
Einführung in die modellgetriebene
Software-Entwicklung

Udo Kelter

03.11.2009

Zusammenfassung dieses Lehrmoduls

Die modellgetriebene bzw. modellbasierte Software-Entwicklung ist eine
kommende wichtige Methode der Software-Entwicklung. Dieses Lehr-
modul skizziert die grundlegenden Vorgehensweisen (Übersetzeransatz
und Interpreteransatz) und zugehörige Infrastrukturen. Ferner werden
Kriterien beschrieben, wann die modellbasierte Software-Entwicklung
sinnvoll ist.

Vorausgesetzte Lehrmodule:
empfohlen: - Metamodelle

- Die Unified Modelling Language (UML) Version 2

Stoffumfang in Vorlesungsdoppelstunden: 0.5

1

Modellgetriebene Software-Entwicklung 2

Inhaltsverzeichnis
1 Motivation 3

2 Grundlegende Ansätze 3
2.1 Übersetzungsansatz . 4
2.2 Interpreteransatz . 5
2.3 Vergleich beider Ansätze . 5

3 Einsatzkriterien 6

4 Modelltransformationen und MDA 7

5 MBSE-Infrastrukturen 8
5.1 Entwicklung einer MBSE-Infrastruktur 8
5.2 Modelltransformatoren und -Übersetzer 10
5.3 Das Eclipse Modeling Framework (EMF) 11

Literatur . 12

c©2009 Udo Kelter Stand: 03.11.2009
Dieser Text darf für nichtkommerzielle Nutzungen als Ganzes und unverändert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Veränderung und Überführung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist über http://kltr.de erreichbar.

Modellgetriebene Software-Entwicklung 3

1 Motivation

Die modellgetriebene Software-Entwicklung (englisch model-driven
(software) development, abgekürzt MDD oder MDSD) ist einer der
wichtigsten Trends der letzten 10 Jahre in der Softwaretechnik und wird
noch auf Jahre hinaus ein wichtiges Thema bleiben. Man verspricht sich
von dieser Entwicklungsmethode bzw. Technologie, die Entwicklung
von Software stark zu beschleunigen und damit zugleich preiswerter
zu machen, indem möglichst große Teile bisher von Hand geschriebe-
ner Anteile eines Softwaresystems durch kompaktere Modelle ersetzt
werden. Zugleich kann hierdurch die Qualität der Software verbessert
werden.

Es sind mehrere andere Bezeichnungen für diese Technologie üblich:
das englische driven kann man eigentlich besser mit “gesteuert” oder “ori-
entiert” übersetzen; daß Modelle Entwicklungsprozesse antreiben, ist im
wörtlichen Sinne schlecht vorstellbar. Häufig wird die Bezeichnung mo-
dellbasierte Software-Entwicklung (MBSE) (model-based (soft-
ware) development) verwendet, die inhaltlich am passendsten erscheint.
Weitere Bezeichnungen sind model-driven engineering (MDE) und
model-driven architecture (MDA; ein völlig mißlungener Begriff, mehr
hierzu später).

2 Grundlegende Ansätze

Die MBSE unterstellt eine stufenweise Konkretisierung eines System
analog zum Phasenmodell, in dem beispielsweise folgende Konkretisie-
rungsstufen auftreten können: Analyse-Modell, Entwurfsmodell und
Programmcode. Die Kernidee der MBSE ist,

- entweder möglichst große Teile des Programmcodes durch Übersetzen
eines Modells zu generieren oder

- ein Modell zu interpretieren.

Beide Ansätze unterscheiden sich in einigen Details, auf die wir anschlie-
ßend eingehen. Auf jeden Fall werden die Modelle damit in gewisser
Weise zu ausführbaren Programmen. Ähnlich wie man beim Übergang

c©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 4

von Assemblersprachen zu höheren Programmiersprachen den Umfang
des zu schreibenden Programmtexts stark reduzieren kann, kann beim
Übergang zu Modellen als ausführbaren Einheiten der Erstellungsauf-
wand deutlich verkleinert werden.

2.1 Übersetzungsansatz

Beim Übersetzungsansatz geht man davon aus, daß man i.a. nicht den
kompletten Quelltext des zu entwickelnden Systems aus den Modellen
ableiten kann, sondern bestimmte Teile weiterhin von Hand schreibt.
Beispielsweise kann man aus Datenmodellen die Datenhaltungsschicht
einer Applikation weitgehend generieren, nicht hingegen qualitativ gute
Bedienschnittstellen.
Oft ist es günstiger, die Modelle nicht in einem einzigen Schritt in

den Quellcode zu transformieren, sondern in mehreren Schritten. Bei
jedem dieser Schritte kann z.B. eine bestimmte Technologieentschei-
dung umgesetzt werden, ferner können ggf. manuell geschriebene Teile
hinzugemischt werden.
Insgesamt erfordert der Übersetzungsansatz eine MBSE-Infra-

struktur, die folgende Funktionen anbietet:

- einen oder mehrere Übersetzer für Modelle und weitere Werkzeuge,
beispielsweise Mischfunktionen, die manuelle und generierte Teile
zusammenfügen, insb. nach Modelländerungen

- ggf. Bibliotheken, die unverändert oder in angepaßter Form zum
Teil des entwickelten Systems werden

Die Architektur des entwickelten Systems sollte natürlich möglichst so
gestaltet werden, daß die generierten Teile die Form kompletter Module
bzw. Subsysteme haben, was die Mischung mit den handgeschriebenen
Teilen sehr vereinfacht. Sofern allerdings mehrere unterschiedliche Mo-
delltypen eingesetzt werden, die unterschiedliche Aspekte eines Systems
modellieren, können komplexe Mischprobleme auftreten.

c©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 5

2.2 Interpreteransatz

Beim Interpreteransatz benötigt man ebenfalls ein Modell - es kann im
Prinzip das exakt gleiche Modell wie beim Übersetzeransatz sein -, es
wird aber nicht übersetzt, sondern von einer vollständigen Applikation
direkt “interpretiert”.

Beispielsweise kann man Analyseklassendiagramme und ähnliche Da-
tenmodelle so verstehen, daß diese einen Datenbestand spezifizieren,
dessen Struktur ein Graph ist, in dem die Knoten und Kanten durch die
Klassen und Assoziationen des Analyseklassendiagramms definiert wer-
den. Man kann nun einen “generischen” Editor realisieren, der beliebige
derartige Graphen editieren kann und der durch ein konkretes Klassen-
diagramm gesteuert wird. Der Editor ist generisch in dem Sinne, daß
er mit beliebigen Typen von Knoten und Kanten arbeiten kann.

Wie die Graphen optisch dargestellt werden, wie Editierdialoge aus-
sehen, wie Graphen z.B. in Dateien gespeichert werden usw. ist in
einem Klassendiagramm nicht definiert, diese Entwurfsentscheidun-
gen werden alleine durch den generischen Editor definiert und sind im
einfachsten Fall in dessen Code hart verdrahtet. Entsprechende Funk-
tionen sind beim Übersetzungsansatz in den handgeschriebenen (oder
aus zusätzlichen Modellen generierten) Quelltexten zu realisieren.
Man kann die Rolle des Klassendiagramms in diesen Strukturen

verschieden auffassen, entweder als Konfigurationsparameter des
Editors, vor allem dann, wenn der Editor noch viele weitere Konfi-
gurationsparameter hat, oder als “Quellprogramm”, das der Editor
interpretiert, analog zu einem Interpreter für eine textuelle Program-
miersprache.

2.3 Vergleich beider Ansätze

Beim Interpreteransatz braucht man nur noch das Modell zu liefern und
hat danach sofort ein lauffähiges System, ohne irgendwelchen Quellco-
de kompilieren zu müssen, was wiederum eine komplette Programm-
entwicklungsumgebung erfordert. Insofern ist der Interpreteransatz
einfacher handhabbar und führt schneller zum Ergebnis.
Andererseits ist der Interpreteransatz wesentlich unflexibler als der

c©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 6

Übersetzeransatz: beim Übersetzeransatz hat man völlige Freiheit bei
der Gestaltung der nicht generierten Systemteile, während man die ge-
nerische Applikation mit vertretbarem Aufwand nur wenig ändern kann
oder gar nicht, wenn man deren Quellcode nicht hat.

3 Einsatzkriterien

Beide Ansätze sind bei der erstmaligen Anwendung deutlich aufwendi-
ger (!) als eine direkte Implementierung eines Systems, die auf explizite
Modelle verzichtet und bei der die Modelle sozusagen hart verdrahtet
im Quellcode realisiert sind.
Besonders hohen Mehraufwand kann der Übersetzeransatz verursa-

chen, wenn hier zusätzliche Modelltransformatoren und andere Werk-
zeuge, die in konventionellen Software-Entwicklungsumgebungen nicht
enthalten sind, realisiert werden müssen. Wir diskutieren das Aufwands-
problem daher i.f. vor allem unter der Annahme des Übersetzeransatzes.
Auf die Frage, wie der Aufwand für die speziellen MBSE-Werkzeuge
reduziert werden kann, gehen wir erst später ein.
Modellbasierte Entwicklungsmethoden lohnen sich somit letztlich

nur, wenn der initiale Mehraufwand auf die Dauer amortisiert wird; dies
ist wahrscheinlich, wenn eine oder mehrere der folgenden Bedingungen
zutreffen:

1. wenn eine große Zahl ähnlicher Systeme erstellt werden muß, z.B.
eine Systemfamilie: die gemeinsame Funktionalität kann als generi-
sche Programmfunktionalität des Interpreters realisiert werden bzw.
als fester, nicht generierter Programmcode, der ggf. als Bibliothek
eingebunden wird. Die gemeinsame Funktionalität kann natürlich
selbst konfigurierbar gestaltet werden.

2. wenn beim evolutionären Vorgehen viele Varianten eines Systems be-
nötigt werden und wenn die Varianten i.w. durch Änderung der Mo-
delle realisiert werden können: ähnlich wie beim ersten Fall werden
auch hier viele Systemvarianten erstellt, nur zeitlich nacheinander.

3. wenn man auf diese Weise billig einen schnellen Prototypen realisieren
kann

c©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 7

4. wenn sich Implementierungstechnologien häufig ändern und deswegen
in einem konventionellen System umfangreiche Anpassungsarbei-
ten anfallen würden: bei einem modellbasierten Verfahren muß (im
Idealfall) nur der Modelltransformator angepaßt werden1.

5. wenn die gleiche Applikation für mehrere Zielplattformen realisiert
werden muß und dies durch unterschiedliche Generierung erzielt wer-
den kann: unter dem Schlagwort “model once, run anywhere” war
dies eine Hauptmotivation für den MDA-Ansatz. Pro Zielplattform
braucht man im Prinzip einen eigenen Transformator. Wenn die
Zielplattformen relativ ähnlich sind, ist es geschickter, einen einzigen
konfigurierbaren Transformator zu entwickeln, der mittels passender
Konfigurationsparameter für eine gewünschte Zielplattform einge-
stellt werden kann.

Um diese Bedingungen gut ausnutzen zu können, müssen die MBSE-
Infrastrukturen passend gestaltet werden.

4 Modelltransformationen und MDA

Wie schon erwähnt kann man ein Modell in mehreren Schritten in Code
übersetzen. Nach jedem Schritt entstehen eigene Zwischenstufen mit
bestimmten Merkmalen. Eine derartige Sequenz von Transformations-
schritten und Zwischenergebnissen hat die OMG unter dem Schlagwort
“Model Driven Architecture” [OMG03] publiziert.

Zunächst muß hier leider davor gewarnt werden, daß es sich hier im
Gegensatz zum Titel nicht um eine Architektur handelt, sondern um
einen Begriffsrahmen, der eine modellbasierte Entwicklungsmethode
bescheibt2. Diese begriffliche Schlamperei ist sehr ärgerlich, da sie un-
nötig verwirrt. Abgesehen davon ist [OMG03] sehr lesenswert. Der in

1Die Anpassung von Modelltransformatoren mag zwar einen geringeren Umfang
haben, erfordert aber u.U. eine wesentlich höhere Qualifikation.

2Der MDA Guide widerspricht sich in dieser Hinsicht selbst. Einerseits wird
MDA als “approach” definiert, z.B in Abschnitt 2.1.1 Background: “ Model Driven
ArchitectureTMor MDATM... is not, like the OMA and CORBA, a framework for
implementing distributed systems. It is an approach to using models in software
development. ”.

c©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 8

[OMG03] definierte Begriffsrahmen charakterisiert vor allem sinnvolle
Zwischenstufen in einem mehrstufigen Transformationsprozeß:

1. Ausgangspunkt ist ein Computation Independent Model
(CIM), unter dem man auch mehrere Teilmodelle, die unterschied-
liche Sichten einnehmen, verstehen kann. Neben dem eigentlichen
System kann hier auch der Anwendungskontext beschrieben wer-
den. Ein wichtiges Ziel ist es, allgemeine Begriffe zu definieren, um
die Kommunikation zwischen Entwicklern und Anwendern zu un-
terstützen. Offen bleibt, ob und wie derartige Modelle maschinell
übersetzbar sind, man wird sie eher von Hand übersetzen müssen.

2. Platform Independent Model (PIM): Das plattformunabhän-
gige Modell ist der eigentliche Startpunkt für maschinelle Transfor-
mationen. Es können beliebige geeignete Sprachen zur Formulierung
der Modelle genutzt werden, sowohl Standardsprachen wie domä-
nenspezifische. Die Plattformunabhängigkeit besteht darin, von den
speziellen Eigenschaften aller infrage kommenden vorhandenen oder
zu erwartenden Zielplattformen zu abstrahieren.

3. Platform Specific Model (PSM). Das plattformspezifische Mo-
dell eines Systems implementiert das PIM auf Basis einer konkreten
Plattform, die aus konkreten Basistechnologien wie Programmier-
sprache, Komponentenmodell, Kommunikationsprotokolle, Daten-
verwaltungssystem usw. besteht.

5 MBSE-Infrastrukturen

5.1 Entwicklung einer MBSE-Infrastruktur

Wie schon oben erwähnt wird bei der MBSE der Umfang der originären
Entwicklungsdokumente gegenüber der klassischen Programmierung
deutlich gesenkt: umfangreicher textueller Quellcode wird durch Mo-
delle ersetzt, die wesentlich kompakter sind. Das bedeutet umgekehrt,

Andererseits wird in Abschnitt 2.2.4 der Begriff Architektur wie allgemein üblich
definiert: “The architecture of a system is a specification of the parts and connectors
of the system and the rules for the interactions of the parts using the connectors.”.

c©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 9

daß nicht mehr jedes Detail der entstehenden Applikation nach Belie-
ben gewählt werden kann. Die Transformatoren oder Interpreter geben
sehr viele Detailentscheidungen vor. Anders gesehen sinkt die Anzahl
der realisierbaren Systeme gegenüber der freien Programmierung deut-
lich. Die Nützlichkeit des MBSE-Ansatzes steht und fällt daher damit,

- wie sehr diese vorgegebenen, mit vertretbarem Aufwand nicht än-
derbaren Details dem Bedarf entsprechen und

- wie gut die konfigurierbaren Teile handhabbar sind und ob alle
gewünschten Systeme in Rahmen der Konfigurationsmöglichkeiten
realisierbar sind.

Um für eine bestimmte Applikationsdomäne eine gute MBSE-Infra-
struktur zu entwickelt, müssen vor allem die Gemeinsamkeiten und
Unterschiede der Einzelprodukte in dieser Applikationsdomäne gut ver-
standen sein. Hierzu ist es sinnvoll, die Applikationsdomäne zunächst
generell hinsichtlich grundlegender Begrifflichkeiten, Standardarchitek-
turen usw. zu durchleuchten (vgl. oben CIM). Eine gezielte Domänen-
analyse ist auch üblich, wenn andere, nicht modellbasierte Formen von
Systemfamilien geplant entwickelt werden.
In der Praxis entstehen oft zunächst ungeplant einige ähnliche Ein-

zelprodukte aus der Applikationsdomäne, die erst im nachhinein zu
einer Familie integriert werden sollen. Hierzu sind die Implementie-
rungen der Einzelprodukte zu analysieren und folgende Codeteile zu
unterscheiden:

1. in allen Einzelprodukten identisch oder fast identisch auftretende
Codeteile

2. aus Modellen ableitbare Codeteile (“schematische” Codeteile,
Pattern-Instanzen)

3. individueller Code

Sowohl bei geplanter wie ungeplanter Entstehung einer MBSE-
Infrastruktur besteht der nächste Schritt in der Entwicklung einer
Standardarchitektur, die die einheitlichen und die variablen Komponen-
ten der Systeme möglichst voneinander trennt. Die variablen Kompo-
nenten sollen natürlich aus Modellen oder anderen Konfigurationsdaten

c©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 10

generiert werden. In diesem Zusammenhang sind folgende Technologien
auszuwählen:

1. Modellierungssprache (Metamodell, konkrete Syntax)
2. Modellübersetzer(technologie)
3. ggf. Auswahl von Zielplattformen

Sofern schon Einzelprodukte vorhanden sind, können diese in die nun
definierte MBSE-Infrastruktur portiert werden.

5.2 Modelltransformatoren und -Übersetzer

Wie schon erwähnt müssen Modelle ggf. mehrfach transformiert werden,
wobei in jedem Schritt bestimmte technologische Entscheidungen “ma-
terialisiert” werden. Ein Werkzeug, das wieder ein (verfeinertes) Modell
erzeugt, bezeichnen wir i.f. als Modelltransformator, während ein
Modellübersetzer einen Programm-Quelltext ausgibt.

Die vorgenannten Werkzeuge müssen Modelle einlesen und ggf. ausge-
ben. Dies führt zu der Frage, wie Modelle repräsentiert werden können.
Benötigt werden einerseits persistente Repräsentationen zur dauerhaften
Speicherung und für Werkzeuge, die mit Dateien arbeiten. Transiente
Repräsentationen werden zum Datenaustausch zwischen Werkzeugen
benötigt, die in einer Entwicklungsumgebung parallel laufen. Alle
vorgenannten Repräsentationen hängen von den Merkmalen des Daten-
verwaltungssystems bzw. der Programmiersprache ab und sind insofern
technologiespezifisch. Technologieabhängigkeiten sind natürlich uner-
wünscht, daher sollte man die Struktur der Modelle zunächst mittels
Analyseklassendiagrammen modellieren3; letztere werden auch als Me-
tamodelle bezeichnet. Aus ihnen können dann technologiespezifische
Datenstrukturen abgeleitet werden.

Die benötigten Modelltransformatoren und -Übersetzer können im
Prinzip als monolithische Einzelwerkzeuge für einen speziellen Modell-

3Bei den in der Praxis sehr bedeutenden UML-Modellen ist dies nicht der
Fall; die UML-Metamodelle modellieren die Modelltypen in Form von Entwurfs-
klassendiagrammen, die auf gängige objektorientierte Programmiersprachen als
Implementierungssprache ausgerichtet sind (vgl. auch Lehrmodul “Metamodelle”).

c©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 11

typ realisiert werden. Das Dokumentschema ist hier typischerweise
im Quellcode “hart verdrahtet”. Da relativ viele Übersetzer benötigt
werden, ist dieses Vorgehen i.a. zu aufwendig.
Naheliegenderweise wendet man daher die Grundidee der modellge-

triebenen Software-Entwicklung wieder auf das Problem, eine Familie
von Transformatoren zu realisieren an! Sowohl der Interpreter- wie der
Übersetzeransatz kommen infrage, in der Praxis werden sehr häufig
“generische” Transformatoren benutzt, die durch ein Metamodell oder
eine daraus abgeleitete DTD gesteuert werden. Derartige “generische”
Werkzeuge werden auch als Meta-Werkzeuge bezeichnet.

5.3 Das Eclipse Modeling Framework (EMF)

Das Eclipse Modeling Framework (EMF) ist eine häufig benutzte
MBSE-Infrastruktur. EMF ist gemäß dem Übersetzeransatz aufge-
baut: zentraler Bestandteil von EMF ist ein Übersetzer, der Entwurfs-
Klassendiagramme, die die Rolle von Metamodellen spielen, in Java-
Code übersetzt.

Wie schon erwähnt kann man aus Datenmodellen vor allem die Da-
tenhaltungsschicht einer Applikation ableiten, dies ist auch hier der
Fall: der generierte Java-Code kann Modelle anlegen, abfragen, mani-
pulieren, serialisieren, validieren und auf Änderungen überwachen. Der
Funktionsumfang dieser Datenhaltungsschicht ist relativ umfangreich
und orientiert sich vor allem am Bedarf interaktiver Modelleditoren.

Neben dieser Datenhaltungsschicht, die Teil des entwickelten Systems
wird, kann man auch JUnit-Code als Testtreiber generieren. Dieses
Beispiel zeigt, daß man mit MBSE-Methoden beliebige im Rahmen ei-
nes Entwicklungsprozesses benötigte Dokumente generieren kann und
sollte, soweit inhaltlich möglich.

Das Metamodell, das als Eingabe für den Übersetzer benötigt wird,
kann im Prinzip mit einem beliebigen Werkzeug zur Bearbeitung von
Klassendiagrammen erstellt werden; EMF bietet hierzu nur einen rudi-
mentären Editor an, der ein Klassen“diagramm” als Baum darstellt4.

4Die Bezeichnung Modeling Framework ist insofern irreführend, als das EMF
kein Werkzeug ist, mit dem man Modelle entwickelt.

c©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 12

Literatur

[EMF] The Eclipse Modeling Framework (EMF);
http://www.eclipse.org/modeling/emf/

[MM] Kelter, U.: Lehrmodul “Metamodelle”; 2009
[OMG03] MDA Guide Version 1.0.1; OMG, Document Number:

omg/2003-06-01; 2003-06-12;
http://www.omg.org/docs/omg/03-06-01.pdf

c©2009 Udo Kelter Stand: 03.11.2009

	Motivation
	Grundlegende Ansätze
	Übersetzungsansatz
	Interpreteransatz
	Vergleich beider Ansätze

	Einsatzkriterien
	Modelltransformationen und MDA
	MBSE-Infrastrukturen
	Entwicklung einer MBSE-Infrastruktur
	Modelltransformatoren und -Übersetzer
	Das Eclipse Modeling Framework (EMF)
	Literatur

