Objektorientierter Entwurf

Udo Kelter

04.10.2003

Zusammenfassung dieses Lehrmoduls

Dieses Lehrmodul stellt grundlegende Konzepte des objektorientierten
Entwurfs vor. Wir gehen insb. auf die Darstellung von Entwurfsklas-
sendiagrammen in der UML und auf den Ubergang von der Analyse
zum Entwurf und vom Entwurf zur Programmierung ein.

Vorausgesetzte Lehrmodule:

obligatorisch: - Objektorientierte Modellierung

Stoffumfang in Vorlesungsdoppelstunden: 0.5

Objektorientierter Entwurf 2

Inhaltsverzeichnis

3
R Klassenl
[B_Attributel
3.2 Abgeleitete Attribute].
3.3 Klassenattributel

w

[RN INTSGN

a2 —r | 7
4.1 Umsetzung von Entwurisassoziationen in Programme|. 8
4.2 Umsetzung von Analyse-Assoziationen in Entwurfsassoziationen| 9

[Operationen| 10
6 Schnittstellen| 12
Litratud 14
Gldssarl 14
(©2003 Udo Kelter Stand: 04.10.2003

Dieser Text darf fiir nichtkommerzielle Nutzungen als Ganzes und unverdndert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Verdnderung und Uberfiihrung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist iiber http://kltr.de erreichbar.

Objektorientierter Entwurf 3

1 Einleitung

Dieses Lehrmodul gibt eine erste Einfithrung in den objektorientierten
Entwurf (object-oriented design; OOD), genauer gesagt die Darstellung
von Programm-Architekturen durch Entwurfs-Klassendiagramme. Es
wird vorausgesetzt, daft die Konzepte und Notationen der objektorien-
tierten Analyse schon bekannt sind.

Grundlegende Konzepte wie Klasse, Attribut, Operation, Paket u.a.
sind bei der objektorientierten Analyse und beim objektorientierten
Entwurf gleich, deshalb brauchen wir sie hier nicht erneut vorzustellen,
sondern setzen entsprechende Kenntnisse voraus. Wir konzentrieren
uns hier vor allem auf die Unterschiede. Generell stellen die Entwurfs-
Klassendiagramme mehr Details dar als die Analyse-Klassendiagramme.

Wir werden die Konzepte und Notationen verwenden, die die UML
[UML99| zur Spezifikation von Architekturen anbietet.

2 Klassen

Bei objektorientierten Sprachen sind Klassen die “Bausteine”, aus denen
Programme zusammengesetzt sind. Daher werden im Entwurf vor al-
lem diese Bausteine reprasentiert, nicht unzuféllig ebenfalls als Klasse
bezeichnet.

Eine Entwurfsklasse reprasentiert normalerweise genau eine Pro-
grammklasse. Die Umkehrung gilt nicht. Es kann Programmbklassen
geben, die fiir das Entwerfen weniger wichtig sind und die, wenn man sie
darstellen wiirde, von den wichtigen Dingen ablenken wiirden (vgl. die
Diskussion tiber Bibliotheken und Frameworks in Lehrmodul [SAR]).

Graphisch dargestellt werden Entwurfsklassen in der UML im Prin-
zip genauso wie Analyseklassen; die enthaltenen Attribute und Opera-
tionen werden allerdings detailreicher dargestellt (s.u.).

Container-Klassen. Ein wichtiger semantischer Unterschied zwi-
schen Analyse- und Entwurfsklassen besteht darin, daf Entwurfsklassen
keine implizite Objektverwaltung haben. Zur Erinnerung: bei Analy-
seklassen unterscheidet man nicht zwischen dem Typ und der Menge

(©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 4

der Instanzen des Typs. Mit anderen Worten wird implizit eine Ver-
waltung der Instanzen des Typs unterstellt. Bei Entwurfsklassen ist
dies nicht der Fall, es muf explizit eine Klasse vorgesehen werden, die
die Instanzen des Basistyps verwaltet. Derartige Klassen nennt man
Container-Klassen. Die Umsetzung von Analyseklassen in Entwurfs-
klassen wird in [TAE| ausfiihrlich behandelt.

3 Attribute

Eine Attributspezifikation in der UML hat folgende Form[j
Sichtbarkeit Attributname: Typ = Anfangswert { Merkmale }

Da wir hier unterstellen, daft programmiersprachenabhéngige Ent-
wiirfe erstellt werden, sind bei der Angabe von Attributnamen und
Attributtyp die Gegebenheiten der Programmiersprache zu beachten.
Dementsprechend gibt die UML nur Empfehlungen zur Wahl der Attri-
butnamen (erster Buchstabe kleingeschrieben) und 1aft es vollig offen,
wie Attributtypen spezifiziert werden.

3.1 Sichtbarkeit

Bei Analysemodellen waren Attribute nur innerhalb der Klasse und
in Subklassen sichtbar. In Entwiirfen stehen die aus C+-+ und Java
bekannten Sichtbarkeitsfestlegungen zur Verfiigung:

public fiir alle Klassen sichtbar
protected fiir diese Klasse und ihre Unterklassen sichtbar

private fiir diese Klasse, aber nicht fiir ihre Unterklassen sichtbar

In den Attributlisten wird die Sichtbarkeit eines Attributs durch die

Kiirzel + , # bzw. - notiert; Bild [I] zeigt Beispiele.
public-Attribute sind aus softwaretechnischer Sicht bedenklich, da

hier sozusagen Typen offen exportiert werden; dies widerspricht ganz

!Diese Form ist leicht vereinfacht. Die komplette Angabe umfafit zusétzlich eine
Kardinalitdt des Attributs, auf die wir hier nicht eingehen.

(©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 5

ClassX

+ publicAttribute
protectedAttribute
— privateAttribute

Abbildung 1: Sichtbarkeit von Attributen

eklatant dem Geheimnisprinzip, demzufolge das Wissen dariiber, wie
Datenstrukturen aufgebaut sind, an einer Stelle konzentriert wird und
allen anderen Systemteilen somit verborgen bleibt, damit keine Ab-
héngigkeiten entstehen. Von public-Attributen ist daher normalerweise
abzuraten.

Fiir protected-Attribute gelten tendenziell die gleichen Bedenken.
Derartige Attribute sind zwar in weniger Klassen sichtbar als public-
Attribute, nichtsdestotrotz kann so das Wissen iiber die interne Struktur
einer Klasse in beliebige Systemteile verschleppt werden, denn die Bil-
dung von Unterklassen ist - neben dem Aufruf von Operationen - in
objektorientierten Sprachen eine ganz normale Benutzung einer Klasse.

Letztlich sollten Attribute also moglichst als private angegeben
werden. Wenn man dennoch von auften auf diese Attribute zugreifen
mochte, sollte man entsprechende Operationen liesX bzw. setzeX
anbieten.

Am Ende einer Attributspezifikation kann in gescheiften Klammern
noch das Merkmal frozen angegeben werden. Ein eingefrorenes
Attribut kann nach der Initialisierung nicht mehr verdndert werden.

Aus Platzgriinden sollte man in Entwurfsdiagrammen nur die Sicht-
barkeit und den Namen der Attribute eintragen. Alle weiteren Angaben
sollten in geeigneteren Darstellungen gemacht werden, wie sie typischer-
weise von Werkzeugen angeboten werden.

(©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 6

3.2 Abgeleitete Attribute

Abgeleitete Attribute sind auch im Entwurf méglich und werden wie in
Analysemodellen durch einen vorgestellten / gekennzeichnet. Durch
weitere UML-Sprachelemente, auf die wir hier aus Platzgriinden nicht
eingehen, kann dargestellt werden, von welchen anderen Grofien das
abgeleitete Attribut abhéngt.

Abgeleitete Attribute, die im Analysemodell vorgegeben werden,
konnen auf zwei Arten in den Entwurf umgesetzt werden:

1. durch eine Operation, die den Wert des Attributs berechnet (sozu-
sagen als Ersatz fiir eine Operation liesX)

2. durch ein Attribut, dessen Wert allerdings immer konsistent gehalten
werden muf mit den Gréfen, von denen der Wert abhiingt. An-
dert sich eine dieser Grofen, mufs der Wert des Attributs entweder
komplett neu berechnet werden (was Fall 1 entspriche; in diesem
Fall wére das Attribut praktisch nur ein Puffer) oder inkrementell
korrigiert werden.

Welche Alternative gewéhlt wird, ist vor allem eine Frage der
Performance-Optimierung. Bei einer aufwendigen Berechnungsfunktion,
hiufigem Lesen des Attributs und seltenen Anderungen der “Original’-
Grofen liegt bspw. die zweite Alternative nahe.

3.3 Klassenattribute

Klassenattribute werden auch in Entwurfsdiagrammen durch Unter-
streichung gekennzeichnet.

Klassenattribute konnen ebenfalls aus anderen Groéfsen abgeleitet
werden, d.h. prinzipiell hat man bei der Umsetzung von Klassenattri-
buten, die im Analysemodell vorgegeben sind, die gleichen Alternativen
wie bei abgeleiteten Attributen zur Auswahl. Bei der ersten Alternati-
ve, den Wert jedesmal zu berechnen, kann allerdings der Aufwand leicht
zu hoch werden, denn definitionsgeméfs muf ja iiber alle Instanzen der
Klasse iteriert werden.

(©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 7

Bei der zweiten Alternative kénnen die Klassenattribute nahelie-
genderweise in der Container-Klasse, die i.d.R. zu einer Analyseklasse
gebildet wird (vgl. [TAE]), angeordnet werden. Ggf. kann auch eine ei-
gene Klasse definiert werden, die nur dieses Attribut hat und von der
nur eine Instanz existiert.

Alternativ kann - sofern die Programmiersprache dies unterstiitzt (in
Java bspw. static -Attribute) - auch ein Klassenattribut verwendet
werden.

4 Assoziationen

Entwurfsassoziationen sind im Gegensatz zu Analyseassoziationen ge-
richtet; die Richtung wird durch einen Pfeil angezeigt (s. Bild .

1 *
Mitarbeiter Kunde

Abbildung 2: Beispiel fiir eine Entwurfsassoziation

Eine Assoziation zwischen zwei Entwurfsklassen driickt im einfach-
sten Fall aus, daf die Klasse, von der der Pfeil ausgeht, Referenzen
auf Objekte der zweiten Klasse (also letztlich entsprechende Zeiger)
enthélt. Insofern sind Assoziationen vergleichbar mit Attributen, und
konsequenterweise kann man die Sichtbarkeit (+ , # bzw. -) wie
bei Attributen festlegen. Angeordnet wird diese Angabe als Préfix des
Rollennamens.

Der Pfeil driickt die Richtung aus, in der zwischen Instanzen der
beiden Klassen navigiert werden kann. Je nach der Anwendung kann
es notwendig sein, in beiden Richtungen navigieren zu kénnen. In die-
sem Fall miissen in beiden Richtungen Pfeilspitzen angegeben Werderﬂ

2Fiir diesen Fall kann man die Konvention vereinbaren, daR dann gar keine
Pfeilspitzen angegeben werden. In diesem Text werden wir allerdings immer alle
Pfeilspitzen angeben.

(©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 8

Bei solchen bidirektionalen Assoziationen muft bei der Implementie-
rung darauf geachtet werden, dafs die beiden gegenldufigen Referenzen
immer nur zusammen erzeugt und geloscht werden.

Entwurfsassoziationen konnen ebenso wie Analyse-Assoziationen
Kardinalitdten haben und attributiert sein. Die Kardinalitdten
werden wie bei Analyse-Assoziationen angegeben. Attribute werden
auch hier bei einer assoziativen Klasse angeordnet, die wie in Ana-
lysemodellen durch eine gestrichelte Linie mit der Assoziationslinie
verbunden wird (vgl. Bild [5|in Lehrmodul [OOA]).

4.1 Umsetzung von Entwurfsassoziationen in Program-
me

Entwurfsassoziationen kénnen in Programmen am einfachsten mit Hilfe
von Zeigern zwischen Objekten realisiert werden. Fiir jede Richtung ist
ein eigener Zeiger erforderlich. Die Programmklasse, von der die Asso-
ziation ausgeht, wird um entsprechende Zeigervariablen erweitert. Die
Details hangen von der Kardinalitat der Rolle bzw. Richtung ab:

Kardinalitdt 0:1 oder 1: Die Assoziation kann hier durch einen Zei-
ger in der Klasse realisiert werden. Bei der Kardinalitdt 1 muf
dieser Zeiger schon beim Anlegen eines Objekts dieser Klasse in-
itialisiert werden, d.h. die Konstruktoroperationen miissen ggf.
einen Parameter haben, der das Zielobjekt angibt.

Sofern die Entwurfsassoziation attributiert ist, also eine zuge-
horige assoziative Klasse vorhanden ist, konnen die Attribute der
assoziativen Klasse direkt in der Programmklasse “neben” der
Zeigervariablen realisiert werden.

andere Kardinalitdten: Hier muf eine Menge von Zeigern verwaltet
werden. Ist eine Maximalzahl der Zeiger bekannt (Kardinalitét
0:n), kann ein Array von Zeigern verwendet werden, andernfalls
muf eine dynamische Datenstruktur eingesetzt werden.

Ist die Entwurfsassoziation attributiert, muf statt eines Zeigers
ein Objekt verwendet werden, das den Zeiger und die Attribute
enthalt.

(©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 9

Die vorstehenden Realisierungsmoglichkeiten gelten auch fiir Ag-
gregationen und Kompositionen. Damit sich das “Ganze” um seine
“Teile” kiimmern kann, mufs hier mindestens in diese Richtung navigiert
werden koénnen.

Bei Kompositionen kann, da die Komponenten exklusiv im Ganzen
enthalten sind, eine alternative Realisierungsform gewéahlt werden (vor
allem bei Kardinalitdt 0:1 oder einer bekannten Maximalzahl der Kom-
ponenten): Die Komponenten werden direkt in das Ganze eingebettet.
Dann werden die Komponenten immer automatisch mit dem Ganzen
angelegt bzw. geloscht.

4.2 Umsetzung von Analyse-Assoziationen in Entwurfs-
assoziationen

Wir betrachten hier nur binére Assoziationen.
Fiir die Umsetzung einer Analyse-Assoziation in eine Entwurfsasso-
ziation stehen prinzipiell zwei Alternativen offen:

1. Der einfachste Fall ist eine 1:1-Umsetzung, d.h. eine Analyse-Asso-
ziation wird umgesetzt in genau eine Entwurfsassoziation.

Ob bei letzterer nur eine der Navigationsrichtungen vorgesehen
wird oder beide, mufs abhéngig davon entschieden werden, wie durch
die Anwendung (insb. die Implementierungen der Operationen der
beiden involvierten Klassen) auf iiber die Beziehungen navigiert
wird.

Sofern die Analyseassoziation attributiert ist, also eine zugehdorige
assoziative Analyseklasse vorhanden ist, und beide Navigations-
richtungen vorhanden sind, muft abhéngig vom Zugriffsverhalten
entschieden werden, welcher der beiden Navigationsrichtungen die
Attribute zugeordnet werden. Die Attribute kénnen auch auf die
beiden Richtungen aufgeteilt werden.

Sofern auf bestimmte Attribute von beiden Navigationsrichtungen
aus zugegriffen werden mufs, benotigt man zusétzlich eine Operation,
die zu einer Beziehung die zugehorige Umkehrbeziehung liefert.

(©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 10

2. FEinsatz von Assoziationsobjekten: eine Analyse-Assoziation wird
umgesetzt in eine Klasse, von der i.w. zwei Assoziationen ausge-
hen, zu den Entwurfsklassen K1 und K2 fiihren, wobei K1 und K2
die Entwurfsklassen sind, die den umgesetzten Analyseklassen ent-
Sprechenﬂ Bild [3] zeigt ein Beispiel. Fiir die Assoziationsobjekte
mufs i.d.R. zusétzlich ein Containerobjekt bzw. eine entsprechende
Klasse vorhanden sein.

* MA_be- *
treut_KD

Mitarbeiter Kunde

Abbildung 3: Einsatz eines Assoziationsobjekts

Fiir jede zu unterstiitzende Navigationsrichtung, z.B. von K1
nach K2, enthélt diese Containerklasse typischerweise eine Operati-
on, die zu einem Objekt des Typs K1 alle Assoziationsobjekte des
Typs K2 liefert, die mit dem K1-Objekt iiber ein Assoziationsobjekt
verbunden sind.

Sofern die Analyseassoziation attributiert ist, kénnen die Attri-
bute direkt in den Assoziationsobjekten realisiert werden.

Assoziationsobjekte sind weniger effizient als Entwurfsassozia-
tionen, haben aber den Vorteil, dafs die involvierten Klassen nicht
verdndert werden miissen. Bei attributierten Assoziationen haben
sie den Vorteil, die Attribute nicht u.U. willkiirlich einer der beiden
Navigationsrichtungen zuordnen zu miissen.

5 Operationen
Zur jeder Operation sind folgende Angaben zu machen:

1. die Signatur: diese besteht aus dem Namen der Operation, der
Folge der Parametertypen und dem Typ des Riickgabewerts.

3Diese entsprechen der Verbindungstabelle, die man benutzen muf, wenn man
m:n-Beziehungstypen in ER-Diagrammen in tabellenartige Strukturen umsetzt (vgl.

Abschnitt .

(©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 11

Zu jedem Parameter ist zusatzlich anzugeben:
- die Ubergabeart in , out bzw. inout
- der Name
- ein Vorgabewert

In den Klassendiagrammen wird auf diese Angaben normalerweise
verzichtet.

2. eine Beschreibung der Wirkung der Operation; hierbei wird die Spra-
che bzw. konzeptuelle Basis offengelassen. Es konnen u.a. Vor- und
Nachbedingungen und freier Text verwendet werden.

3. eine Sichtbarkeitsangabe wie bei Attributen

4. eine Kennzeichnung, ob die Operation abstrakt ist

Es kann in einer Klasse mehrere Operationen mit gleichen Namen
geben. In diesem Fall ist der Operationsname iiberladen. Die Opera-
tionen mit dem gleichen Namen miissen sich aber in der Parameterliste,
also der Sequenz der Parametertypen, unterscheiden.

Abstrakte Operationen. Der Zweck abstrakter Operationen be-
steht darin, fiir gleichlautende Operationen mehrerer Unterklassen eine
gemeinsame Schnittstelle zu realisieren. Bei abstrakten Operationen
wird analog wie bei abstrakten Klassen entweder der Name kursiv
geschrieben oder das Merkmal abstract angegeben.

Abstrakte Operationen haben keine Implementierung in der Klas-
se, in der sie stehen, erst in den Unterklassen werden jeweils passende
Implementierungen geliefert. Eine Klasse mit einer abstrakten Ope-
ration mufs daher ebenfalls abstrakt sein, sie kann nicht instantiiert
werden. Bildet man eine Unterklasse einer solchen abstrakten Klas-
se, so bleiben die geerbten abstrakten Operationen in der Unterklasse
natiirlich ebenfalls abstrakt, es sei denn, sie werden dort redefiniert,
d.h. die Unterklasse enthélt eine nichtabstrakte Operation mit gleicher
Signatur.

(©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 12

6 Schnittstellen

Eine Schnittstelle (interface) ist eine Klasse, die nur abstrakte Ope-
rationen enthélt, sonst nichts; sie enthélt keine Attribute und keine
ausgehenden Assoziationen, kann aber das Ziel von Assoziationen sein,
die von anderen Klassen ausgehen.

Eine Schnittstelle kann nicht instantiiert werden, sie kann aber in
Typhierarchien enthalten sein, und es gibt normalerweise instantiierbare
Subtypen. Dargestellt wird eine Schnittstelle in einem Klassendiagram
entweder

- wie eine Klasse, aber mit dem Stereotyp <interface> | der Ab-
schnitt fiir die Attribute entféllt.

- oder durch einen kleinen Kreis, neben dem der Name der Schnittstel-
le steht; die Operationen der Schnittstelle sind aus dieser Darstellung
nicht erkennbar.

HashTable

N N «use»
N

N
N

Comparable N\

v ,
O (O Hashable «interface»
Comparable

<J| isEqual(String):Boolean
’ hash():Boolean

String

isEqual(String):Boolean
hash():Boolean

Abbildung 4: Schnittstellen (Interfaces)

(©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 13

Bild [4] zeigt als Beispiel die Schnittstelle Comparable in beiden
Varianten. Man kodnnte sagen, eine Schnittstelle sei nur eine spezielle
abstrakte Klasse, deswegen sei ein eigenes Konzept iiberfliissig. Tatséch-
lich werden Schnittstellen intensiv dazu benutzt, sozusagen “Sichten”
auf die Dienste einer Klasse zu definieren, also die Gesamtmenge der
Dienste einer Klasse zu filtern. Wenn K eine derartige Klasse ist
und S die Schnittstelle, konnte man K als normalen Subtyp von S
betrachten. Hiergegen sprechen allerdings zwei Argumente:

1. Dafs es sich hier um einen vom Normalfall stark abweichenden Son-
derfall mit einer eigenen Bedeutung handelt, wére optisch nicht
erkennbar.

2. Haufig braucht man mehrere “Sichten” auf eine Klasse. Man miif-
te eine solche Klasse als Subtyp mehrerer Schnittstellen-Klassen
definieren. Manche objektorientierte Sprachen (insb. Java) unter-
stiitzen aber kein mehrfaches Erben, sondern haben stattdessen ein
Schnittstellenkonzept.

Daher werden in der UML Schnittstellen und die Beziehungen zwischen
Schnittstellen und anderen Klassen speziell dargestellt.

In Bild [4] “realisiert” die Klasse String die Schnittstelle Com-
parable , sie ist also als Unterklasse von Comparable anzusehen.
Dargestellt wird dies durch eine gestrichelte Vererbungsbeziehung.

Die Klasse HashTable benutzt die Schnittstellen Comparable
und Hashable . Dargestellt wird dies durch einen gestrichelt gezeich-
neten Assoziationspfeil, an dem, wenn das Ziel als Klasse (und nicht
als Kreis) dargestellt wird, das Stereotyp <use> angegeben ist. Ei-
ne normale Assoziation driickt ja aus, daft die Ausgangsklasse, von der
die Assoziation ausgeht, Referenzen auf Objekte der Zielklasse hélt; ge-
nau dies ist hier aber nicht moglich, denn die Zielklasse ist ja abstrakt;
die Ausgangsklasse wird aber Referenzen auf Objekte von Unterklassen
der Zielklasse halten.

(©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 14

Literatur

[UML99] OMG Unified Modeling Language Specification (draft, Versi-
on 1.3 alpha R5, March 1999); OMG; 1999

[OOA| Kelter, U.: Lehrmodul “Objektorientierte Modellierung”;
2001,/10

[SAR] Kelter, U.: Lehrmodul “Software-Architekturen”; 2002/10

[TAE| Kelter, U.: Lehrmodul “Transformation von Analyse-Datenmo-
dellen in Entwurfsdokumente”; 2002

Glossar

Assoziation (Assoziation): Beziehung (in Entwurfsklassendiagrammen der
UML stets gerichtet; ein- oder beidseitig gerichtet)

Container: Objekt, das dazu dient, eine Menge von Objekten einer zug.
Basisklasse zu verwalten

Containerklasse: Klasse, deren Instanzen Container sind

Klasse, abstrakte: Klasse, von der keine Instanzen existieren und die nur
dazu dient, gemeinsame Attribute mehrerer konkreter(er) Subklassen
zu tragen

Klasse, assoziative: Klasse, die die Attribute einer Assoziation tragt; wird
in der UML mit einer gestrichelten Linie mit der Assoziationslinie
verbunden

Klassenattribut: Eigenschaft der Menge der Instanzen einer Klasse

Klassendiagramm (class diagram): Diagramm, das die Klassen eines
Systems und deren Beziehungen (Subtypen, Komponenten, einfach Be-
ziehungen u.a.) anzeigt; vereinfachte Darstellung zum Einsatz in der
Systemanalyse, detailreicher zum Einsatz beim Architekturentwurf

Operation, abstrakte: Operation in einer Superklasse, die dazu dient, fiir
gleichlautende Operationen mehrerer Unterklassen eine gemeinsame
Schnittstelle zu realisieren; in der UML wird entweder der Operations-
name kursiv geschrieben oder das Merkmal abstract angegeben

Sichtbarkeit: Merkmal von Attributen und Operationen einer Klasse in
der UML; wird nur in Entwurfsklassendiagrammen benutzt; Bedeu-
tung wird i.d.R. anhand der verwendeten Programmiersprache definiert
(z.B. C++ oder Java)

(©2003 Udo Kelter Stand: 04.10.2003

Objektorientierter Entwurf 15

Signatur: relevante Angaben zu einer Operation; besteht aus dem Namen
der Operation, der Folge der Parametertypen und dem Typ des Riick-
gabewerts

Schnittstelle (interface): Klasse, die nur abstrakte Operationen enthélt;
dargestellt als Klasse mit mit dem Stereotyp <interface> oder
durch einen kleinen Kreis, neben dem der Name der Schnittstelle steht

(©2003 Udo Kelter Stand: 04.10.2003

Index

Aggregation, 8
Assoziation, 7
Analyse~, 9
bidirektionale, 7
Entwurfs~, 9
Kardinalitét, 7
Assoziationsobjekt, 10
Attribut
abgeleitetes, 6
Darstellung, 5
Klassen~, 6
Spezifikation, 4

Bibliothek, 3

Container, 14
Container-Klasse, 6
Containerklasse, 14

Entwurfsklasse, 3

Framework, 3
frozen, 5

Geheimnisprinzip, 4
interface, 11

Klasse, 3
abstrakte, 14
assoziative, 8, 14
Klassenattribut, 14
Klassendiagramm, 14
Komposition, 9

Navigation, 7

Operation, 10

16

abstrakte, 11, 14
Parameter
Ubergabeart, 10

Parameter, 10
private, 4
protected, 4
public, 4

Schnittstelle, 11, 14
Benutzung von, 13

Sichtbarkeit, 4, 7, 11, 14

Signatur, 10, 14

	Einleitung
	Klassen
	Attribute
	Sichtbarkeit
	Abgeleitete Attribute
	Klassenattribute

	Assoziationen
	Umsetzung von Entwurfsassoziationen in Programme
	Umsetzung von Analyse-Assoziationen in Entwurfsassoziationen

	Operationen
	Schnittstellen
	Literatur
	Glossar
	Index

