
Objektorientierter Entwurf

Udo Kelter

04.10.2003

Zusammenfassung dieses Lehrmoduls

Dieses Lehrmodul stellt grundlegende Konzepte des objektorientierten
Entwurfs vor. Wir gehen insb. auf die Darstellung von Entwurfsklas-
sendiagrammen in der UML und auf den Übergang von der Analyse
zum Entwurf und vom Entwurf zur Programmierung ein.

Vorausgesetzte Lehrmodule:
obligatorisch: - Objektorientierte Modellierung

Stoffumfang in Vorlesungsdoppelstunden: 0.5

1

Objektorientierter Entwurf 2

Inhaltsverzeichnis
1 Einleitung 3

2 Klassen 3

3 Attribute 4
3.1 Sichtbarkeit . 4
3.2 Abgeleitete Attribute . 6
3.3 Klassenattribute . 6

4 Assoziationen 7
4.1 Umsetzung von Entwurfsassoziationen in Programme 8
4.2 Umsetzung von Analyse-Assoziationen in Entwurfsassoziationen 9

5 Operationen 10

6 Schnittstellen 12

Literatur . 14
Glossar . 14
Index . 15

c©2003 Udo Kelter Stand: 04.10.2003
Dieser Text darf für nichtkommerzielle Nutzungen als Ganzes und unverändert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Veränderung und Überführung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist über http://kltr.de erreichbar.

Objektorientierter Entwurf 3

1 Einleitung

Dieses Lehrmodul gibt eine erste Einführung in den objektorientierten
Entwurf (object-oriented design; OOD), genauer gesagt die Darstellung
von Programm-Architekturen durch Entwurfs-Klassendiagramme. Es
wird vorausgesetzt, daß die Konzepte und Notationen der objektorien-
tierten Analyse schon bekannt sind.

Grundlegende Konzepte wie Klasse, Attribut, Operation, Paket u.a.
sind bei der objektorientierten Analyse und beim objektorientierten
Entwurf gleich, deshalb brauchen wir sie hier nicht erneut vorzustellen,
sondern setzen entsprechende Kenntnisse voraus. Wir konzentrieren
uns hier vor allem auf die Unterschiede. Generell stellen die Entwurfs-
Klassendiagramme mehr Details dar als die Analyse-Klassendiagramme.

Wir werden die Konzepte und Notationen verwenden, die die UML
[UML99] zur Spezifikation von Architekturen anbietet.

2 Klassen

Bei objektorientierten Sprachen sind Klassen die “Bausteine”, aus denen
Programme zusammengesetzt sind. Daher werden im Entwurf vor al-
lem diese Bausteine repräsentiert, nicht unzufällig ebenfalls als Klasse
bezeichnet.

Eine Entwurfsklasse repräsentiert normalerweise genau eine Pro-
grammklasse. Die Umkehrung gilt nicht. Es kann Programmklassen
geben, die für das Entwerfen weniger wichtig sind und die, wenn man sie
darstellen würde, von den wichtigen Dingen ablenken würden (vgl. die
Diskussion über Bibliotheken und Frameworks in Lehrmodul [SAR]).

Graphisch dargestellt werden Entwurfsklassen in der UML im Prin-
zip genauso wie Analyseklassen; die enthaltenen Attribute und Opera-
tionen werden allerdings detailreicher dargestellt (s.u.).

Container-Klassen. Ein wichtiger semantischer Unterschied zwi-
schen Analyse- und Entwurfsklassen besteht darin, daß Entwurfsklassen
keine implizite Objektverwaltung haben. Zur Erinnerung: bei Analy-
seklassen unterscheidet man nicht zwischen dem Typ und der Menge

c©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 4

der Instanzen des Typs. Mit anderen Worten wird implizit eine Ver-
waltung der Instanzen des Typs unterstellt. Bei Entwurfsklassen ist
dies nicht der Fall, es muß explizit eine Klasse vorgesehen werden, die
die Instanzen des Basistyps verwaltet. Derartige Klassen nennt man
Container-Klassen. Die Umsetzung von Analyseklassen in Entwurfs-
klassen wird in [TAE] ausführlich behandelt.

3 Attribute

Eine Attributspezifikation in der UML hat folgende Form1:

Sichtbarkeit Attributname: Typ = Anfangswert { Merkmale }

Da wir hier unterstellen, daß programmiersprachenabhängige Ent-
würfe erstellt werden, sind bei der Angabe von Attributnamen und
Attributtyp die Gegebenheiten der Programmiersprache zu beachten.
Dementsprechend gibt die UML nur Empfehlungen zur Wahl der Attri-
butnamen (erster Buchstabe kleingeschrieben) und läßt es völlig offen,
wie Attributtypen spezifiziert werden.

3.1 Sichtbarkeit

Bei Analysemodellen waren Attribute nur innerhalb der Klasse und
in Subklassen sichtbar. In Entwürfen stehen die aus C++ und Java
bekannten Sichtbarkeitsfestlegungen zur Verfügung:

public für alle Klassen sichtbar

protected für diese Klasse und ihre Unterklassen sichtbar

private für diese Klasse, aber nicht für ihre Unterklassen sichtbar

In den Attributlisten wird die Sichtbarkeit eines Attributs durch die
Kürzel + , # bzw. - notiert; Bild 1 zeigt Beispiele.

public-Attribute sind aus softwaretechnischer Sicht bedenklich, da
hier sozusagen Typen offen exportiert werden; dies widerspricht ganz

1Diese Form ist leicht vereinfacht. Die komplette Angabe umfaßt zusätzlich eine
Kardinalität des Attributs, auf die wir hier nicht eingehen.

c©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 5

− privateAttribute

protectedAttribute

+ publicAttribute

ClassX

Abbildung 1: Sichtbarkeit von Attributen

eklatant dem Geheimnisprinzip, demzufolge das Wissen darüber, wie
Datenstrukturen aufgebaut sind, an einer Stelle konzentriert wird und
allen anderen Systemteilen somit verborgen bleibt, damit keine Ab-
hängigkeiten entstehen. Von public-Attributen ist daher normalerweise
abzuraten.

Für protected-Attribute gelten tendenziell die gleichen Bedenken.
Derartige Attribute sind zwar in weniger Klassen sichtbar als public-
Attribute, nichtsdestotrotz kann so das Wissen über die interne Struktur
einer Klasse in beliebige Systemteile verschleppt werden, denn die Bil-
dung von Unterklassen ist - neben dem Aufruf von Operationen - in
objektorientierten Sprachen eine ganz normale Benutzung einer Klasse.

Letztlich sollten Attribute also möglichst als private angegeben
werden. Wenn man dennoch von außen auf diese Attribute zugreifen
möchte, sollte man entsprechende Operationen liesX bzw. setzeX
anbieten.

Am Ende einer Attributspezifikation kann in gescheiften Klammern
noch das Merkmal frozen angegeben werden. Ein eingefrorenes
Attribut kann nach der Initialisierung nicht mehr verändert werden.

Aus Platzgründen sollte man in Entwurfsdiagrammen nur die Sicht-
barkeit und den Namen der Attribute eintragen. Alle weiteren Angaben
sollten in geeigneteren Darstellungen gemacht werden, wie sie typischer-
weise von Werkzeugen angeboten werden.

c©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 6

3.2 Abgeleitete Attribute

Abgeleitete Attribute sind auch im Entwurf möglich und werden wie in
Analysemodellen durch einen vorgestellten / gekennzeichnet. Durch
weitere UML-Sprachelemente, auf die wir hier aus Platzgründen nicht
eingehen, kann dargestellt werden, von welchen anderen Größen das
abgeleitete Attribut abhängt.

Abgeleitete Attribute, die im Analysemodell vorgegeben werden,
können auf zwei Arten in den Entwurf umgesetzt werden:

1. durch eine Operation, die den Wert des Attributs berechnet (sozu-
sagen als Ersatz für eine Operation liesX)

2. durch ein Attribut, dessen Wert allerdings immer konsistent gehalten
werden muß mit den Größen, von denen der Wert abhängt. Än-
dert sich eine dieser Größen, muß der Wert des Attributs entweder
komplett neu berechnet werden (was Fall 1 entspräche; in diesem
Fall wäre das Attribut praktisch nur ein Puffer) oder inkrementell
korrigiert werden.

Welche Alternative gewählt wird, ist vor allem eine Frage der
Performance-Optimierung. Bei einer aufwendigen Berechnungsfunktion,
häufigem Lesen des Attributs und seltenen Änderungen der “Original”-
Größen liegt bspw. die zweite Alternative nahe.

3.3 Klassenattribute

Klassenattribute werden auch in Entwurfsdiagrammen durch Unter-
streichung gekennzeichnet.

Klassenattribute können ebenfalls aus anderen Größen abgeleitet
werden, d.h. prinzipiell hat man bei der Umsetzung von Klassenattri-
buten, die im Analysemodell vorgegeben sind, die gleichen Alternativen
wie bei abgeleiteten Attributen zur Auswahl. Bei der ersten Alternati-
ve, den Wert jedesmal zu berechnen, kann allerdings der Aufwand leicht
zu hoch werden, denn definitionsgemäß muß ja über alle Instanzen der
Klasse iteriert werden.

c©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 7

Bei der zweiten Alternative können die Klassenattribute nahelie-
genderweise in der Container-Klasse, die i.d.R. zu einer Analyseklasse
gebildet wird (vgl. [TAE]), angeordnet werden. Ggf. kann auch eine ei-
gene Klasse definiert werden, die nur dieses Attribut hat und von der
nur eine Instanz existiert.

Alternativ kann - sofern die Programmiersprache dies unterstützt (in
Java bspw. static -Attribute) - auch ein Klassenattribut verwendet
werden.

4 Assoziationen

Entwurfsassoziationen sind im Gegensatz zu Analyseassoziationen ge-
richtet; die Richtung wird durch einen Pfeil angezeigt (s. Bild 2).

Mitarbeiter
1 *

Kunde

Abbildung 2: Beispiel für eine Entwurfsassoziation

Eine Assoziation zwischen zwei Entwurfsklassen drückt im einfach-
sten Fall aus, daß die Klasse, von der der Pfeil ausgeht, Referenzen
auf Objekte der zweiten Klasse (also letztlich entsprechende Zeiger)
enthält. Insofern sind Assoziationen vergleichbar mit Attributen, und
konsequenterweise kann man die Sichtbarkeit (+ , # bzw. -) wie
bei Attributen festlegen. Angeordnet wird diese Angabe als Präfix des
Rollennamens.

Der Pfeil drückt die Richtung aus, in der zwischen Instanzen der
beiden Klassen navigiert werden kann. Je nach der Anwendung kann
es notwendig sein, in beiden Richtungen navigieren zu können. In die-
sem Fall müssen in beiden Richtungen Pfeilspitzen angegeben werden2.

2Für diesen Fall kann man die Konvention vereinbaren, daß dann gar keine
Pfeilspitzen angegeben werden. In diesem Text werden wir allerdings immer alle
Pfeilspitzen angeben.

c©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 8

Bei solchen bidirektionalen Assoziationen muß bei der Implementie-
rung darauf geachtet werden, daß die beiden gegenläufigen Referenzen
immer nur zusammen erzeugt und gelöscht werden.

Entwurfsassoziationen können ebenso wie Analyse-Assoziationen
Kardinalitäten haben und attributiert sein. Die Kardinalitäten
werden wie bei Analyse-Assoziationen angegeben. Attribute werden
auch hier bei einer assoziativen Klasse angeordnet, die wie in Ana-
lysemodellen durch eine gestrichelte Linie mit der Assoziationslinie
verbunden wird (vgl. Bild 5 in Lehrmodul [OOA]).

4.1 Umsetzung von Entwurfsassoziationen in Program-
me

Entwurfsassoziationen können in Programmen am einfachsten mit Hilfe
von Zeigern zwischen Objekten realisiert werden. Für jede Richtung ist
ein eigener Zeiger erforderlich. Die Programmklasse, von der die Asso-
ziation ausgeht, wird um entsprechende Zeigervariablen erweitert. Die
Details hängen von der Kardinalität der Rolle bzw. Richtung ab:

Kardinalität 0:1 oder 1: Die Assoziation kann hier durch einen Zei-
ger in der Klasse realisiert werden. Bei der Kardinalität 1 muß
dieser Zeiger schon beim Anlegen eines Objekts dieser Klasse in-
itialisiert werden, d.h. die Konstruktoroperationen müssen ggf.
einen Parameter haben, der das Zielobjekt angibt.

Sofern die Entwurfsassoziation attributiert ist, also eine zuge-
hörige assoziative Klasse vorhanden ist, können die Attribute der
assoziativen Klasse direkt in der Programmklasse “neben” der
Zeigervariablen realisiert werden.

andere Kardinalitäten: Hier muß eine Menge von Zeigern verwaltet
werden. Ist eine Maximalzahl der Zeiger bekannt (Kardinalität
0:n), kann ein Array von Zeigern verwendet werden, andernfalls
muß eine dynamische Datenstruktur eingesetzt werden.

Ist die Entwurfsassoziation attributiert, muß statt eines Zeigers
ein Objekt verwendet werden, das den Zeiger und die Attribute
enthält.

c©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 9

Die vorstehenden Realisierungsmöglichkeiten gelten auch für Ag-
gregationen und Kompositionen. Damit sich das “Ganze” um seine
“Teile” kümmern kann, muß hier mindestens in diese Richtung navigiert
werden können.

Bei Kompositionen kann, da die Komponenten exklusiv im Ganzen
enthalten sind, eine alternative Realisierungsform gewählt werden (vor
allem bei Kardinalität 0:1 oder einer bekannten Maximalzahl der Kom-
ponenten): Die Komponenten werden direkt in das Ganze eingebettet.
Dann werden die Komponenten immer automatisch mit dem Ganzen
angelegt bzw. gelöscht.

4.2 Umsetzung von Analyse-Assoziationen in Entwurfs-
assoziationen

Wir betrachten hier nur binäre Assoziationen.
Für die Umsetzung einer Analyse-Assoziation in eine Entwurfsasso-

ziation stehen prinzipiell zwei Alternativen offen:

1. Der einfachste Fall ist eine 1:1-Umsetzung, d.h. eine Analyse-Asso-
ziation wird umgesetzt in genau eine Entwurfsassoziation.

Ob bei letzterer nur eine der Navigationsrichtungen vorgesehen
wird oder beide, muß abhängig davon entschieden werden, wie durch
die Anwendung (insb. die Implementierungen der Operationen der
beiden involvierten Klassen) auf über die Beziehungen navigiert
wird.

Sofern die Analyseassoziation attributiert ist, also eine zugehörige
assoziative Analyseklasse vorhanden ist, und beide Navigations-
richtungen vorhanden sind, muß abhängig vom Zugriffsverhalten
entschieden werden, welcher der beiden Navigationsrichtungen die
Attribute zugeordnet werden. Die Attribute können auch auf die
beiden Richtungen aufgeteilt werden.

Sofern auf bestimmte Attribute von beiden Navigationsrichtungen
aus zugegriffen werden muß, benötigt man zusätzlich eine Operation,
die zu einer Beziehung die zugehörige Umkehrbeziehung liefert.

c©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 10

2. Einsatz von Assoziationsobjekten: eine Analyse-Assoziation wird
umgesetzt in eine Klasse, von der i.w. zwei Assoziationen ausge-
hen, zu den Entwurfsklassen K1 und K2 führen, wobei K1 und K2
die Entwurfsklassen sind, die den umgesetzten Analyseklassen ent-
sprechen3. Bild 3 zeigt ein Beispiel. Für die Assoziationsobjekte
muß i.d.R. zusätzlich ein Containerobjekt bzw. eine entsprechende
Klasse vorhanden sein.

**

treut_KD

MA_be−
KundeMitarbeiter

Abbildung 3: Einsatz eines Assoziationsobjekts

Für jede zu unterstützende Navigationsrichtung, z.B. von K1
nach K2, enthält diese Containerklasse typischerweise eine Operati-
on, die zu einem Objekt des Typs K1 alle Assoziationsobjekte des
Typs K2 liefert, die mit dem K1-Objekt über ein Assoziationsobjekt
verbunden sind.

Sofern die Analyseassoziation attributiert ist, können die Attri-
bute direkt in den Assoziationsobjekten realisiert werden.

Assoziationsobjekte sind weniger effizient als Entwurfsassozia-
tionen, haben aber den Vorteil, daß die involvierten Klassen nicht
verändert werden müssen. Bei attributierten Assoziationen haben
sie den Vorteil, die Attribute nicht u.U. willkürlich einer der beiden
Navigationsrichtungen zuordnen zu müssen.

5 Operationen

Zur jeder Operation sind folgende Angaben zu machen:

1. die Signatur: diese besteht aus dem Namen der Operation, der
Folge der Parametertypen und dem Typ des Rückgabewerts.
3Diese entsprechen der Verbindungstabelle, die man benutzen muß, wenn man

m:n-Beziehungstypen in ER-Diagrammen in tabellenartige Strukturen umsetzt (vgl.
Abschnitt 2.2).

c©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 11

Zu jedem Parameter ist zusätzlich anzugeben:
- die Übergabeart in , out bzw. inout
- der Name
- ein Vorgabewert

In den Klassendiagrammen wird auf diese Angaben normalerweise
verzichtet.

2. eine Beschreibung der Wirkung der Operation; hierbei wird die Spra-
che bzw. konzeptuelle Basis offengelassen. Es können u.a. Vor- und
Nachbedingungen und freier Text verwendet werden.

3. eine Sichtbarkeitsangabe wie bei Attributen
4. eine Kennzeichnung, ob die Operation abstrakt ist

Es kann in einer Klasse mehrere Operationen mit gleichen Namen
geben. In diesem Fall ist der Operationsname überladen. Die Opera-
tionen mit dem gleichen Namen müssen sich aber in der Parameterliste,
also der Sequenz der Parametertypen, unterscheiden.

Abstrakte Operationen. Der Zweck abstrakter Operationen be-
steht darin, für gleichlautende Operationen mehrerer Unterklassen eine
gemeinsame Schnittstelle zu realisieren. Bei abstrakten Operationen
wird analog wie bei abstrakten Klassen entweder der Name kursiv
geschrieben oder das Merkmal abstract angegeben.

Abstrakte Operationen haben keine Implementierung in der Klas-
se, in der sie stehen, erst in den Unterklassen werden jeweils passende
Implementierungen geliefert. Eine Klasse mit einer abstrakten Ope-
ration muß daher ebenfalls abstrakt sein, sie kann nicht instantiiert
werden. Bildet man eine Unterklasse einer solchen abstrakten Klas-
se, so bleiben die geerbten abstrakten Operationen in der Unterklasse
natürlich ebenfalls abstrakt, es sei denn, sie werden dort redefiniert,
d.h. die Unterklasse enthält eine nichtabstrakte Operation mit gleicher
Signatur.

c©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 12

6 Schnittstellen

Eine Schnittstelle (interface) ist eine Klasse, die nur abstrakte Ope-
rationen enthält, sonst nichts; sie enthält keine Attribute und keine
ausgehenden Assoziationen, kann aber das Ziel von Assoziationen sein,
die von anderen Klassen ausgehen.

Eine Schnittstelle kann nicht instantiiert werden, sie kann aber in
Typhierarchien enthalten sein, und es gibt normalerweise instantiierbare
Subtypen. Dargestellt wird eine Schnittstelle in einem Klassendiagram
entweder

- wie eine Klasse, aber mit dem Stereotyp <<interface>> , der Ab-
schnitt für die Attribute entfällt.

- oder durch einen kleinen Kreis, neben dem der Name der Schnittstel-
le steht; die Operationen der Schnittstelle sind aus dieser Darstellung
nicht erkennbar.

....

HashTable

String

....

Comparable

Hashable

«use»

«interface»

Comparable

isEqual(String):Boolean

hash():Boolean

isEqual(String):Boolean

hash():Boolean

Abbildung 4: Schnittstellen (Interfaces)

c©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 13

Bild 4 zeigt als Beispiel die Schnittstelle Comparable in beiden
Varianten. Man könnte sagen, eine Schnittstelle sei nur eine spezielle
abstrakte Klasse, deswegen sei ein eigenes Konzept überflüssig. Tatsäch-
lich werden Schnittstellen intensiv dazu benutzt, sozusagen “Sichten”
auf die Dienste einer Klasse zu definieren, also die Gesamtmenge der
Dienste einer Klasse zu filtern. Wenn K eine derartige Klasse ist
und S die Schnittstelle, könnte man K als normalen Subtyp von S
betrachten. Hiergegen sprechen allerdings zwei Argumente:

1. Daß es sich hier um einen vom Normalfall stark abweichenden Son-
derfall mit einer eigenen Bedeutung handelt, wäre optisch nicht
erkennbar.

2. Häufig braucht man mehrere “Sichten” auf eine Klasse. Man müß-
te eine solche Klasse als Subtyp mehrerer Schnittstellen-Klassen
definieren. Manche objektorientierte Sprachen (insb. Java) unter-
stützen aber kein mehrfaches Erben, sondern haben stattdessen ein
Schnittstellenkonzept.

Daher werden in der UML Schnittstellen und die Beziehungen zwischen
Schnittstellen und anderen Klassen speziell dargestellt.

In Bild 4 “realisiert” die Klasse String die Schnittstelle Com-
parable , sie ist also als Unterklasse von Comparable anzusehen.
Dargestellt wird dies durch eine gestrichelte Vererbungsbeziehung.

Die Klasse HashTable benutzt die Schnittstellen Comparable
und Hashable . Dargestellt wird dies durch einen gestrichelt gezeich-
neten Assoziationspfeil, an dem, wenn das Ziel als Klasse (und nicht
als Kreis) dargestellt wird, das Stereotyp <<use>> angegeben ist. Ei-
ne normale Assoziation drückt ja aus, daß die Ausgangsklasse, von der
die Assoziation ausgeht, Referenzen auf Objekte der Zielklasse hält; ge-
nau dies ist hier aber nicht möglich, denn die Zielklasse ist ja abstrakt;
die Ausgangsklasse wird aber Referenzen auf Objekte von Unterklassen
der Zielklasse halten.

c©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 14

Literatur

[UML99] OMG Unified Modeling Language Specification (draft, Versi-
on 1.3 alpha R5, March 1999); OMG; 1999

[OOA] Kelter, U.: Lehrmodul “Objektorientierte Modellierung”;
2001/10

[SAR] Kelter, U.: Lehrmodul “Software-Architekturen”; 2002/10
[TAE] Kelter, U.: Lehrmodul “Transformation von Analyse-Datenmo-

dellen in Entwurfsdokumente”; 2002

Glossar

Assoziation (Assoziation): Beziehung (in Entwurfsklassendiagrammen der
UML stets gerichtet; ein- oder beidseitig gerichtet)

Container: Objekt, das dazu dient, eine Menge von Objekten einer zug.
Basisklasse zu verwalten

Containerklasse: Klasse, deren Instanzen Container sind
Klasse, abstrakte: Klasse, von der keine Instanzen existieren und die nur

dazu dient, gemeinsame Attribute mehrerer konkreter(er) Subklassen
zu tragen

Klasse, assoziative: Klasse, die die Attribute einer Assoziation trägt; wird
in der UML mit einer gestrichelten Linie mit der Assoziationslinie
verbunden

Klassenattribut: Eigenschaft der Menge der Instanzen einer Klasse
Klassendiagramm (class diagram): Diagramm, das die Klassen eines

Systems und deren Beziehungen (Subtypen, Komponenten, einfach Be-
ziehungen u.a.) anzeigt; vereinfachte Darstellung zum Einsatz in der
Systemanalyse, detailreicher zum Einsatz beim Architekturentwurf

Operation, abstrakte: Operation in einer Superklasse, die dazu dient, für
gleichlautende Operationen mehrerer Unterklassen eine gemeinsame
Schnittstelle zu realisieren; in der UML wird entweder der Operations-
name kursiv geschrieben oder das Merkmal abstract angegeben

Sichtbarkeit: Merkmal von Attributen und Operationen einer Klasse in
der UML; wird nur in Entwurfsklassendiagrammen benutzt; Bedeu-
tung wird i.d.R. anhand der verwendeten Programmiersprache definiert
(z.B. C++ oder Java)

c©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 15

Signatur: relevante Angaben zu einer Operation; besteht aus dem Namen
der Operation, der Folge der Parametertypen und dem Typ des Rück-
gabewerts

Schnittstelle (interface): Klasse, die nur abstrakte Operationen enthält;
dargestellt als Klasse mit mit dem Stereotyp <<interface>> oder
durch einen kleinen Kreis, neben dem der Name der Schnittstelle steht

c©2003 Udo Kelter Stand: 04.10.2003

Index
Aggregation, 8
Assoziation, 7

Analyse∼, 9
bidirektionale, 7
Entwurfs∼, 9
Kardinalität, 7

Assoziationsobjekt, 10
Attribut

abgeleitetes, 6
Darstellung, 5
Klassen∼, 6
Spezifikation, 4

Bibliothek, 3

Container, 14
Container-Klasse, 6
Containerklasse, 14

Entwurfsklasse, 3

Framework, 3
frozen, 5

Geheimnisprinzip, 4

interface, 11

Klasse, 3
abstrakte, 14
assoziative, 8, 14

Klassenattribut, 14
Klassendiagramm, 14
Komposition, 9

Navigation, 7

Operation, 10

abstrakte, 11, 14
Parameter

Übergabeart, 10

Parameter, 10
private, 4
protected, 4
public, 4

Schnittstelle, 11, 14
Benutzung von, 13

Sichtbarkeit, 4, 7, 11, 14
Signatur, 10, 14

16

	Einleitung
	Klassen
	Attribute
	Sichtbarkeit
	Abgeleitete Attribute
	Klassenattribute

	Assoziationen
	Umsetzung von Entwurfsassoziationen in Programme
	Umsetzung von Analyse-Assoziationen in Entwurfsassoziationen

	Operationen
	Schnittstellen
	Literatur
	Glossar
	Index

