
Folien zum Lehrmodul

Einführung in die
modellgetriebene

Software-Entwicklung

Lernziele:

- Prinzipien der modellgetriebene Software-Entwicklung verste-
hen

- Einsatzmöglichkeiten und -grenzen verstehen
- wesentliche Produkte / Standards einordnen können

Inhaltsverzeichnis 3

Inhaltsverzeichnis
1 Motivation 4

2 Grundlegende Ansätze 5
2.1 Übersetzungsansatz . 7
2.2 Interpreteransatz . 9
2.3 Einsatzkriterien . 11
2.4 Modelltransformationen und MDA 14

2.4.1 MDA Guide revision 2.0 18

3 MBSE-Infrastrukturen 19
3.1 Entwicklung einer MBSE-Infrastruktur 19
3.2 Modelltransformatoren und -Übersetzer 21
3.3 Beispiele für MBSE-Infrastrukturen 23

Motivation 4

1 Motivation

Modellgetriebene Software-Entwicklung
(model driven (software) development, MDD)

- wird angepriesen als wichtiger zukünftiger Trend der Software-
entwicklung

- allgemeinste Definition: Einsatz von Modellen zu Beschleu-
nigung / Effizienzverbesserung / Qualitätsverbesserung der
Software-Entwicklung

Grundlegende Ansätze 5

2 Grundlegende Ansätze

Voraussetzung: MBSE un-

Einsatz und

Entwurf

Integration
Wartung

Definition

Kodierung und
Modultest

Analyse und

"Was?" "Wie?"

terstellt eine stufenweise Kon-
kretisierung eines System
(im Phasenmodell 1*, beim
evolutionären Vorgehen viel-
fach durchlaufen):

1. Analyse-Modell
2. Entwurfsmodell, das zumindest Teile des zu entwickelnden Sy-

stems präzise beschreibt
3. Programmcode

Grundlegende Ansätze 6

Idee: Codieraufwand reduzieren, indem man

a. möglichst große Teile des Programmcodes durch Übersetzen
des Modells generiert

oder

b. ein generisches Programm realisiert, das ein konkretesModell
interpretiert

Grundlegende Ansätze / Übersetzungsansatz 7

2.1 Übersetzungsansatz

Annahme: Gesamtsystem besteht aus:

1. generierten Teilen
2. von Hand realisierten Teilen
3. konstanten Teilen (für eine bestimmte Applikationsdomäne)

Übersetzungsstrategie:

- in mehreren Schritten übersetzen
- jeweils nur eine Technologieentscheidung umsetzen

Grundlegende Ansätze / Übersetzungsansatz 8

erforderliche MBSE- generiert Infrastruktur (über die ohnehin
notwendigen Editoren, Prüfwerkzeuge usw. für Modelle hin-
aus):

- diverse Übersetzer für Modelle
- ggf. Bibliotheken / Standardpakete

Grundlegende Ansätze / Interpreteransatz 9

2.2 Interpreteransatz
- erfordert einen Interpreter,

- der die Modelle einlesen und “verstehen” kann und
- die generische Programmfunktionalität definiert (die sonst

der “restliche Programmcode” definieren würde)
= “Meta-Applikation”

Beispiel:
ein generischer Editor für Graphen, deren Knoten, Kanten und
Attribute durch ein Klassendiagramm spezifiziert sind.

Grundlegende Ansätze / Interpreteransatz 10

- Eingabedaten des Interpreters:
1. ein Modell (ggf. mehrere)
2. dazu passende Nutzdaten

- Interpreteransatz ist für Nutzer des Interpreters einfacher
handhabbar, aber weniger flexibel als der Übersetzungsansatz

Grundlegende Ansätze / Einsatzkriterien 11

2.3 Einsatzkriterien

Beide Ansätze sind aufwendiger (!) als die direkte Implementie-
rung eines Systems
Wann lohnt sich die modellgetriebene Software-Entwicklung?

1. wenn sich Implementierungstechnologien häufig ändern und
dann umfangreiche Anpassungsarbeiten anfallen

2. wenn die gleiche Applikation für mehrere Zielplattformen rea-
lisiert werden mus (“model once, run anywhere”);
Kernidee des MDA-Ansatzes der OMG; vgl. CORBA

Grundlegende Ansätze / Einsatzkriterien 12

3. wenn eine große Zahl ähnlicher Systeme erstellt werden muß
(z.B. Systemfamilie)
gemeinsame Funktionalität = generische Programmfunktiona-
lität des Interpreters bzw. “restlicher Programmcode”, der ggf.
als Bibliothek gehandhabt wird

4. wenn beim evolutionären Vorgehen viele Varianten eines Sy-
stems erstellt werden

5. wenn man auf diese Weise billig einen schnellen Prototypen
realisieren kann

Grundlegende Ansätze / Einsatzkriterien 13

6. wenn verschiedene Personen verschiedene Kenntnisse beitra-
gen:

- Kenntnis der konkreten Applikation (ggf. Sachbearbeiter)
→ Modelle

- Kenntnis der Applikationsdomäne und der Implementie-
rungstechnologien (Informatiker)→ Gestaltung technischer
Details, Implementierung gemeinsamer Funktionalität

∼ “aspektorientierte” Arbeitsteilung

Grundlegende Ansätze / Modelltransformationen und MDA 14

2.4 Modelltransformationen und MDA

Idee: Modell nicht in einem Schritt in Code zu übersetzen, sondern
in mehreren Schritten Zwischenstufen erzeugen
Modell-Sequenz gemäß OMG MDA-Ansatz1:

1. Computation Independent Model (CIM) - sehr abstrakt,
z.B. Use-Case-Diagramme, Glossar (übersetzbar???)

2. Platform Independent Model (PIM) - abstrahiert von gän-
gigen Plattformen

3. Platform Specific Model (PSM) - plattformabhängiges Mo-
dell; Plattform = Programmiersprache, Protokolle, weitere Ba-
sistechnologien

1s. MDA Guide Version 1.0.1, http://www.omg.org/docs/omg/03-06-01.pdf

Grundlegende Ansätze / Modelltransformationen und MDA 15

Thema unsaubere Begriffe und deren Folgen:

- MDA = Modellgetriebene Architektur – können sich Architek-
turen überhaupt bewegen???
wenn überhaupt, ist ein Interpreter modellgetrieben oder mo-
dellbasiert oder modellgesteuert

- MDA Guide, 2.1.1 Background: “ Model Driven Architec-
ture (TM) or MDA ... is not, like the OMA and CORBA, a
framework for implementing distributed systems. It is an ap-
proach to using models in software development. ”

Grundlegende Ansätze / Modelltransformationen und MDA 16

- MDA Guide, 2.2.3 Model-Driven: “MDA is an approach to sy-
stem development, which increases the power of models in that
work. It is model-driven because it provides a means for using
models to direct the course of understanding, design, construc-
tion, deployment, operation, maintenance and modification”

- MDA Guide, 2.2.4 Architecture: “The architecture of a system
is a specification of the parts and connectors of the system and
the rules for the interactions of the parts using the connectors.

- was nun?? ...is a specification of the parts ... oder ... is an
approach to using ...

Grundlegende Ansätze / Modelltransformationen und MDA 17

- Note: Mangelhaft.
→ notorische Konfusion, worin der Unterschied zwischen MDA
und MBSE besteht (kein wesentlicher)

Abgesehen von der völlig mißratenen Bezeichnung MDA ist der
MDA Guide sehr lesenswert!
(“Model Driven [Software] Development” oder “MDD” kommt auf
den 62 Seiten nicht vor)

Modelltransformationen und MDA / MDA Guide revision 2.0 18

2.4.1 MDA Guide revision 2.0

nur noch 15 Seiten!

http://www.omg.org/mda/

http://www.omg.org/cgi-bin/doc?ormsc/14-06-01

http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf

MBSE-Infrastrukturen / Entwicklung einer MBSE-Infrastruktur 19

3 MBSE-Infrastrukturen

3.1 Entwicklung einer MBSE-Infrastruktur
1. Basis: Kenntnis der Applikationsdomäne (oder Systemfamilie)

und der Gemeinsamkeiten der Einzelprodukte
2. Implementierung vorhandener Einzelprodukte analysieren und

folgende Codeteile unterscheiden:

a. in allen Einzelprodukten identisch oder fast identisch auf-
tretende Codeteile

b. aus Modellen ableitbare Codeteile (“schematische” Codetei-
le, Pattern-Instanzen)

c. individueller Code

MBSE-Infrastrukturen / Entwicklung einer MBSE-Infrastruktur 20

4. Ableitung einer Standardarchitektur, Identifizierung von Stan-
dardmodulen (Bibiotheken), Konfigurationsparametern

5. Technologieauswahl der MBSE-Infrastruktur:
- Modellierungssprache (Metamodell, konkrete Syntax)
- Modellübersetzer(technologie)
- ggf. Auswahl von Zielplattformen

6. Portierung eines Einzelprodukts in die MBSE-Infrastruktur,
Evaluierung

MBSE-Infrastrukturen / Modelltransformatoren und -Übersetzer 21

3.2 Modelltransformatoren und -Übersetzer

Modelltransformator: gibt wieder Modell aus (verfeinertes Mo-
dell)
Modellübersetzer: gibt Programm-Quelltext aus

arbeiten alle auf Repräsentationen der Modelle (z.B. als XML-
Datei)
→ unterstellen / benutzen konzeptuell ein Dokumentschema (=
Metamodell)

MBSE-Infrastrukturen / Modelltransformatoren und -Übersetzer 22

Einzelwerkzeuge für einen speziellen Modelltyp:

- haben i.d.R. Dokumentschema “hart verdrahtet”
- Bsp: viele Übersetzer

Meta-Werkzeuge, die für mehrere ähnliche Modelltypen ähnli-
che Funktionen anbieten:

- Grundidee der modellgetriebenen Software-Entwicklung auf
die Werkzeuge anwenden!

- Interpreter- oder Übersetzeransatz wählen
- brauchen Repräsentationen der Metamodelle
→ unterstellen / benutzen konzeptuell ein Dokumentschema
der Metamodelle (= Meta-Metamodell)

MBSE-Infrastrukturen / Beispiele für MBSE-Infrastrukturen 23

3.3 Beispiele für MBSE-Infrastrukturen

Eclipse Modeling Framework (EMF)

- ist vor allem ein Übersetzer, der Modelle (und zwar Entwurfs-
Klassendiagramme!!) in Java-Code übersetzt; der Java-Code
deckt folgende Funktionen ab:

- Instanzen dieses Modells erstellen, abfragen, manipulieren,
serialisieren, validieren und auf Änderungen überwachen
= große Teile eines Editors für Instanzen dieses Modells,
insb. die Datenhaltungsschicht

- JUnit-Code u.a.

MBSE-Infrastrukturen / Beispiele für MBSE-Infrastrukturen 24

- hat nur rudimentäre Möglichkeiten zur Erstellung von Model-
len (Baumeditor)
Modellerstellung typischerweise durch andere Werkzeuge (die
Bezeichnung Modeling Framework ist insofern irreführend)

- zu übersetzendes Modell muß als Menge von Ecore-Objekten
“implementiert” vorliegen
Ecore basiert auf dem EMOF-Standard (Essential Meta-
Object Facility).

- Dokumentation und Tutorials s.: The Eclipse Modeling Fra-
mework (EMF); http://www.eclipse.org/modeling/emf/

	Motivation
	Grundlegende Ansätze
	Übersetzungsansatz
	Interpreteransatz
	Einsatzkriterien
	Modelltransformationen und MDA
	MDA Guide revision 2.0

	MBSE-Infrastrukturen
	Entwicklung einer MBSE-Infrastruktur
	Modelltransformatoren und -Übersetzer
	Beispiele für MBSE-Infrastrukturen

