetzer, der Modelle (und zwar Entwurfs-
Klassendiagramme!!) in Java-Code iibersetzt; der Java-Code
deckt folgende Funktionen ab:

— Instanzen dieses Modells erstellen, abfragen, manipulieren,
serialisieren, validieren und auf Anderungen iiberwachen
= grofle Teile eines Editors fiir Instanzen dieses Modells,
insb. die Datenhaltungsschicht

— JUnit-Code u.a.



l MBSE-Infrastrukturen / Beispiele fiir MBSE-Infrastrukturen 24 ‘

— hat nur rudimentare Moglichkeiten zur Erstellung von Model-
len (Baumeditor)

Modellerstellung typischerweise durch andere Werkzeuge (die
Bezeichnung Modeling Framework ist insofern irrefithrend)

— zu iibersetzendes Modell mufl als Menge von Ecore-Objekten
“implementiert” vorliegen
Ecore basiert auf dem EMOF-Standard (Essential Meta-
Object Facility).

— Dokumentation und Tutorials s.: The Eclipse Modeling Fra-
mework (El\/ﬂ.:‘)7 http://www.eclipse.org/modeling/emf/



	Motivation
	Grundlegende Ansätze
	Übersetzungsansatz
	Interpreteransatz
	Einsatzkriterien
	Modelltransformationen und MDA
	MDA Guide revision 2.0


	MBSE-Infrastrukturen
	Entwicklung einer MBSE-Infrastruktur
	Modelltransformatoren und -Übersetzer
	Beispiele für MBSE-Infrastrukturen


