Einfithrung in die modellgetriebene
Software-Entwicklung

Udo Kelter

03.11.2009

Zusammenfassung dieses Lehrmoduls

Die modellgetriebene bzw. modellbasierte Software-Entwicklung ist eine
kommende wichtige Methode der Software-Entwicklung. Dieses Lehr-
modul skizziert die grundlegenden Vorgehensweisen (Ubersetzeransatz
und Interpreteransatz) und zugehérige Infrastrukturen. Ferner werden
Kriterien beschrieben, wann die modellbasierte Software-Entwicklung
sinnvoll ist.

Vorausgesetzte Lehrmodule:
empfohlen: - Metamodelle
- Die Unified Modelling Language (UML) Version 2

Stoffumfang in Vorlesungsdoppelstunden: 0.5

1

Modellgetriebene Software-Entwicklung 2

Inhaltsverzeichnis

I Motivation 3

12 Grundlegende Ansatze) 3
| .1 Ubersetzungsansatzl. 4
2.2 Interpreteransatz . 5
2.3 Vergleich beider Ansatzel 5

B E Kriterien 6

4__Modelltransformationen und MDA 7

5 MBSE-Infrastrukturen| 8
5.1 Entwicklung einer MBSE-Infrastruktur|. 8
[5.3 Das Eclipse Modeling Framework (EMF)[. 11

©2009 Udo Kelter Stand: 03.11.2009
Dieser Text darf fiir nichtkommerzielle Nutzungen als Ganzes und unverdndert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Verinderung und Uberfiihrung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist iiber http://kltr.de erreichbar.

Modellgetriebene Software-Entwicklung 3

1 Motivation

Die modellgetriebene Software-Entwicklung (englisch model-driven
(software) development, abgekiirzt MDD oder MDSD) ist einer der
wichtigsten Trends der letzten 10 Jahre in der Softwaretechnik und wird
noch auf Jahre hinaus ein wichtiges Thema bleiben. Man verspricht sich
von dieser Entwicklungsmethode bzw. Technologie, die Entwicklung
von Software stark zu beschleunigen und damit zugleich preiswerter
zu machen, indem moglichst grofie Teile bisher von Hand geschriebe-
ner Anteile eines Softwaresystems durch kompaktere Modelle ersetzt
werden. Zugleich kann hierdurch die Qualitdt der Software verbessert
werden.

Es sind mehrere andere Bezeichnungen fiir diese Technologie {iblich:
das englische driven kann man eigentlich besser mit “gesteuert” oder “ori-
entiert” iibersetzen; dafs Modelle Entwicklungsprozesse antreiben, ist im
wortlichen Sinne schlecht vorstellbar. Haufig wird die Bezeichnung mo-
dellbasierte Software-Entwicklung (MBSE) (model-based (soft-
ware) development) verwendet, die inhaltlich am passendsten erscheint.
Weitere Bezeichnungen sind model-driven engineering (MDE) und
model-driven architecture (MDA; ein vollig miklungener Begriff, mehr
hierzu spéter).

2 Grundlegende Ansitze

Die MBSE unterstellt eine stufenweise Konkretisierung eines System
analog zum Phasenmodell, in dem beispielsweise folgende Konkretisie-
rungsstufen auftreten kénnen: Analyse-Modell, Entwurfsmodell und
Programmcode. Die Kernidee der MBSE ist,

- entweder moglichst grofe Teile des Programmcodes durch Ubersetzen
eines Modells zu generieren oder

— ein Modell zu interpretieren.

Beide Ansétze unterscheiden sich in einigen Details, auf die wir anschlie-

fend eingehen. Auf jeden Fall werden die Modelle damit in gewisser
Weise zu ausfithrbaren Programmen. Ahnlich wie man beim Ubergang

(©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 4

von Assemblersprachen zu héheren Programmiersprachen den Umfang
des zu schreibenden Programmtexts stark reduzieren kann, kann beim
Ubergang zu Modellen als ausfiihrbaren Einheiten der Erstellungsauf-
wand deutlich verkleinert werden.

2.1 ﬁbersetzungsansatz

Beim Ubersetzungsansatz geht man davon aus, daf man i.a. nicht den
kompletten Quelltext des zu entwickelnden Systems aus den Modellen
ableiten kann, sondern bestimmte Teile weiterhin von Hand schreibt.
Beispielsweise kann man aus Datenmodellen die Datenhaltungsschicht
einer Applikation weitgehend generieren, nicht hingegen qualitativ gute
Bedienschnittstellen.

Oft ist es giinstiger, die Modelle nicht in einem einzigen Schritt in
den Quellcode zu transformieren, sondern in mehreren Schritten. Bei
jedem dieser Schritte kann z.B. eine bestimmte Technologieentschei-
dung umgesetzt werden, ferner konnen ggf. manuell geschriebene Teile
hinzugemischt werden.

Insgesamt erfordert der Ubersetzungsansatz eine MBSE-Infra-
struktur, die folgende Funktionen anbietet:

- einen oder mehrere Ubersetzer fiir Modelle und weitere Werkzeuge,
beispielsweise Mischfunktionen, die manuelle und generierte Teile
zusammenfiigen, insb. nach Modellanderungen

- ggf. Bibliotheken, die unverédndert oder in angepafiter Form zum
Teil des entwickelten Systems werden

Die Architektur des entwickelten Systems sollte natiirlich méglichst so
gestaltet werden, daft die generierten Teile die Form kompletter Module
bzw. Subsysteme haben, was die Mischung mit den handgeschriebenen
Teilen sehr vereinfacht. Sofern allerdings mehrere unterschiedliche Mo-
delltypen eingesetzt werden, die unterschiedliche Aspekte eines Systems
modellieren, kénnen komplexe Mischprobleme auftreten.

(©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 5

2.2 Interpreteransatz

Beim Interpreteransatz benotigt man ebenfalls ein Modell - es kann im
Prinzip das exakt gleiche Modell wie beim Ubersetzeransatz sein -, es
wird aber nicht tibersetzt, sondern von einer vollstandigen Applikation
direkt “interpretiert”.

Beispielsweise kann man Analyseklassendiagramme und &hnliche Da-
tenmodelle so verstehen, daft diese einen Datenbestand spezifizieren,
dessen Struktur ein Graph ist, in dem die Knoten und Kanten durch die
Klassen und Assoziationen des Analyseklassendiagramms definiert wer-
den. Man kann nun einen “generischen” Editor realisieren, der beliebige
derartige Graphen editieren kann und der durch ein konkretes Klassen-
diagramm gesteuert wird. Der Editor ist generisch in dem Sinne, dafs
er mit beliebigen Typen von Knoten und Kanten arbeiten kann.

Wie die Graphen optisch dargestellt werden, wie Editierdialoge aus-
sehen, wie Graphen z.B. in Dateien gespeichert werden usw. ist in
einem Klassendiagramm nicht definiert, diese Entwurfsentscheidun-
gen werden alleine durch den generischen Editor definiert und sind im
einfachsten Fall in dessen Code hart verdrahtet. Entsprechende Funk-
tionen sind beim Ubersetzungsansatz in den handgeschriebenen (oder
aus zusétzlichen Modellen generierten) Quelltexten zu realisieren.

Man kann die Rolle des Klassendiagramms in diesen Strukturen
verschieden auffassen, entweder als Konfigurationsparameter des
Editors, vor allem dann, wenn der Editor noch viele weitere Konfi-
gurationsparameter hat, oder als “Quellprogramm”, das der Editor
interpretiert, analog zu einem Interpreter fiir eine textuelle Program-
miersprache.

2.3 Vergleich beider Ansitze

Beim Interpreteransatz braucht man nur noch das Modell zu liefern und
hat danach sofort ein lauffihiges System, ohne irgendwelchen Quellco-
de kompilieren zu miissen, was wiederum eine komplette Programm-
entwicklungsumgebung erfordert. Insofern ist der Interpreteransatz
einfacher handhabbar und fiihrt schneller zum Ergebnis.

Andererseits ist der Interpreteransatz wesentlich unflexibler als der

(©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 6

Ubersetzeransatz: beim Ubersetzeransatz hat man vollige Freiheit bei
der Gestaltung der nicht generierten Systemteile, wéhrend man die ge-
nerische Applikation mit vertretbarem Aufwand nur wenig &ndern kann
oder gar nicht, wenn man deren Quellcode nicht hat.

3 Einsatzkriterien

Beide Ansétze sind bei der erstmaligen Anwendung deutlich aufwendi-
ger (!) als eine direkte Implementierung eines Systems, die auf explizite
Modelle verzichtet und bei der die Modelle sozusagen hart verdrahtet
im Quellcode realisiert sind.

Besonders hohen Mehraufwand kann der Ubersetzeransatz verursa-
chen, wenn hier zusédtzliche Modelltransformatoren und andere Werk-
zeuge, die in konventionellen Software-Entwicklungsumgebungen nicht
enthalten sind, realisiert werden miissen. Wir diskutieren das Aufwands-
problem daher i.f. vor allem unter der Annahme des Ubersetzeransatzes.
Auf die Frage, wie der Aufwand fiir die speziellen MBSE-Werkzeuge
reduziert werden kann, gehen wir erst spéter ein.

Modellbasierte Entwicklungsmethoden lohnen sich somit letztlich
nur, wenn der initiale Mehraufwand auf die Dauer amortisiert wird; dies
ist wahrscheinlich, wenn eine oder mehrere der folgenden Bedingungen
zutreffen:

1. wenn eine grofle Zahl dhnlicher Systeme erstellt werden mufs, z.B.
eine Systemfamilie: die gemeinsame Funktionalitdt kann als generi-
sche Programmfunktionalitét des Interpreters realisiert werden bzw.
als fester, nicht generierter Programmcode, der ggf. als Bibliothek
eingebunden wird. Die gemeinsame Funktionalitdat kann natiirlich
selbst konfigurierbar gestaltet werden.

2. wenn beim evolutiondren Vorgehen viele Varianten eines Systems be-
nétigt werden und wenn die Varianten i.w. durch Anderung der Mo-
delle realisiert werden konnen: &hnlich wie beim ersten Fall werden
auch hier viele Systemvarianten erstellt, nur zeitlich nacheinander.

3. wenn man auf diese Weise billig einen schnellen Prototypen realisieren
kann

(©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 7

4. wenn sich Implementierungstechnologien hiufig dndern und deswegen
in einem konventionellen System umfangreiche Anpassungsarbei-
ten anfallen wiirden: bei einem modellbasierten Verfahren muf (im
Idealfall) nur der Modelltransformator angepaft Werdenﬂ

5. wenn die gleiche Applikation fiir mehrere Zielplatiformen realisiert
werden muf und dies durch unterschiedliche Generierung erzielt wer-
den kann: unter dem Schlagwort “model once, run anywhere’ war
dies eine Hauptmotivation fiir den MDA-Ansatz. Pro Zielplattform
braucht man im Prinzip einen eigenen Transformator. Wenn die
Zielplattformen relativ dhnlich sind, ist es geschickter, einen einzigen
konfigurierbaren Transformator zu entwickeln, der mittels passender
Konfigurationsparameter fiir eine gewiinschte Zielplattform einge-
stellt werden kann.

Um diese Bedingungen gut ausnutzen zu kénnen, miissen die MBSE-
Infrastrukturen passend gestaltet werden.

4 Modelltransformationen und MDA

Wie schon erwdhnt kann man ein Modell in mehreren Schritten in Code
iibersetzen. Nach jedem Schritt entstehen eigene Zwischenstufen mit
bestimmten Merkmalen. Eine derartige Sequenz von Transformations-
schritten und Zwischenergebnissen hat die OMG unter dem Schlagwort
“Model Driven Architecture” [OMGO03] publiziert.

Zunéchst muf hier leider davor gewarnt werden, dafs es sich hier im
Gegensatz zum Titel nicht um eine Architektur handelt, sondern um
einen Begriffsrahmen, der eine modellbasierte Entwicklungsmethode
bescheibﬂ Diese begriffliche Schlamperei ist sehr adrgerlich, da sie un-
notig verwirrt. Abgesehen davon ist [OMGO3| sehr lesenswert. Der in

'Die Anpassung von Modelltransformatoren mag zwar einen geringeren Umfang
haben, erfordert aber u.U. eine wesentlich héhere Qualifikation.

2Der MDA Guide widerspricht sich in dieser Hinsicht selbst. Einerseits wird
MDA als “approach” definiert, z.B in Abschnitt 2.1.1 Background: “ Model Driven
Architecture™or MDA™ .. is not, like the OMA and CORBA, a framework for
implementing distributed systems. It is an approach to using models in software
development. 7.

(©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 8

[OMGO3] definierte Begriffsrahmen charakterisiert vor allem sinnvolle
Zwischenstufen in einem mehrstufigen Transformationsprozef:

1. Ausgangspunkt ist ein Computation Independent Model
(CIM), unter dem man auch mehrere Teilmodelle, die unterschied-
liche Sichten einnehmen, verstehen kann. Neben dem eigentlichen
System kann hier auch der Anwendungskontext beschrieben wer-
den. Ein wichtiges Ziel ist es, allgemeine Begriffe zu definieren, um
die Kommunikation zwischen Entwicklern und Anwendern zu un-
terstiitzen. Offen bleibt, ob und wie derartige Modelle maschinell
iibersetzbar sind, man wird sie eher von Hand iibersetzen miissen.

2. Platform Independent Model (PIM): Das plattformunabhén-
gige Modell ist der eigentliche Startpunkt fiir maschinelle Transfor-
mationen. Es konnen beliebige geeignete Sprachen zur Formulierung
der Modelle genutzt werden, sowohl Standardsprachen wie domé-
nenspezifische. Die Plattformunabhéngigkeit besteht darin, von den
speziellen Eigenschaften aller infrage kommenden vorhandenen oder
zu erwartenden Zielplattformen zu abstrahieren.

3. Platform Specific Model (PSM). Das plattformspezifische Mo-
dell eines Systems implementiert das PIM auf Basis einer konkreten
Plattform, die aus konkreten Basistechnologien wie Programmier-
sprache, Komponentenmodell, Kommunikationsprotokolle, Daten-
verwaltungssystem usw. besteht.

5 MBSE-Infrastrukturen

5.1 Entwicklung einer MBSE-Infrastruktur

Wie schon oben erwidhnt wird bei der MBSE der Umfang der originiren
Entwicklungsdokumente gegeniiber der klassischen Programmierung
deutlich gesenkt: umfangreicher textueller Quellcode wird durch Mo-
delle ersetzt, die wesentlich kompakter sind. Das bedeutet umgekehrt,

Andererseits wird in Abschnitt 2.2.4 der Begriff Architektur wie allgemein {iblich
definiert: “The architecture of a system is a specification of the parts and connectors
of the system and the rules for the interactions of the parts using the connectors.”.

(©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 9

dafs nicht mehr jedes Detail der entstehenden Applikation nach Belie-
ben gewéhlt werden kann. Die Transformatoren oder Interpreter geben
sehr viele Detailentscheidungen vor. Anders gesehen sinkt die Anzahl
der realisierbaren Systeme gegeniiber der freien Programmierung deut-
lich. Die Niitzlichkeit des MBSE-Ansatzes steht und fillt daher damit,

- wie sehr diese vorgegebenen, mit vertretbarem Aufwand nicht &n-
derbaren Details dem Bedarf entsprechen und

- wie gut die konfigurierbaren Teile handhabbar sind und ob alle
gewlinschten Systeme in Rahmen der Konfigurationsmoglichkeiten
realisierbar sind.

Um fiir eine bestimmte Applikationsdoméne eine gute MBSE-Infra-
struktur zu entwickelt, miissen vor allem die Gemeinsamkeiten und
Unterschiede der Einzelprodukte in dieser Applikationsdoméne gut ver-
standen sein. Hierzu ist es sinnvoll, die Applikationsdoméne zunéchst
generell hinsichtlich grundlegender Begrifflichkeiten, Standardarchitek-
turen usw. zu durchleuchten (vgl. oben CIM). Eine gezielte Doménen-
analyse ist auch ublich, wenn andere, nicht modellbasierte Formen von
Systemfamilien geplant entwickelt werden.

In der Praxis entstehen oft zundchst ungeplant einige dhnliche Ein-
zelprodukte aus der Applikationsdoméne, die erst im nachhinein zu
einer Familie integriert werden sollen. Hierzu sind die Implementie-
rungen der Einzelprodukte zu analysieren und folgende Codeteile zu
unterscheiden:

1. in allen Einzelprodukten identisch oder fast identisch auftretende
Codeteile

2. aus Modellen ableitbare Codeteile (“schematische” Codeteile,
Pattern-Instanzen)

3. individueller Code

Sowohl bei geplanter wie ungeplanter Entstehung einer MBSE-
Infrastruktur besteht der néchste Schritt in der Entwicklung einer
Standardarchitektur, die die einheitlichen und die variablen Komponen-
ten der Systeme moglichst voneinander trennt. Die variablen Kompo-
nenten sollen natiirlich aus Modellen oder anderen Konfigurationsdaten

(©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 10

generiert werden. In diesem Zusammenhang sind folgende Technologien
auszuwéahlen:

1. Modellierungssprache (Metamodell, konkrete Syntax)
2. Modelliibersetzer (technologie)
3. gef. Auswahl von Zielplattformen

Sofern schon Einzelprodukte vorhanden sind, kénnen diese in die nun
definierte MBSE-Infrastruktur portiert werden.

5.2 Modelltransformatoren und -Ubersetzer

Wie schon erwéihnt miissen Modelle ggf. mehrfach transformiert werden,
wobei in jedem Schritt bestimmte technologische Entscheidungen “ma-
terialisiert” werden. Ein Werkzeug, das wieder ein (verfeinertes) Modell
erzeugt, bezeichnen wir i.f. als Modelltransformator, wahrend ein
Modelliibersetzer einen Programm-Quelltext ausgibt.

Die vorgenannten Werkzeuge miissen Modelle einlesen und ggf. ausge-
ben. Dies fiihrt zu der Frage, wie Modelle représentiert werden kénnen.
Benotigt werden einerseits persistente Représentationen zur dauerhaften
Speicherung und fir Werkzeuge, die mit Dateien arbeiten. Transiente
Reprasentationen werden zum Datenaustausch zwischen Werkzeugen
benotigt, die in einer Entwicklungsumgebung parallel laufen. Alle
vorgenannten Représentationen héngen von den Merkmalen des Daten-
verwaltungssystems bzw. der Programmiersprache ab und sind insofern
technologiespezifisch. Technologieabhédngigkeiten sind natiirlich uner-
wiinscht, daher sollte man die Struktur der Modelle zunéchst mittels
Analyseklassendiagrammen modelliererﬁ; letztere werden auch als Me-
tamodelle bezeichnet. Aus ihnen kénnen dann technologiespezifische
Datenstrukturen abgeleitet werden.

Die benétigten Modelltransformatoren und -Ubersetzer kénnen im
Prinzip als monolithische Einzelwerkzeuge fiir einen speziellen Modell-

3Bei den in der Praxis sehr bedeutenden UMIL-Modellen ist dies nicht der
Fall; die UML-Metamodelle modellieren die Modelltypen in Form von Entwurfs-
klassendiagrammen, die auf géngige objektorientierte Programmiersprachen als
Implementierungssprache ausgerichtet sind (vgl. auch Lehrmodul “Metamodelle”).

(©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 11

typ realisiert werden. Das Dokumentschema ist hier typischerweise
im Quellcode “hart verdrahtet”. Da relativ viele Ubersetzer benétigt
werden, ist dieses Vorgehen i.a. zu aufwendig.

Naheliegenderweise wendet man daher die Grundidee der modellge-
triebenen Software-Entwicklung wieder auf das Problem, eine Familie
von Transformatoren zu realisieren an! Sowohl der Interpreter- wie der
Ubersetzeransatz kommen infrage, in der Praxis werden sehr hiufig
“generische” Transformatoren benutzt, die durch ein Metamodell oder
eine daraus abgeleitete DTD gesteuert werden. Derartige “generische”
Werkzeuge werden auch als Meta-Werkzeuge bezeichnet.

5.3 Das Eclipse Modeling Framework (EMF)

Das Eclipse Modeling Framework (EMF) ist eine hiufig benutzte
MBSE-Infrastruktur. EMF ist gemiifi dem Ubersetzeransatz aufge-
baut: zentraler Bestandteil von EMF ist ein Ubersetzer, der Entwurfs-
Klassendiagramme, die die Rolle von Metamodellen spielen, in Java-
Code iibersetzt.

Wie schon erwédhnt kann man aus Datenmodellen vor allem die Da-
tenhaltungsschicht einer Applikation ableiten, dies ist auch hier der
Fall: der generierte Java-Code kann Modelle anlegen, abfragen, mani-
pulieren, serialisieren, validieren und auf Anderungen iiberwachen. Der
Funktionsumfang dieser Datenhaltungsschicht ist relativ umfangreich
und orientiert sich vor allem am Bedarf interaktiver Modelleditoren.

Neben dieser Datenhaltungsschicht, die Teil des entwickelten Systems
wird, kann man auch JUnit-Code als Testtreiber generieren. Dieses
Beispiel zeigt, dafs man mit MBSE-Methoden beliebige im Rahmen ei-
nes Entwicklungsprozesses benotigte Dokumente generieren kann und
sollte, soweit inhaltlich moglich.

Das Metamodell, das als Eingabe fiir den Ubersetzer benétigt wird,
kann im Prinzip mit einem beliebigen Werkzeug zur Bearbeitung von
Klassendiagrammen erstellt werden; EMF bietet hierzu nur einen rudi-
mentiren Editor an, der ein Klassen“diagramm” als Baum darstelltﬁ

“Die Bezeichnung Modeling Framework ist insofern irrefithrend, als das EMF
kein Werkzeug ist, mit dem man Modelle entwickelt.

(©2009 Udo Kelter Stand: 03.11.2009

Modellgetriebene Software-Entwicklung 12

Literatur

[EMF]| The Eclipse Modeling Framework (EMF);
http://www.eclipse.org/modeling/emf/

[MM] Kelter, U.: Lehrmodul “Metamodelle”; 2009

[OMGO03] MDA Guide Version 1.0.1; OMG, Document Number:
omg/2003-06-01; 2003-06-12;
http://www.omg.org/docs/omg/03-06-01.pdf

(©2009 Udo Kelter Stand: 03.11.2009

	Motivation
	Grundlegende Ansätze
	Übersetzungsansatz
	Interpreteransatz
	Vergleich beider Ansätze

	Einsatzkriterien
	Modelltransformationen und MDA
	MBSE-Infrastrukturen
	Entwicklung einer MBSE-Infrastruktur
	Modelltransformatoren und -Übersetzer
	Das Eclipse Modeling Framework (EMF)
	Literatur

