
Objektorientierte Modellierung

Udo Kelter

15.03.2003

Zusammenfassung dieses Lehrmoduls

Objektorientierte Analysemodelle modellieren sowohl Daten als auch
Verhalten eines geplanten Systems. Die Konzepte der Datenmodel-
lierung sind eine Erweiterung von Konzepten, die schon aus der ER-
Modellierung bekannt sind. In diesem Lehrmodul verwenden wir Kon-
zepte und Notationen der UML. Wir beschränken uns hier auf die
wichtigsten Grundlagen, i.w. Klassendiagramme und die darin auftre-
tenden Notationsformen.

Vorausgesetzte Lehrmodule:
obligatorisch: - Datenmodellierung mit ER-Modellen

Stoffumfang in Vorlesungsdoppelstunden: 1.0

1

Objektorientierte Modellierung 2

Inhaltsverzeichnis
1 Übersicht und Einordnung 3

2 Objekte, Objekttypen und Klassen 5
2.1 Einzelobjekte . 7

3 Attribute 8

4 Operationen 11

5 Beziehungen 12

6 Typhierarchien 15

7 Pakete 17

Literatur . 19
Glossar . 20
Index . 21

c©2003 Udo Kelter Stand: 15.03.2003
Dieser Text darf für nichtkommerzielle Nutzungen als Ganzes und unverändert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Veränderung und Überführung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist über http://kltr.de erreichbar.

Objektorientierte Modellierung 3

1 Übersicht und Einordnung

In diesem Lehrmodul stellen wir Grundlagen der objektorientierten
Analyse (OOA), insb. Klassendiagramme vor. Klassendiagramme mo-
dellieren sowohl die Daten als auch die Funktionen eines Systems.
Lernziel dieses Lehrmoduls ist primär, OOA-Modelle in UML-Notatio-
nen lesen und verstehen zu können.

Die wichtigsten grundlegenden Bücher über die OOA entstanden
Ende der 80er und Anfang der 90er Jahre; die bekanntesten Autoren
sind Booch [Bo91, Bo94], Coad/Yourdon [CoY91, CoY91a], Jacob-
son [Ja+92], Rumbaugh [Ru+91] und Shlaer/Mellor [ShM88, ShM92].
Die unterschiedlichen Methoden weisen viele gemeinsame grundlegen-
de Konzepte auf; dies und wirtschaftliche Gründe1 führten Mitte der
90er Jahre dazu, daß die verschiedenen Ansätze zu einer unified mode-
ling language (UML) zusammengeführt wurden. Die UML wurde von
der OMG als Standard übernommen, was ihre Praxisrelevanz noch er-
höht hat. Wir werden uns daher weitgehend an der UML und ihren
Notationen orientieren.

Die objektorientierten Analysemethoden sind deutlich jünger als
die “strukturierten” Analysemethoden, wozu auch die ER-Modellierung
gehört, und haben viele Konzepte der älteren Methoden, oft in verfei-
nerter Form, übernommen. Die objektorientierten Analysemethoden
vereinigen Konzepte aus zwei Bereichen:

1. aus der Datenmodellierung mit ER-Diagrammen bzw. mit semanti-
schen Datenmodellen; reduziert man die OOA-Methoden auf Kon-
zepte im Bereich der Datenmodellierung, so sind diese weitgehend
konsistent mit Konzepten aus der ER-Modellierungs-Welt.

2. aus den objektorientierten Programmiersprachen – die historisch ge-
sehen ebenfalls erheblich älter sind, zu nennen ist hier Simula 67
oder Smalltalk. Von diesen wurden Konzepte wie Datenkapselung
und Klassenhierarchien übernommen.
1Zu nennen ist hier die Firma Rational, die mehrere führende Köpfe “aufkaufte”

und zu der heute die Herren Booch, Jacobson und Rumbaugh gehören.

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 4

Etwas vereinfachend kann man sagen, daß die (fortgeschrittenen)
ER-Modelle ein Spezialfall der in OOA-Modellen dargestellten Daten-
modelle sind. Dies ist der Grund, warum wir hier die ER-Modellierung
voraussetzen (s. Lehrmodul [DMER]) und nur noch Erweiterungen
gegenüber der ER-Modellierung vorstellen. Eine praktische Konse-
quenz hieraus ist, daß man methodisch bei der Modellierung analog
zur ER-Modellierung vorgehen kann (s. Abschnitt 4 in [DMER], ferner
Abschnitt 5 in [SASM]) und daß man aus einem OOA-Modell Daten-
bankschemata analog dazu ableiten kann, wie dies für ER-Diagramme
in Abschnitt 2.2 in [TAE] vorgestellt worden ist.

Neu gegenüber der ER-Modellierung ist das grundlegende, schon
in den modularen Programmiersprachen bekannte Prinzip der Daten-
kapselung. Dieses besagt, daß der Zustand eines Objekts nach außen
hin verborgen bleibt und auf ein Objekt nur über dessen Operationen,
die (hoffentlich) eine wohldefinierte Semantik haben, zugegriffen wird.
Dahinter steht die softwaretechnische Erkenntnis, daß Datenstrukturen
und Algorithmen zusammengehören. Den Datentypen einer Anwen-
dung sind daher nicht nur, wie in den ER-Modellen, Attribute, sondern
zusätzlich Operationen zugeordnet.

Wir hatten schon bei den ER-Modellen angemerkt, daß ein ER-Mo-
dell aus mehreren (heterogenen) Dokumenten besteht. Diese Hetero-
genität trifft auf OOA-Modelle noch in verstärktem Umfang zu. Die
UML, an der wir uns hier orientieren, definiert insg. 8 (!) verschiedene
Dokumenttypen [UML99], wovon 6 für die Analyse relevant sind:

- Klassendiagramm (class diagram)
- Anwendungsfalldiagramm (use case diagram), auch Geschäfts-

prozeßdiagramm genannt.
- Verhaltensdiagramme:
- Zustandsübergangsdiagramm (statechart diagram)
- Aktivitätsdiagramm (activity diagram)
- Interaktionsdiagramme (interaction diagrams):
- Sequenzdiagramm (sequence diagram)
- Kollaborationsdiagramm (collaboration diagram)

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 5

Von den für die Analyse relevanten Diagrammtypen konzentrieren wir
uns in diesem einführenden Lehrmodul auf das (Analyse-) Klassendia-
gramm2 und werden fast nur solche Konzepte und Notationen vorstellen,
die in Klassendiagrammen auftreten. Ein Klassendiagramm modelliert
die relevanten Daten des Systems und die zugeordneten Operationen.
Ferner strukturiert es das Gesamtsystem in Pakete.

Wegen der Vielzahl von Diagrammtypen und demzufolge auch der
Zahl der Dokumente, die ein OOA-Modell konstituieren, stellt sich
die Frage nach der Konsistenz dieser Dokumente verschärft. Obwohl
Methoden im Prinzip unabhängig von Werkzeugen auch mit Papier
und Bleistift praktiziert werden können, unterstellt die UML relativ
leistungsfähige Werkzeuge und ist ohne solche, wenn man den vollen
Sprachumfang ausnutzt, auch kaum praktikabel. So enthält [UML99]
an vielen Stellen Hinweise, ein Werkzeug könnte diese oder jene Fä-
higkeiten offerieren. Dies erklärt auch teilweise, warum die UML für
viele Konzepte unterschiedliche Darstellungen definiert: In Werkzeu-
gen lassen sich aus einer Datenstruktur, die das logische Dokument (s.
Abschnitt 5 in [DMER]

darstellt, relativ leicht unterschiedliche externe Darstellungen gene-
rieren.

2 Objekte, Objekttypen und Klassen

Analog zur ER-Modellierung werden interessierende Entitäten der rea-
len Welt – Personen, Gegenstände, Ereignisse usw. – durch Objekte
modelliert. Objekte haben stets einen Typ; dieser Objekttyp bzw. die
Menge seiner Instanzen – zwischen beiden wird in Analyseklassendia-
grammen nicht unterschieden – werden als Klasse bezeichnet.

Spezifiziert wird eine Klasse (bzw. ein Objekttyp) durch
- ihren Namen
- eine Liste von Attributen
- eine Liste von Operationen

2Eine detailreichere Variante der Klassendiagramme wird zur Darstellung von
Architekturen benutzt. Derartige Entwurfsklassendiagramme werden in einem
separaten Lehrmodul vorgestellt.

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 6

Der Klassenname ist normalerweise ein Substantiv im Singular und
wird groß geschrieben (auch im Englischen). Er muß innerhalb eines
Pakets des OOA-Modells eindeutig sein. Mit Hilfe von Paketen kön-
nen große OOA-Modelle strukturiert werden; wir kommen später auf
Pakete zurück. Anzustreben ist, daß Klassennamen sogar im ganzen
OOA-Modell eindeutig sind.

Klassenname

Attribut1

Attribut2

Operation1 ()

Operation2 ()

Kunde

«Stammdaten»

Name

Adresse

Kunden#

«Verkaufsdaten»

anschreiben ()

mahnen ()

.....

.....

....

....

Abbildung 1: Beispiele für Klassen

Die graphische Darstellung einer Klasse in einem Klassendiagramm
ist in Bild 1 angegeben. In Bild 1 findet sich auch ein Beispiel, die
Klasse Kunde. Die Attribute dieser Klassen sind durch zwischenge-
schobene Überschriften gruppiert, um die Übersicht zu verbessern.
Derartige Überschriften nennt man Stereotypen. Mit Stereotypen
können Elemente eines OOA-Modells annotiert oder klassifiziert werden.
Die Bezeichnung wird in <<...>> (französische Anführungszeichen)
eingeschlossen.

Das Klassendiagramm enthält nur die Namen der Attribute und
Operationen; insofern ist es analog zu einem ER-Diagramm unvollstän-
dig und muß durch weitere Angaben3 ergänzt werden.

3Diese Angaben entsprechen dem Inhalt des data dictionary bei der ER-Model-

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 7

Gelegentlich werden Klassen auch noch unvollständiger dargestellt,
indem die Attributliste oder die Operationenliste oder beide weggelassen
werden.

....

Objekt: Klasse

Attribut1=Wert1

Attribut2=Wert2

: Klasse Objekt

Abbildung 2: Darstellungen von Objekten

2.1 Einzelobjekte

In einigen Diagrammtypen der UML werden nicht nur Klassen, son-
dern auch einzelne Objekte aus einer Klasse graphisch repräsentiert.
Bild 2 zeigt unterschiedliche graphische Repräsentationen für Objekte.
Die Notation links in Bild 2 ist die detaillierteste. Angegeben wird

- der Name des Objekts
- der Name der Klasse bzw. des Typs des Objekts
- eine Liste von Attributwerten

Der Name des Objekts und seines Typs werden zusammen im Kopf
in der Notation Objektname: Klassenname angegeben. Zur Unter-
scheidung von Klassendarstellungen wird diese Angabe unterstrichen.

Die Liste der Operationen wird nicht angegeben, diese ergibt sich
aus den Angaben zur Klasse, zu der das Objekt gehört.

Die Attributwerte können in einer der folgenden Notationen ange-
geben werden:
Attributname

lierung; der Begriff data dictionary ist aber in der OOA nicht üblich.

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 8

Attributname = Wert
Attributname : Typ = Wert

Ein Objekt ist als Beispiel oder sozusagen als Variable aufzufassen,
es stellt irgendein Objekt der Klasse dar. Der Name des Objekts ist
im Prinzip belanglos, allerdings stellen Objekte mit ungleichem Namen
verschiedene Objekte dar. Diese Unterscheidung wird allerdings nur
selten benötigt, weswegen der Name weggelassen werden kann.

In der Mitte von Bild 2 ist die verkürzte Darstellung gezeigt; der
Kopf enthält hier nur noch die Angabe :Klassenname . Derartige Ob-
jekte nennt man anonym. Rechts in Bild 2 ist eine weitere verkürzte
Darstellung gezeigt, bei der die Angabe der Klasse fehlt. Dies kann
sinnvoll sein, wenn die Klasse aus dem Kontext klar ist.

3 Attribute

Im einfachsten Fall werden Attribute wie in der ER-Modellierung ange-
geben, also mit

- Namen
- Typ
- Initialwert.

Attributnamen sind normalerweise Substantive im Singular.
Die Angabe eines Attributs widerspricht scheinbar dem Prinzip der

Datenkapselung. Der Widerspruch läßt sich dadurch auflösen, daß man
die Angabe eines Attributs X als kompakten Ersatz für die Angabe
zweier Operationen setzeX und liesX ansieht, die einen Wert des
entsprechenden Typs setzen bzw. liefern. Diese beiden Operationen
werden in der Operationenliste nicht explizit aufgeführt.

Als Typ von Attributen sind komplexe Typen zulässig; man geht
hierbei davon aus, daß auch in den Folgephasen objektorientierte Spra-
chen und Systeme (insb. DBMS) eingesetzt werden, die komplexe Attri-
butwerte verarbeiten können. Diese Annahme ist oft falsch. In solchen
Fällen müssen Attribute mit komplexen Typen durch Netzwerke von
Tupeln realisiert werden (vgl. Abschnitt 4.3 in [DMER]).

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 9

Als Attributtyp kann auch eine benutzerdefinierte elementare
Klasse (support class) verwendet werden. Elementare Klassen sind üb-
licherweise nicht relevant für die Architektur eines Systems und werden
deshalb nicht in das Klassendiagramm eingetragen.

Abgeleitete Attribute. In einem OOA-Modell sind redundante oder
voneinander ableitbare Attribute nicht verboten, wenn sie aus Sicht
der Anwender sinnvoll sind. Das Verbot redundanter Daten in Analy-
semodellen entstammt einer Denkweise, daß Datenmodelle praktisch
unverändert in Datenbankschemata umgesetzt werden können. Für die
Redundanzfreiheit in Datenbankschemata gibt es sehr gute Gründe;
für Analysemodelle treffen diese Gründe nicht immer zu. Beispiele für
redundante Daten sind
- die Postleitzahl und der Name des Orts (der sich schon eindeutig

aus der PLZ ergibt)
- Bankleitzahl und Name der Bank
- Geburtsdatum und Alter einer Person

Ein abgeleitetes Attribut X kann nicht direkt gesetzt werden,
da sonst die Konsistenz der Daten gefährdet wäre. Bei einer redun-
danzfreien Speicherung wird sein Wert bei jedem Lesen aus anderen
Daten berechnet. Es gibt daher nur eine Operation liesX , keine
Operation setzeX . In der Notation für Attribute wird dieser Sachver-
halt ausgedrückt, indem ein / vor den Attributnamen gesetzt wird,
beispielsweise /Bankname .

Selbst wenn redundante Daten erlaubt sind, sollte man vorsichtig
mit ihnen sein. So ist z.B. das obige Beispiel /Alter u.U. falsch, weil
man einen Stichtag für die Berechnung des Alters aus dem Geburts-
datum vorgeben muß und als Stichtag u.U. nicht einfach das aktuelle
Datum genommen werden kann. Hier wäre eine Operation, die das
Alter an einem gegebenen Stichtag berechnet, angemessener.

Klassenattribute. Attribute modellieren normalerweise Eigenschaf-
ten genau einer Entität. Oft will man auch “Attribute” wie den Durch-
schnittsstand aller Konten, die Zahl der Mitarbeiter, Häufigkeiten,

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 10

Durchschnittswerte, Minimal- oder Maximalwerte oder andere Aggre-
gationen abfragen. Diese Attribute sind abgeleitet aus allen Objekten,
die zu einer Klasse gehören. Da man in OOA-Modellen nicht zwischen
einem Typ und seinen Instanzen unterscheidet, werden diese Attribute
auch der jeweiligen Klasse zugeordnet.

Zur Unterscheidung von normalen Attributen werden Klassenat-
tribute unterstrichen dargestellt. Klassenattribute sind selbst dann
definiert, wenn die Klasse leer ist, also kein Objekt enthält.

Objektidentität. Zu den grundlegenden Konzepten der Objektori-
entierung gehört die Annahme, daß Objekte eine Identität besitzen;
die Attribute eines Objekttyps brauchen daher keinen Identifikations-
schlüssel zu enthalten. Es kann also sein, daß zwei Objekten existieren,
bei denen alle Attribute gleich sind. Ein Beispiel könnten zwei eineiige
Zwillinge (Typ: Person) sein, bei denen Alter, Haarfarbe usw. gleich
sind.

Das Konzept der Objektidentität ist in der Denkwelt objektorien-
tierter DBMS mit dem Begriff Surrogat verbunden. Ein Surrogat ist
ein systemkontrolliertes Attribut aller Objekte, das beim Erzeugen ei-
nes Objekts vom DBMS einen eindeutigen Werte erhält. Die Werte
werden nicht wiederverwendet, d.h. ein Surrogatwert identifiziert ein
Objekt über die gesamte Existenzdauer der Datenbank hinweg. Die-
se Merkmale von Surrogaten entsprechen dem, was man auch intuitiv
unter einer “Identität” verstehen wird.

Surrogate sind andererseits ein implementierungstechnisches Kon-
zept; in der OOA haben die Objekte nicht automatisch ein benennbares
Surrogat oder einen Identifizierer. Um auf unser Beispiel mit den Zwil-
lingen zurückzukommen: wir hätten Probleme, eine Löschoperation zu
beschreiben, die nur einen der beiden Zwillinge löscht, weil er auswan-
dert; wir könnten anhand der bekannten Attribute nur beide Zwillinge
gemeinsam löschen. Vermutlich sollten wir in unserem Beispiel die Per-
sonalausweisnummer – also letztlich einen Identifikationsschlüssel – als
weiteres Attribut von Person einrichten. Wenn ein Objekttyp keinen
Identifikationsschlüssel hat, sollte man stets sorgfältig prüfen, ob nicht
doch ein Modellierungsfehler vorliegt.

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 11

4 Operationen

Operationen4 modellieren “Dienste”, die mit einem Objekttyp zusam-
menhängen. Von einer Operation wird nur der Name angegeben, diesem
folgt eine leere Parameterliste: () . Angaben zur Sichtbarkeit (wie in
objektorientierten Programmiersprachen, z.B. public , protected
oder private) werden ebenfalls nicht gemacht. Operationen einer
Klasse können stets Operationen der gleichen Klasse benutzen; hieraus
folgt, daß sie insb. auf die Attribute einer Klasse zugreifen können.

Analog zu Klassenattributen gibt es Klassenoperationen. Klas-
senoperationen arbeiten auf der Menge der Objekte einer Klasse; bei-
spielsweise sind Operationen, die Listen von Objekten drucken, Klas-
senoperationen. Klassenoperationen werden durch Unterstreichung
kenntlich gemacht.

Normale Operationen arbeiten mit genau einem Objekt. In gewis-
ser Hinsicht eine Zwitterstellung nehmen Operationen ein, die Objekte
erzeugen oder löschen. Zum einen wird dadurch die Menge der Objekte
einer Klasse natürlich verändert, d.h. diese Operationen arbeiten zu-
mindest implizit auf der Menge der Instanzen einer Klasse. Weiterhin
hat eine objekterzeugende Operation, die man auch Konstruktorope-
ration nennt, kein existierendes Objekt als Ausgangspunkt, d.h. als

4Operationen (bzw. Funktionen oder Prozeduren) werden in der objektorientier-
ten Begriffswelt oft als “Methoden” bezeichnet. Den Erfindern dieser Bezeichnung
war wahrscheinlich unbekannt, daß Methode ein schon lange etablierter Begriff ist
und daß man darunter eine systematische, strukturierte Vorgehensweise zur Er-
reichung eines Ziels versteht (s. Abschnitt 4 in [SASM]). Da das Überladen von
Bezeichnungen in didaktischer Hinsicht eher kritisch zu sehen ist, vermeide ich sie,
wenn möglich, in diesem Text.

Die OMG definiert eine Methode als Implementierung (also Rumpf) einer Opera-
tion (s. [UML99], 2.5, S. 2-34: “A method is the implementation of an operation.”).
Man mag bedauern, daß der vorliegende semantische Unfug nicht komplett ab-
geschafft worden ist, aber von Standardisierungskomitees sind normalerweise nur
Kompromisse derart zu erwarten, daß zwischen völligem Unfug und einer sinnvollen
Lösung interpoliert wird und dabei ein mittlerer Unfug entsteht.
Die OMG-Begriffsbildung hat immerhin den entscheidenden Vorteil, daß der

Begriff Methode im Sinne von Operationsrumpf in den Bereich Entwurf bzw. Im-
plementierung fällt und wir ihn im Kontext der Analyse ignorieren können.

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 12

Eingabeparameter ist allenfalls der Objekttyp sinnvoll. Dennoch wer-
den diese Operationen nicht als Klassenoperationen betrachtet, da das
involvierte Objekt im Vordergrund steht.

5 Beziehungen

Beziehungen werden in der UML Assoziationen genannt. Sie existie-
ren (wie bei der ER-Modellierung) nur zwischen Objekten: Beispiels-
weise sind zwei Personen miteinander verheiratet, oder ein Student
schreibt Diplomarbeit bei einem Professor. Dargestellt werden aber
analog zur ER-Modellierung nur Beziehungsmengen bzw. der Typ von
Beziehungen.

Bei 2-stelligen Beziehungstypen besteht die graphische Notation aus
einer Verbindungslinie zwischen den involvierten Klassen, s. Bild 3. An
dieser Linie steht der Name der Assoziation. Die Leserichtung wird
durch ein Dreieck, das einen Pfeil symbolisiert, angeben.

Kunde
1 *betreut

Mitarbeiter

Abbildung 3: Beispiel für eine Assoziation

Rollennamen können angegeben werden, wenn dies die Verständ-
lichkeit steigert, müssen aber nicht. Die Rollennamen werden an das
jeweilige Ende der Verbindungslinie geschrieben. Bild 4 zeigt ein Bei-
spiel.

Binäre Beziehungstypen auf einer einzigen Menge – ein Beispiel war
ist_verheiratet_mit – werden reflexive Assoziationen genannt. Bei
diesen muß wenigstens ein Rollenname angegeben werden.

Kardinalitäten. In den beiden letzten Bildern sind die Kardinali-
täten (multiplicities5) der Rollen in der Assoziation angegeben. Im

5Die UML benutzt die Bezeichnung cardinality für die Zahl der Elemente einer
Menge. Eine Menge derartiger Zahlen, also letztlich eine Teilmenge der positiven

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 13

KundeMitarbeiter
Betreuer

1 *

Abbildung 4: Beispiel für Rollennamen an einer Assoziation

Vergleich zu ER-Modellen müssen die Kardinalitäten immer angegeben
werden, und es sind hier vielfältigere Ausdrucksformen möglich:

1 genau 1
3 genau 3
0..1 0 oder 1
2..* 2 oder mehr
* beliebig viele, incl. 0

Mehrere der vorstehenden Angaben können als kommagetrennte Liste
angegeben werden.

Attributierte Beziehungen. Eine Assoziation kann Eigenschaften
haben. In diesem Fall wird analog zu schwachen Entitätstypen eine sog.
assoziative Klasse gebildet. In der graphischen Darstellung wird das
Symbol für die assoziative Klasse durch eine gestrichelte Linie mit der
Assoziationslinie verbunden. Bild 5 zeigt ein Beispiel.

Aggregationen. Aggregationen sind spezielle Assoziationen: sie mo-
dellieren Teil-von-Beziehungen. Dargestellt wird eine Aggregation (ag-
gregation) durch eine Verbindungslinie mit einer Raute auf der Seite
der Klasse, die das Ganze darstellt.

Ein Objekt kann Komponente mehrerer anderer Objekte sein; bei-
spielsweise kann ein Glossar Teil mehrerer Bücher sein. In diesem Fall
spricht man von einer gemeinsamen Komponente (shared aggregation).

Eine verschärfte Form der Aggregation ist die Komposition (com-
posite aggregation). Die Komponente kann hier nur exklusiv einem

ganzen Zahlen, ist eine multiplicity.

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 14

....
Menge

Datum

Kauf

Kunde
* *

Ware

Abbildung 5: Assoziative Klasse

anderen Objekt zugeordnet sein. Das Objekt, das das Ganze reprä-
sentiert, ist für die Erzeugung und Löschung seiner Komponenten
verantwortlich; wenn es gelöscht wird, muß es alle seine Komponenten
löschen. Bei einer Komposition wird in der graphischen Darstellung die
Raute schwarz gefüllt, bei (einfachen) Aggregationen ist sie hingegen
innen weiß. Bild 6 zeigt ein Beispiel für eine Komposition: in einem
POSIX-Dateisystem enthält ein Verzeichnis mehrere Links; ein Link
führt zu genau einer Datei6.

n-stellige Beziehungstypen. Die UML stellt n-stellige Beziehungs-
typen durch eine Raute dar (genauso wie Beziehungstypen in ER-
Modellen), von der Raute aus führen Verbindungslinien zu den beteilig-
ten Klassen. Aggregationen sind bei n-stelligen Beziehungstypen nicht
erlaubt. Kardinalitäten können angegeben werden, allerdings ist ihre
Bedeutung anders definiert als bei binären Beziehungstypen7. Wenn die
Beziehungen Attribute haben, kann eine assoziative Klasse einbezogen
werden.

6Zu derselben Datei können mehrere Links in verschiedenen Verzeichnissen füh-
ren; eine Datei ist somit nicht (exklusiver) Teil eines Verzeichnisses.

7“The multiplicity on a role represents the potential number of instance tuples in
the association when the other N-1 values are fixed.” [UML99], 3.46.1.

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 15

Datei

Größe
letzteÄnderung
Zugriffskontrolliste
....Linktyp

Dateiname

Link

Verzeichnis

* 1

identifiziert

*

1

Abbildung 6: Komposition

6 Typhierarchien

Die grundlegenden Konzepte der Typhierarchien und die zugehörigen
Modellierungsrichtlinien sind bei der OOA die gleichen wie bei der ER-
Modellierung. Bild 7 zeigt eine Typhierarchie mit 4 Klassen. In der
graphischen Darstellung geht ein Pfeil von Subtyp zum Supertyp. Die
Pfeile mehrerer Subtypen können wie in Bild 8 gezeigt zusammengefaßt
werden. Mehrfaches Erben ist zulässig.

Eine Subklasse erbt von ihren Superklassen

- die Attribute
- die Operationen
- die Assoziationen (incl. Aggregationen und Kompositionen)

Klassen, die keine Instanzen haben und die üblicherweise im Rah-
men von Generalisierungen entstehen, werden abstrakte Klassen
genannt. Bei abstrakten Klassen wird entweder der Name kursiv ge-
schrieben (wie in Bild 7) oder das Merkmal abstract wie in Bild 8
gezeigt angegeben.

Merkmale (properties) sind bei diversen Modellelementen möglich
und spezifizieren jeweils ein oder mehrere Merkmale des Modellelements.
Geschrieben werden sie in geschweiften Klammern.

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 16

Mitarbeiter_Kunde

Mitarbeiter Kunde

Person

Abbildung 7: Typhierarchien

Mitarbeiter Kunde

 {abstract}

Person

Abbildung 8: Alternative Notationen in Typhierarchien

Ein weiteres Beispiel für ein Merkmal ist {query}; angewandt auf
Operationen bedeutet es, daß diese Operation rein lesend ist, den Zu-
stand des Objekts also nicht ändert.

Eine Klasse kann eine geerbte Operation überschreiben (redefine,
override), indem eine eigentlich geerbte Operation bei der Unterklasse
erneut angegeben wird.

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 17

7 Pakete

Pakete dienen dazu, OOA-Modelle zu strukturieren. Ein Paket (packa-
ge) faßt mehrere Modellelemente zusammen; in unserem Kontext sind
dies Klassen oder Pakete, Pakete können also geschachtelt werden. Das
gesamte System ist ein alles umgebendes, “äußerstes” Paket. Enthält
ein Klassendiagramm nur noch Pakete (und keine Klassen mehr), nennt
man es auch ein Paketdiagramm.

Für Pakete gibt es zwei graphische Darstellungen. In beiden wird
ein Rechteck mit einem kleinen Reiter links oben (wie bei Karteikar-
ten) verwendet. Bei der kompakten Darstellung steht der Name des
Pakets im Rechteck, sonst sind keine Angaben vorhanden (s. Bild 9).

Studentensekretariat UBPrüfungsamt

Abbildung 9: Pakete: kompakte Darstellung

Bei der detaillierten Darstellung steht der Name des Pakets im
Reiter, das Rechteck ist sozusagen die Zeichenfläche, auf der die Sym-
bole für die im Paket enthaltenen Modellelemente angeordnet werden
können.

Pakete sind wichtig für die Bildung von Namensräumen. Pake-
te haben keine operationale Semantik, aber jedes Paket bildet einen
Namensraum für die in ihm enthaltenen Modellelemente.

Zwischen Paketen kann eine “benutzt”-Beziehung (import or access
relationship) bestehen. Graphisch notiert wird sie als gestrichelter Pfeil
vom benutzenden zum benutzten Paket (s. Bild 10). Die “benutzt”-
Beziehung zeigt nur die Möglichkeit einer Benutzung an; worin die
Benutzung exakt besteht, wird nicht dargestellt, es ist sogar möglich,
daß sie aktuell überhaupt nicht ausgenutzt wird.

Jedes Modellelement gehört zu genau einem Paket. Modellelemente
können in anderen Paketen mit der Notation

paketname::modellelement

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 18

OPAC

Fernleihe

Standorte

UB

Abbildung 10: Pakete: detaillierte Darstellung

referenziert werden. Beispielsweise könnte

UB::Standorte::Öffnungszeiten

die Klasse Öffnungszeiten im Paket Standorte , das im Paket
UB enthalten ist, bezeichnen.

Subsysteme. Pakete haben, wie schon erwähnt, keine inhaltliche
Bedeutung; diese liegt allein bei den enthaltenen Modellelementen.

Ein Subsystem ähnelt einem Paket insofern, als es ebenfalls Mo-
dellelemente “in seinem Inneren” gruppiert, es hat aber wie eine Klasse
eine Schnittstelle nach außen und definiert daher selbständig eine Se-
mantik. Im Gegensatz zu Paketen können Subsysteme instantiierbar
sein.

Modelle. Ein Modell in der Diktion der UML ist ein Paket, das Pa-
kete, Modelle oder Subsysteme umfaßt, die ein Modell im allgemeinen
Sinne bilden. Beispiele sind ein Analysemodell oder ein Entwurfsmo-
dell. Modelle bilden somit die obersten “Etagen” der Pakethierarchie.
Für das alles umfassende Modell, das alle anderen Modelle enthält,
wird das Stereotyp <<systemModel>> vergeben.

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 19

Literatur

[Bo91] Booch, G.: Object-oriented design with applications; The Ben-
jamin/Cummings Publ. Comp.; 1991

[Bo94] Booch, G.: Object-oriented analysis and design with applicati-
ons, 2nd edition; The Benjamin/Cummings Publ. Comp.; 1994

[CoY91] Coad, Peter; Yourdon, Edward: Object-oriented analysis, 2nd
edition; Yourdon Press, Prentice-Hall, Englewood, New-Jersey;
1991

[CoY91a] Coad, Peter; Yourdon, Edward: Object-oriented design;
Yourdon Press, Prentice-Hall; 1991

[Ja+92] Jacobson, I.; Christerson, M.; Jinsson, P.; Övergaard,
G.: Object-oriented software engineering - a use case driven ap-
proach; Addsion Wesley; 1992

[Ru+91] Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; Loren-
sen, W.: Object-oriented modelling and design; Prentice-Hall,
Englewood Cliffs, New-Jersey; 1991

[ShM88] Shlaer, S.; Mellor, S.: Object-oriented system analysis; Your-
don Press, Prentice-Hall; 1988

[ShM92] Shlaer, S.; Mellor, S.: Object lifecycles - modeling the world
in states; Yourdon Press, Prentice-Hall; 1992

[UML99] OMG Unified Modeling Language Specification (draft, Versi-
on 1.3 alpha R5, March 1999); OMG; 1999

[DMER] Kelter, U.: Lehrmodul “Datenmodellierung mit ER-Modellen”;
2003

[SASM] Kelter, U.: Lehrmodul “Systemanalyse und Systemmodellie-
rung”; 2003

[TAE] Kelter, U.: Lehrmodul “Transformation von Analyse-Datenmo-
dellen in Entwurfsdokumente”; 2003

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 20

Glossar

Aggregation (aggregation): Art von Assoziationen (Beziehungen) zwischen
Klassen, die ausdrückt, daß Instanzen der einen Klasse als Teil von
einer Instanz der anderen Klasse auftreten; Sonderfall: Komposition

Aktivitätsdiagramm (activity diagram): Diagramm, das den Kontrollfluß
innerhalb eines Systems oder eines Anwendungsfalls darstellt

Anwendungsfalldiagramm, auch Geschäftsprozeßdiagramm (use ca-
se diagram): Diagramm, das stark vereinfacht dargestellte Anwen-
dungsfälle, deren Beziehungen sowie die involvierten Akteure darstellt

Assoziation (Assoziation): Beziehung (in Analysediagrammen der UML
stets ungerichtet)

Interaktionsdiagramm (interaction diagram): Sammelbegriff, unter dem
Sequenzdiagramme und Kollaborationsdiagramme zusammengefaßt
werden

Kardinalität (einer Rolle eines Beziehungstyps) (cardinality, multiplicity):
beschränkt die Häufigkeit, mit der eine Entität bzw. ein Objekt ei-
ne bestimmte Rolle in Beziehungen eines bestimmten Beziehungstyps
einnehmen darf

Klasse, abstrakte: Klasse, von der keine Instanzen existieren und die nur
dazu dient, gemeinsame Attribute mehrerer konkreter(er) Subklassen
zu tragen

Klasse, assoziative: Klasse, die die Attribute einer Assoziation trägt; wird
in der UML mit einer gestrichelten Linie mit der Assoziationslinie
verbunden

Klasse, elementare (support class): Klasse, die nicht relevant für die Sy-
stemarchitektur ist; kann als Typ von Attributen benutzt werden

Klassenattribut: Eigenschaft der Menge der Instanzen einer Klasse
Klassendiagramm (class diagram): Diagramm, das die Klassen eines

Systems und deren Beziehungen (Subtypen, Komponenten, einfach Be-
ziehungen u.a.) anzeigt; vereinfachte Darstellung zum Einsatz in der
Systemanalyse, detailreicher zum Einsatz beim Architekturentwurf

Kollaborationsdiagramm (collaboration diagram): Diagramm, das Ope-
rationsaufrufe zwischen mehreren Objekten darstellt, wobei die Kom-
munikationsstruktur besonders hervorgehoben wird

Komposition (composite aggregation): Aggregation, bei der eine Kompo-
nente nur exklusiv einem anderen Objekt zugeordnet sein kann

c©2003 Udo Kelter Stand: 15.03.2003

Objektorientierte Modellierung 21

Modell (im Kontext der UML) (model): Paket, das Pakete, Modelle oder
Subsysteme umfaßt, die ein Modell im allgemeinen Sinne bilden

Objekt (object): repräsentiert eine Entität im betrachteten Weltausschnitt;
hat einen durch die Werte seiner Attribute und die Beziehungen, in
denen es eine Rolle spielt, definierten Zustand; hat einen Type und
bietet die durch den Objekttyp definierten Operationen an

Objektorientierte Analyse (object-oriented analysis): Systemanalyse un-
ter Einsatz von Analyseklassendiagrammen und ergänzenden Doku-
menten

Objekttyp (object type): definiert jeweils eine Menge von Attributen, von
Typen von Beziehungen zu anderen Objekten und von Operationen

Operation (operation): Dienstleistung, die von einer Klasse angeboten wird
Paket (package): faßt andere Pakete und Klassen zusammen; bildet einen

neuen Namensraum für diese Einheiten
Paketdiagramm (package diagram): stellt Pakete und ggf. deren Enthal-

tenseinsstruktur dar; verschiedene Darstellungen möglich
Sequenzdiagramm (sequence diagram): Diagramm, das die zeitliche Ab-

folge von Operationsaufrufen zwischen mehreren Objekten darstellt,
wobei der zeitliche Ablauf besonders hervorgehoben wird

Stereotyp (stereotype): Annotation von Elementen in einem UML-
Diagramm

Subsystem (subsystem): ähnlich wie Paket, definiert aber Schnittstelle
nach außen

Zustandsübergangsdiagramm (statechart diagram): Diagramm, das die
Zustände, die ein modelliertes System annehmen kann, die Zustands-
übergänge, die diese auslösenden Ereignisse und die ausgelösten Aktio-
nen darstellt

c©2003 Udo Kelter Stand: 15.03.2003

Index
abstrakte Klasse, 15
activity diagram, 4
Aggregation, 13, 19
Aktivitätsdiagramm, 4, 19
Anwendungsfalldiagramm, 4, 20
Assoziation, 12

reflexive, 12
assoziative Klasse, 13
Attribut

abgeleitetes, 9

Beziehung, 12

class diagram, 4
collaboration diagram, 4

Datenbankschema, 4

Geschäftsprozeßdiagramm, 4

Interaktionsdiagramm, 4, 20

Kardinalität, 12, 20
Klasse, 5

abstrakte, 15, 20
assoziative, 13, 20
elementare, 20

Klassenattribut, 20
Klassendiagramm, 4, 20
Klassenoperationen, 11
Kollaborationsdiagramm, 4, 20
Komposition, 13, 20
Konstruktoroperation, 11

Merkmale, 15
Methode, 11
Modell, 18, 20
multiplicity, 13

Namensraum, 17

Objekt, 5, 7, 20
Objektorientierte Analyse, 21
Objekttyp, 5, 21
Operation, 21

package, 16
Paket, 16, 21
Paketdiagramm, 17, 21
properties, 15

Redundanz, 9

sequence diagram, 4
Sequenzdiagramm, 4, 21
statechart diagram, 4
Stereotyp, 6, 21
Subsystem, 18, 21
support class, 8

use case diagram, 4

Zustandsübergangsdiagramm, 4, 21

22

	Übersicht und Einordnung
	Objekte, Objekttypen und Klassen
	Einzelobjekte

	Attribute
	Operationen
	Beziehungen
	Typhierarchien
	Pakete
	Literatur
	Glossar
	Index

