
Folien zum Lehrmodul

Objektorientierter Entwurf

Lernziele:

- Differenzen zwischen objektorientierter Analyse und objektori-
entierten Entwurf kennen

- Entwurfsklassendiagramme in UML kennen und erstellen kön-
nen (Übung!)

notwendige Vorkenntnisse:

- Grundlagen der objektorientierten Programmierung
- objektorientierte Analyse in UML

Inhaltsverzeichnis 3

Inhaltsverzeichnis
1 Klassen 4

2 Attribute 6
2.1 Sichtbarkeit . 7
2.2 Abgeleitete Attribute . 8
2.3 Klassenattribute . 9

3 Assoziationen 10
3.1 Umsetzung von Entwurfsassoziationen in Programme 11
3.2 Umsetzung von Analyse-Assoziationen in Entwurfsassoziationen . . 12

4 Operationen 13

5 Schnittstellen 15

Klassen 4

1 Klassen

1 Entwurfsklasse repräsentiert i.d.R. 1 Programmklasse
(Ausnahmen: z.B. Framework-Komponenten)

graphische Dar-
stellung:

wie Analyseklas-
sen, mit Erwei-
terungen

1

*

Kunde

Kunden

+ druckeKundenliste ()

+ Name

+ mahnen ()

+ anschreiben ()

+ Adresse

+ Kundennr

Klassen 5

explizite Verwaltung der Instanzen eines Typs durch Container-
Objekte (keine implizite Objektverwaltung wie bei Analyseklassen)
hierzu: Container-Klasse; definiert Zugriffsstruktur, z.B. Array,
Liste usw.
Operationen, die mit Mengen von Objekten arbeiten, der
Container-Klasse zuordnen

z.T. komplexere Formen der Objektverwaltung

Resümee:
- strukturelle Differenzen zwischen Analysemodell und Entwurf
- Entwurf deutlich detail- und umfangreicher als das Analyse-

modell

Attribute 6

2 Attribute
Attributspezifikation in der UML:

Sichtbarkeit Attributname: Typ = Anfangswert {
Merkmale }

- bei der Angabe von Attributnamen und Attributtyp die Gege-
benheiten der Programmiersprache zu beachten

- [UML1.3], 3.25: “the details of the attribute type expressions
are not specified by UML.”

Attribute / Abgeleitete Attribute 7

2.1 Sichtbarkeit
Sichtbarkeitsfestlegungen wie bei C++ und Java:

+ public für alle Klassen sichtbar
protected für diese Klasse und ihre Unterklassen sichtbar
- private für diese Klasse, aber nicht für ihre Unterklassen

sichtbar

public-Attribute: schlecht, offener Typexport, möglichst vermeiden
protected-Attribute: bedenklich
möglichst private-Attribute und bei Bedarf Operationen liesX
bzw. setzeX

{frozen} in Attributspezifikation: Attribut kann nach Initialisie-
rung nicht mehr verändert werden

Attribute / Abgeleitete Attribute 8

2.2 Abgeleitete Attribute

durch einen vorgestellten / gekennzeichnet
Umsetzung von abgeleiteten Attributen aus dem Analysemodell:

- Operation, die den Wert des Attributs berechnet
- Attribut, das mit Ausgangsgrößen konsistent gehalten wird

(i.w. Puffer)

Attribute / Klassenattribute 9

2.3 Klassenattribute

dargestellt mit Unterstreichung
können auch abgeleitet sein, s.o. (Operation vs. Attribut an der
Container-Klasse)
Im Programm ggf. Klassenattribut verwenden (z.B. static -
Attribut in Java)

Assoziationen / Umsetzung von Entwurfsassoziationen in Programme 10

3 Assoziationen

Entwurfsassoziationen sind gerichtet, Anzeige durch Pfeil

Mitarbeiter
1 *

Kunde

repräsentieren Referenzen / Zeiger im Programm; Sichtbarkeit wie
bei Attributen, Angabe als Präfix des Rollennamens

bidirektionale Assoziation: gegenläufige Referenzen
Darstellung mit 2 oder 0 Pfeilspitzen
nur gemeinsam erzeugen / ändern / löschen

Kardinalitäten: wie bei Analyse-Assoziationen

attributierte Assoziationen: assoziative Klasse, wie bei Analyse

Assoziationen / Umsetzung von Entwurfsassoziationen in Programme 11

3.1 Umsetzung von Entwurfsassoziationen in
Programme

Kardinalität 0:1 oder 1 : durch einen Zeiger in der Klasse reali-
sierbar

feste Anzahl / Maximalzahl : ggf. Array von Zeigern verwenden
andere Kardinalitäten : dynamische Datenstruktur

Kompositionen: Komponenten ggf. direkt in das Ganze einbetten
(einfacheres Anlegen)

Assoziationen / Umsetzung von Analyse-Assoziationen in Entwurfsassoziationen 12

3.2 Umsetzung von Analyse-Assoziationen in
Entwurfsassoziationen

hier nur binäre Assoziationen

1. 1:1-Umsetzung
2. Einsatz von Assoziationsobjekten: entspricht Verbindungsta-

belle
weniger effizient, aber involvierte Klassen müssen nicht ver-

ändert werden

**

treut_KD

MA_be−
KundeMitarbeiter

Operationen 13

4 Operationen

Angaben zu jeder Operation:

1. die Signatur: Name der Operation, Folge der Parametertypen,
Typ des Rückgabewerts

Angaben zu jedem Parameter:
- die Übergabeart in , out bzw. inout
- der Name
- ein Vorgabewert

2. Beschreibung der Wirkung der Operation
3. Sichtbarkeitsangabe wie bei Attributen
4. Kennzeichnung, ob die Operation abstrakt ist

überladene Operationsnamen möglich

Operationen 14

Abstrakte Operationen: gemeinsame Schnittstelle für Unter-
klassen (keine Implementierung in der Klasse, in der sie stehen)
Name kursiv oder das Merkmal abstract

Schnittstellen 15

5 Schnittstellen

Schnittstelle = Klasse, die nur abstrakte Operationen enthält
(keine Attribute, keine ausgehenden Assoziationen)
kann Ziel von Assoziationen sein

Darstellung:

- wie eine Klasse, aber mit dem Stereotyp <<interface>> , der
Abschnitt für die Attribute entfällt

- kleiner Kreis, Name der Schnittstelle daneben
(Operationen hier nicht dargestellt)

Schnittstellen 16

....

HashTable

String

....

Comparable

Hashable

«use»

«interface»

Comparable

isEqual(String):Boolean

hash():Boolean

isEqual(String):Boolean

hash():Boolean

	Klassen
	Attribute
	Sichtbarkeit
	Abgeleitete Attribute
	Klassenattribute

	Assoziationen
	Umsetzung von Entwurfsassoziationen in Programme
	Umsetzung von Analyse-Assoziationen in Entwurfsassoziationen

	Operationen
	Schnittstellen

