Folien zum Lehrmodul

Objektorientierter Entwurf

Lernziele:

- Differenzen zwischen objektorientierter Analyse und objektori-
entierten Entwurf kennen

- Entwurfsklassendiagramme in UML kennen und erstellen kon-
nen (Ubung!)

notwendige Vorkenntnisse:

— Grundlagen der objektorientierten Programmierung

— objektorientierte Analyse in UML

[1nhaltsverzeichnis 3
Inhaltsverzeichnis
[Klassenl 4
2—Attributel 6
BT Sichtbarkelfl - . -+« - . . oo 7
12.2 Abgeleitete Attributel o000 8
2.3 Klassenattributelo o000 9
[B—Assoziationenl 10
13.1 Umsetzung von Entwurfsassoziationen in Programme| 11
13.2 Umsetzung von Analyse-Assoziationen in Entwurfsassoziationen|. . 12
13
5 __Schnittstellen] 15

l Klassen

1 Klassen

1 Entwurfsklasse repréasentiert i.d.R. 1 Programmklasse

(Ausnahmen: z.B. Framework-Komponenten)

graphische Dar-
stellung:

wie Analyseklas-
sen, mit Erwei-
terungen

Kunden

+ druckeKundenliste ()

1

Kunde

+ Kundennr
+ Name
+ Adresse

+ anschreiben ()
+ mahnen ()

l Klassen 5 l

explizite Verwaltung der Instanzen eines Typs durch Container-
Objekte (keine implizite Objektverwaltung wie bei Analyseklassen)

hierzu: Container-Klasse; definiert Zugriffsstruktur, z.B. Array,
Liste usw.

Operationen, die mit Mengen von Objekten arbeiten, der
Container-Klasse zuordnen

z.T. komplexere Formen der Objektverwaltung

Restimee:

— strukturelle Differenzen zwischen Analysemodell und Entwurf
- Entwurf deutlich detail- und umfangreicher als das Analyse-
modell

[Attribute

2 Attribute

Attributspezifikation in der UML:

Sichtbarkeit Attributname: Typ = Anfangswert {
Merkmale }

— bei der Angabe von Attributnamen und Attributtyp die Gege-
benheiten der Programmiersprache zu beachten

- [UML1.3], 3.25: “the details of the attribute type expressions
are not specified by UML.”

l Attribute / Abgeleitete Attribute 7

2.1 Sichtbarkeit

Sichtbarkeitsfestlegungen wie bei C+-+ und Java:

+ public fiir alle Klassen sichtbar

protected fiir diese Klasse und ihre Unterklassen sichtbar

- private fiir diese Klasse, aber nicht fiir ihre Unterklassen
sichtbar

public-Attribute: schlecht, offener Typexport, moéglichst vermeiden
protected-Attribute: bedenklich

moglichst private-Attribute und bei Bedarf Operationen liesX
bzw. setzeX

{frozen} in Attributspezifikation: Attribut kann nach Initialisie-
rung nicht mehr verdndert werden

l Attribute / Abgeleitete Attribute

2.2 Abgeleitete Attribute

durch einen vorgestellten / gekennzeichnet
Umsetzung von abgeleiteten Attributen aus dem Analysemodell:

- Operation, die den Wert des Attributs berechnet

— Attribut, das mit Ausgangsgrofen konsistent gehalten wird
(i.w. Puffer)

lAttributc / Klassenattribute 9

2.3 Klassenattribute

dargestellt mit Unterstreichung

konnen auch abgeleitet sein, s.o. (Operation vs. Attribut an der
Container-Klasse)

Im Programm ggf. Klassenattribut verwenden (z.B. static -
Attribut in Java)

Assoziationen / Umsetzung von Entwurfsassoziationen in Programme 10

3 Assoziationen

Entwurfsassoziationen sind gerichtet, Anzeige durch Pfeil

Mitarbeiter Kunde

reprisentieren Referenzen / Zeiger im Programm,; Sichtbarkeit wie
bei Attributen, Angabe als Prifix des Rollennamens

bidirektionale Assoziation: gegenlaufige Referenzen
Darstellung mit 2 oder 0 Pfeilspitzen
nur gemeinsam erzeugen / dndern / 16schen

Kardinalititen: wie bei Analyse-Assoziationen

attributierte Assoziationen: assoziative Klasse, wie bei Analyse

Assoziationen / Umsetzung von Entwurfsassoziationen in Programme 11

3.1 Umsetzung von Entwurfsassoziationen in
Programme

Kardinalitdt 0:1 oder 1 : durch einen Zeiger in der Klasse reali-
sierbar

feste Anzahl / Maximalzahl : ggf. Array von Zeigern verwenden

andere Kardinalititen : dynamische Datenstruktur

Kompositionen: Komponenten ggf. direkt in das Ganze einbetten
(einfacheres Anlegen)

l Assoziationen / Umsetzung von Analyse-Assoziationen in Entwurfsassoziationen 12

3.2 Umsetzung von Analyse-Assoziationen in
Entwurfsassoziationen

hier nur bindre Assoziationen

1. 1:1-Umsetzung

2. Einsatz von Assoziationsobjekten: entspricht Verbindungsta-
belle

weniger effizient, aber involvierte Klassen miissen nicht ver-
dndert werden

* MA _be- *

Mitarbeiter treut, KD Kunde

l Operationen 13

4 Operationen

Angaben zu jeder Operation:

1. die Signatur: Name der Operation, Folge der Parametertypen,
Typ des Riickgabewerts
Angaben zu jedem Parameter:
- die Ubergabeart in , out bzw. inout
- der Name
- ein Vorgabewert
2. Beschreibung der Wirkung der Operation
Sichtbarkeitsangabe wie bei Attributen
4. Kennzeichnung, ob die Operation abstrakt ist

©w

iiberladene Operationsnamen maoglich

l Operationen 14 ‘

Abstrakte Operationen: gemeinsame Schnittstelle fiir Unter-
klassen (keine Implementierung in der Klasse, in der sie stehen)

Name kursiv oder das Merkmal abstract

l Schnittstellen

5 Schnittstellen

Schnittstelle = Klasse, die nur abstrakte Operationen enthélt
(keine Attribute, keine ausgehenden Assoziationen)

kann Ziel von Assoziationen sein
Darstellung:

— wie eine Klasse, aber mit dem Stereotyp <interface> , der
Abschnitt fiir die Attribute entfillt

— kleiner Kreis, Name der Schnittstelle daneben
(Operationen hier nicht dargestellt)

Schnittstellen

HashTable
"I \\\ «use»
Comparable \:/ \ :
O (O Hashable «interface»
Comparable
/| isEqual(String):Boolean
e hash():Boolean
String

isEqual(String):Boolean
hash():Boolean

	Klassen
	Attribute
	Sichtbarkeit
	Abgeleitete Attribute
	Klassenattribute

	Assoziationen
	Umsetzung von Entwurfsassoziationen in Programme
	Umsetzung von Analyse-Assoziationen in Entwurfsassoziationen

	Operationen
	Schnittstellen

