Folien zum Lehrmodul

Objektorientierte
Datenbanksysteme

Lernziele:

— OODBMS als Technologie einordnen kennen

- wesentliche Funktionsmerkmale von OODBMS kennen (kom-
plexe Objekte, komplexe Werte, Surrogate, ...)

— Persistenzkonzepte in Programmiersprachen kennen

- Vor- und Nachteile / sinnvolle Anwendungsbereiche von
OODBMS kennen

[1nhaltsverzeichnis

Inhaltsverzeichnis

|2 Nichtkonventionelle Anwendungen|

|3 Eigenschaften objektorientierter DBMS|

|4__Datenkapselung]

14.2 Implementierungssprachen und Ausfuhrungsort von Operationen|

Jjekte un eziehungen

|5 Objekt d B h |
5.1 Homogenitat der Typsysteme|.
5.2 Komplexe Objekte].

15.4 Objektidentitat]
15.5 Komplexe Objekte vs. komplexe Werte|

12
12
15

21
22
23
26
27
28

[1nhaltsverzeichnis

4

6 V b o} 30
|7 Persistente Programmiersprachen| 31
|7.1 Konzeptuelle Trennung persistenter und transienter Daten|. 32
|7.2 Bindung persistenter Objekte an Pro grammausfuhrungen|. 36
.3 __Persistenzmechanismenlo L 37
3.1 Grundformenlo 38

3.2 Seitenorientierte Persistenzmechanismenl. 40
B_M&rkte und Standardsl| 52

Einleitung

1 Einleitung

Objektorientierte DBMS (OODBMS) vereinigen

1. Datenbankkonzepte (Abfragesprachen, Transaktionen, ...)
2. Konzepte der objektorientierten Programmierung / Modellie-
rung

Historie:

— 1980er Jahre: sehr viel Forschung
— spéter 1980er Jahre: erste kommerzielle Systeme
— frithe 1990er Jahre: gewisse Euphorie; mehrere Standards

- heute: wenige Uberlebende, primir oo Erweiterungen relatio-
naler Systeme

Nichtkonventionelle Anwendungen

2 Nichtkonventionelle Anwendungen

Merkmale konventioneller Anwendungen:

— relativ einfach und homogen strukturierter Daten
— relativ kleine Tupel, oft Satze fester Lange

- atomare Datenfelder

— Datenbankschemata werden sehr selten gedndert

- kurze Transaktionen

Nichtkonventionelle Anwendungen 7 ‘

Beispiele fiir nichtkonventionelle Anwendungen:

- Technische Entwurfsumgebungen (CAD, CASE usw.): textuelle
und bindre Dokumente, Bitmaps, Versionen, komplexe Struktur

— Multimedia-Datenbanken: u.a. Video- und Audio-“Dateien”,
streaming Formate

— Biiroinformationssysteme: Briefe, digitalisierte Papiervorlagen
u.4.; Information Retrieval

- Expertensystem-Datenbanken

Nichtkonventionelle Anwendungen 8 ‘

Konventionelle DBMS fiir nichtkonventionelle Anwendungen wenig
geeignet, weil:

- wunnatirliche Datenmodellierung
z.B. Syntaxbaum — Relationen; beim Lesen sehr komplexe,
ineffiziente Verbunde; z.T. rekursive Datenstrukturen

— spezielle Datentypen wie Videos, Rasterbilder etc. nicht unter-
stiitzt

— impedance mismatch: aufwendige Konversion zwischen den
Typsystemen von Programmiersprachen und Datenbankmodel-
len (viel Programmcode)

— oft auch bei Transaktionen, Verteilungs- und Zugriffsschutz-
konzepten usw. spezielle Leistungen erforderlich

Eigenschaften objektorientierter DBMS 9 ‘

3 Eigenschaften objektorientierter
DBMS

Ziel: Vorteile von DBMS und objektorientierten Programmierspra-
chen vereinigen; oft Kompromisse erforderlich

— Ausgangsbasis objektorientierte Programmiersprache: erwei-
tert um Persistenzkonzept, Transaktionen, mengenorientierte
Abfragen, Mehrbenutzerunterstiitzung

- Ausgangsbasis relationales DBMS: erweitert um “lange Felder”,
benutzerdefinierbare Datentypen usw.

— objektrelationale DBMS

Eigenschaften objektorientierter DBMS 10 ‘

Merkmale von OODBMS geméfs dem “object-oriented database
system manifesto”

[0oo Merkmale:]

komplexe Objekte, strukturierte Attributwerte
Objektidentitét

Datenabstraktion (Kapselung, Schnittstellen)

typisierte Objekte

Typhierarchien

Polymorphie

algorithmisch vollstdndige Datenbank-Programmierspra-
che (kein impedance mismatch)

Eigenschaften objektorientierter DBMS

[DBMS-Merkmale:]

— Persistenz

- internes Schema

— Concurrency-Control- und Recovery-Mechanismen
- mengenorientierte, deklarative Abfragesprache

— dynamisch erweiterbares Datenbankschema

[weitere wiinschenswerte Merkmale:]

— versionierbare Objekte

— lange Transaktionen

— Trigger und andere Merkmale “aktiver” Datenbanken
— verteilte Datenbank

Unterstiitzung multimedialer Objekte

l Datenkapselung / Motivation 12

4 Datenkapselung

4.1 Motivation

konventionelle Datenbanken widersprechen dem Prinzip Daten-
kapselung:

— DB = komplexe Variable

— Schema = Datenstruktur — ist offen!!

Sonst wiren keine ad-hoc-Abfragen moglich

l Datenkapselung / Motivation

13

Warum iiberhaupt Datenkapselung?
(in konventionellen Programmiersprachen)

Modul

nutzendes

~
~
~
A

einkapselndes
Modul

Datenstruktur

l Datenkapselung / Motivation 14 ‘

Datenkapselung ist bei konventionellen Datenbank-Anwendungen
meistens verzichtbar (!):

- Anderung der Datenstruktur unwahrscheinlich

u.a. weil sehr aufwendig wegen erforderlicher DB-Konversion —
ein analoges Problem existiert bei Laufzeitobjekten nicht

— oft nur 1:1-Zuordnung Attribut zu Lese-/Schreiboperation,
Datenstruktur wird nicht wirklich versteckt

— Schutz der Konsistenz der Daten besser durch Identifizierungs-
und Fremdschliissel u.4. als durch individuelle Algorithmen

l Datenkapselung / Implementierungssprachen und Ausfiihrungsort von Operationen 15 ‘

4.2 Implementierungssprachen wund Ausfiih-
rungsort von Operationen

mogliche Ausfithrungsorte von einkapselnden Operationen:

- GUI / Applikations-Serverprozefs
- DBMS-Serverprozef (stored procedures)

l Datenkapselung / Implementierungssprachen und Ausfiihrungsort von Operationen

16

involvierte Prozesse und deren virtuelle Hauptspeicher:

[G]UI der
Applikation

Appl-API

Applikations—

Server

DBMS-=API

DBMS-
Server

gespeicherte
Prozeduren

Bibliothek

Kommunikation z.B. iiber RPC oder iiber Sockets

Bibliothek

Datenbank

l Datenkapselung / Implementierungssprachen und Ausfiihrungsort von Operationen 17 ‘

1. Ausfiihrung von Operationen im DBMS-Serverpro-
zefs:

Vorteile:

- spart aufwendige Kommunikationen und Datentransporte
— effizient bei vielen Zugriffen zu einzelnen Datenelementen,

motiviert stored procedures (unabhéngig von Datenkapselung)

l Datenkapselung / Implementierungssprachen und Ausfiihrungsort von Operationen 18

Probleme:

1. Sicherheit:
einkapselnde Operationen sind von Anwendern geschrieben
— suspekt, sehr hohes Schadenspotential bei unsicheren Spra-
chen wie C / C++
— nur Skriptsprachen u.. erlauben (aber ineffizient / einge-
schrankte Méchtigkeit)

l Datenkapselung / Implementierungssprachen und Ausfiihrungsort von Operationen 19 ‘

2. Arbeitslast / Performance:
CPU-Belastung des Rechners, auf dem der DBMS-Serverprozef$
lauft (komplexe Algorithmen, Endlosschleife, ...)
problematisch: Verlagerung der Rechenlast vom Arbeitsplatz-
rechner / Applikationsserver auf DBMS-Server
— Ansatz ungeeignet fiir Systeme mit vielen Nutzern

l Datenkapselung / Implementierungssprachen und Ausfiihrungsort von Operationen 20 ‘

2. Ausfiihrung von Operationen im Applikationspro-
zefs:

Problem: wer stellt sicher, daf auf einem Objekt nur passende
Operationen ausgefiihrt werden?

DBMS als zentrale Aufsichtsinstanz? (14dt Bibliotheken in die
Applikationsprozesse? Fiir beliebige Plattformen?)

l Objekte und Beziechungen 21

5 Objekte und Beziehungen

i.f. Gestaltungsspielriume / Hauptvarianten von wesentlichen
Aspekten von oo Datenbankmodellen

l Objekte und Bezichungen / Homogenitit der Typsysteme 22

5.1 Homogenitat der Typsysteme

Aspekt: Wahl des Typsystems des 00DBMS

impedance mismatch: Differenzen im Datenbankmodell von DBMS
und Programmiersprache

Idee: DBMS-Modell identisch wie eine bestimmte Programmier-
sprache wahlen

— Probleme mit anderen Programmiersprachen

— Programmiersprache alleine reicht nicht; Bibliotheken usw.
— sehr hoher Spezifikations- und Implementierungsaufwand

— Typsystem der Programmiersprache ggf. zu komplex als Basis
fiir Abfragesprachen

l Objekte und Bezichungen / Komplexe Objekte 23

5.2 Komplexe Objekte

Aspekt: Typkonstruktoren, nichtatomare Objekte

Programmiersprachen haben Typkonstruktoren wie array, set of,
record, ... sind Teil-von-Strukturen

DBMS-seitige Nachbildung: komplexe Objekte mit Kompo-
nentobjekten

— Strukturierung der Komponentobjekte mit Typkonstruktoren
wie array, set, map, record, file; beliebig schachtelbar

— konnen mit 1 Operationsaufruf als Ganzes bearbeitet werden.
Operationen: 16schen, kopieren, versionieren, sperren, ...

l Objekte und Bezichungen / Komplexe Objekte 24

Alternativen fiir die Struktur komplexer Objekte:
- baum- bzw. waldartige Struktur

- halbgeordnete (also zyklusfreie) Struktur, gemeinsame Teilob-
jekte

— Graph, Zyklen erlaubt

l Objekte und Bezichungen / Komplexe Objekte 25 ‘

Alternativen fiir die Handhabung von Komponentobjek-
ten:

- (spezielle) Attribute, die Objektreferenzen oder Mengen von
Objektreferenzen enthalten

— Menge der Komponenten eines Objekts als abstraktes Daten-
objekt mit Interface betrachten (kein explizites Attribut)

— Teil-von-Eigenschaft als Merkmal von Beziehungstypen

l Objekte und Bezichungen / Beziechungen 26

5.3 Beziehungen

Aggregationen und Assoziationen erforderlich

referentielle Integritdt auf Wunsch iiberpriifbar — paarweise ge-
genldufige Beziehungen

l Objekte und Bezichungen / Objektidentitiit

5.4 Objektidentitat

27

wertbasierte Identitat hat diverse Nachteile —

Surrogate; Eigenschaften:

- bei Erzeugung eines Objekt automatisch zugewiesen
— wird nie verdndert
- zeitlich und “rdumlich” eindeutig

Benutzung fiir:

— Test, ob zwei Objektreferenzen auf gleiches Objekt verweisen
- teilweise fiir Direktzugriff

Realisierung: ldngerer String (externe Darstellung, komprimierbar)
— “schwergewichtige” Objekte (auch wegen anderer Features)

l Objekte und Bezichungen / Komplexe Objekte vs. komplexe Werte 28 ‘

5.5 Komplexe Objekte vs. komplexe Werte
komplexer Wert in einem Attribut:

- wird auf 1 Bytefeld abgebildet, Lange u.U. schon zur Compile-
Zeit bestimmbar

— wird nur als ganzes zwischen der Datenbank und dem Adrefs-
raum der Anwendung {ibertragen
— sehr effiziente Verarbeitung
- “Komponenten” in komplexem Wert sind keine Objekte:
- haben keine Identitit (kein Surrogat)
- konnen keine Rolle in Beziehungen spielen
- kénnen nicht Ziel von Objektreferenzen sein

— Struktur des komplexen Werts ist offen

l Objekte und Bezichungen / Komplexe Objekte vs. komplexe Werte 29

Probleme mit komplexen Werten:

- heterogene Plattformen

— Typsystem von DBMS und Gastsprache miissen kompatibel
sein — i.w. nur 1 Gastsprache moglich

- Abhéngigkeit vom Compiler / Laufzeitsystem

Vererbung 30

6 Vererbung

Frage zu Bedeutung von Abfragen:
gegeben ein Typ, welche Basismenge an Instanzen gehort dazu?

1. Instanzen nur des exakten Objekttyps (ohne Subtypen)
(Vergleich: horizontale Partitionierung)

2. Instanzen eines Typs und aller seiner direkten und indirekten
Subtypen
(Vergleich: vertikale Partitionierung)

3. statt pauschaler Festlegung: Objektmengen vollig unabhéngig
von der Typstruktur definieren (eher listig)

Persistente Programmiersprachen

31‘

7 Persistente Programmiersprachen
Grundidee:

— Typsysteme von Programmiersprache und DBMS identisch

— persistente Objekte: werden automatisch beim Programmende
gerettet und beim erneuten Programmstart rekonstruiert

P‘crsistcntc Programmiersprachen / Konzeptuelle Trennung persistenter und transienter Daten :12

7.1 Konzeptuelle Trennung persistenter und
transienter Daten

transiente (normale) Daten: werden bei Programmende geloscht
Problem: es werden transiente und persistente Daten benétigt

transiente Varianten sind anders:

— kein Surrogat

- i.a. Konsistenzbedingungen des DB-Schemas nicht anwendbar
— ggf. andere Rechte

P‘crsistcntc Programmiersprachen / Konzeptuelle Trennung persistenter und transienter Daten :13

Anforderungen (ideal):

— einfache Sperzifikation der Persistenz

— kein Unterschied in der Handhabung persistenter und transien-
ter Daten

— wenig Korrekturaufwand bei Umstellung

P‘crsistcntc Programmiersprachen / Konzeptuelle Trennung persistenter und transienter Daten :14

Methoden zur Spezifikation, daf Daten persistent sein sollen:

1. Persistenz als Klasseneigenschaft:
vordefinierte Klasse namens persistent_object 0.4.;
hiervon Unterklassen bilden
Nachteil: transiente und persistente Instanzen der gleichen
Klasse schlecht zu trennen

2. Explizite Markierung:
Angabe zu beliebigem Zeitpunkt wahrend Lebensdauer

P‘crsistcntc Programmiersprachen / Konzeptuelle Trennung persistenter und transienter Daten :15

3. Persistente Wurzel(n):
alle von dort erreichbaren Objekte implizit persistent
— wenig Spezifikationsaufwand,
u.U. schlecht durchschaubare Effekte von Anderungen an Ob-
jektstrukturen
nur implizites Loschen

P1crsistcntc Programmiersprachen / Bindung persistenter Objekte an Pro grammausfiihrungen 3’6

7.2 Bindung persistenter Objekte an Pro-
grammausfiithrungen

gleiches Programm muf mit verschiedenen Objekten ausfithrbar
sein;

Auswahl der DB-Objekte, mit denen ein Programm ausgefiihrt
werden soll, tiber:

1. Surrogate

2. identifizierende Attribute an Objekten
(ggf. nur fiir Wurzelobjekte relevanter Teilbdume)

3. einzelne OODB-Objekte erhalten ezplizit einen Namen (dhnlich
Tagging in SVN), explizite Bindung der OODB-Objekte an
Programmvariablen
nur bei kleiner Anzahl von komplexen Objekten praktikabel

Persistente Programmiersprachen / Persistenzmechanismen 37

7.3 Persistenzmechanismen

bisher offen: Implementierung der Persistenz

irrelevant fiir Konzepte, sehr relevant fiir Performance
(-versprechungen)

Annahme i.f.: Programmteile, die auf die Datenstrukturen von
Objekten zugreifen, werden im Applikationsprozefs ausgefiihrt

Persistenzmechanismen / Grundformen 38 ‘

7.3.1 Grundformen

als persistent markierte Laufzeitobjekte miissen bei Beendigung
des Programms in die Datenbank iibertragen werden

Implementierungsansatze:

1. Verarbeiten einzelner (atomarer) Objekte:
Struktur der Objekte durchlaufen, atomare Objekte einzeln
speichern (1 Objekt = 1 Tupel)
erlaubt Einsatz beliebiger DBMS, automatische Konversionen

Persistenzmechanismen / Grundformen 39 ‘

2. Behandlung komplexer Objekte als komplexe Werte:
weniger Kommunikationen zum DBMS-Serverprozefs
Zerlegung des komplexen Werts im DBMS-Serverprozef, ggf.
Konversion in anderes Typsystem;

Sonderfall hiervon: Paging-Verfahren

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 40 ‘

7.3.2 Seitenorientierte Persistenzmechanismen

Grundidee: einzelne Seiten des Hauptspeichers, in denen Objekte
gespeichert sind, direkt auf Sektoren der Platte speichern

Arbeitsspeicher des Applikationsprozesses

192xxx 204xxx 255xxx
¥
AN

Magnetplatte -~ - \

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 41 ‘

ahnlich Paging / memory-mapped 10

Schichtenarchitektur des DBMS-Kerns: Verwaltung von Speicher-
sitzen und Einzeltupeln entféllt!

unter “persistente Programmiersprache” wird oft dieses Implemen-
tierungsverfahren verstanden;

wirkt sehr elegant und performant (Hardware-Unterstiitzung!)

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 42

ABER:

1. funktioniert doch nicht so einfach

2. Performance-Vorteile nur unter speziellen giinstigen Randbe-
dingungen

3. bedingt Verzicht auf viele iibliche Leistungsmerkmale eines
DBMS

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 43 ‘

Pointer Swizzling.

Problem: Referenzen auf andere Objekte werden im Laufzeitsystem
durch Zeiger (Adrefwerte) realisiert

Zeiger stehen mitten in komplezen Werten
Frage: wo stehen die Objekte nach Neuladen im Hauptspeicher???

1. an der gleichen Adresse wie vorher — Zeiger bleiben korrekt
— Objekte miissen feste Hauptspeicheradresse haben
— DB-Grofse durch virtuellen Adrefsraum beschrankt!
nicht akzeptabel bei 32-Bit-Rechnern

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 44

2. andere Adresse als vorher
— Zeiger miissen angepalt werden, d.h.:

— beim Speichern Adressen in Objektidentifizierer umsetzen
d.h. Seite kann nicht unveréndert gespeichert werden!

- beim Laden Adressen in dann giiltige Adressen umsetzen

Bezeichnung hierfiir: pointer swizzling

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen

45

Probleme beim pointer swizzling:

braucht Rechenzeit und/oder Speicherplatz

Applikation kann (bei “unsicheren” Programmiersprachen wie
C++) Inhalt der Seite beschidigt haben
— Analyse der Seite vor dem Speichern notwendig

nicht anwendbar bei heterogenen Plattformen

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 46 ‘

Wann verbessern die seitenorientierten Verfahren die
Performance?

— 1. Zugriff auf ein Objekt: zeitraubender Transport eines Sektors
von der Platte in den Hauptspeicher unveréindert notwendig

2. und folgende Zugriffe zum gleichen Objekt: Performance
verbessert

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 47 ‘

— Performance-Verbesserung beim initialen Laden: allenfalls
durch giinstige Gruppierung (Clusterung):

— mehrere kleine Objekte auf 1 Seite
- gemal Zugriffsverhalten EINER Applikation

Angabe der Clusterungsstruktur durch Applikation! (erzeuge
neues Objekt “in der N&he” eines vorhandenen)

ABER: diese Angaben gehéren zum “internen Schemda’,
widersprechen dem Ziel der Datenunabhingigkeit

(die aber bei nichtkonventionellen Anwendungen sowieso nicht
erreicht wird)

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 48 ‘

Fehlende Leistungen von Datenbanksystemen bei seiten-
orientierten Verfahren.

1. Sprachunabhingigkeit:
DBMS ist abhingig von Compiler oder sogar Versionen “des-
selben” Compilers

2. heterogene Plattformen

3. Sichten:
Basis fiir Zugriffskontrollen und Datenunabhéngigkeit
Filterung im DBMS — ggf. volliger Umbau der Seiteninhalte
Filterung im Laufzeitsystem der Programmiersprache: u.U.
nicht sicher, bedingt vollig neue Sprachkonzepte

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 49 ‘

4. effiziente Suche durch Indexe:
Datenstrukturen in Laufzeitsystemen unterstiitzen i.a. keine
(Primér-) Indexe (sind nicht plattenorientiert)
Sekundérindexe: verschlechtern Performance
Problem: Daten, die andere Prozesse frisch erzeugt haben

5. paralleler Zugriff:
gleiche Seite in mehrere Adrefirdume einspiegeln
— lokale Anderungen der Kopien; wie mischen??
— Seiten miissen gleichgehalten werden
— zeitaufwendige Prozefskommunikation
Sperren / Concurrency-Control: nicht dezentral handhabbar

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 50

6. Recovery:
hoher Aufwand fiir Logging; wird nicht reduziert
Schattenobjekte erfordern vollig andere Handhabung von Ob-

jekten als in Laufzeitsystemen

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 51 ‘

Quintessenz:

— klassische Leistungen eines DBMS haben ihren Preis, nur margi-
nale Performance-Gewinne, wenn klassische DBMS-Leistungen
gefragt sind

- “Effizienz” der seitenorientierten Verfahren besteht darin, diese
Leistungen nicht zu erbringen.

l Mirkte und Standards 52

8 Markte und Standards

OODBMS sind sehr komplexe Systeme — teuere Implementierung

enge Markte — lange Reifezeit, teuer; als Produkte kaum {iiberle-
bensfahig

Standards:

- SQL3: Erweiterungen von SQL2 um ADTs, rekursive Verbun-
de, Trigger und weitere Merkmale

- IRDS und PCTE: spezielle OODBMS, als Basis von Software-
Entwicklungsumgebungen konzipiert

— Standards der ODMG

l Mirkte und Standards 53 l

Standards der ODMG (Object Data Management Group; hat
sich inzwischen aufgelost)

- Objektmodell (OM), das grundlegende Konzepte wie Objekt,
Typ. Attribut usw. definiert.

- Objekt[typ]definitionssprache (object definition language;
ODL)
vergleichbar mit DDL
definiert auch Signaturen von Operationen
- object query language (OQL)
Abfragesprache fiir Objektbanken, angelehnt an SQL
— Sprachanbindungen fiir die Sprachen C++, Java und Smalltalk

l Mirkte und Standards 54 l

- object interchange format (OIF)
Sprache zur Definition von Objekten (Instanzen von Objektty-
pen); zum Transport von Datenbankinhalten zwischen Daten-

banken

l Mirkte und Standards 55

Objektrelationale DBMS (ORDBMS)
Basis: erprobtes relationales DBMS

mit Erweiterungen, die die Anforderungen der Objektorientierung
zumindest teilweise erfiillen:

— benutzerdefinierte Attributtypen

— abgeleitete Attribute, die durch eine Abfrage definiert sind
— automatisch vergebene Surrogate

— benutzerdefinierte Funktionen

— Typhierarchien

- erweiterte Triggermechanismen

- lange Felder (binary large objects, BLOBs)

Umfang und die konkrete Ausgestaltung der Erweiterungen nicht
einheitlich bei verschiedenen Produkten

	Einleitung
	Nichtkonventionelle Anwendungen
	Eigenschaften objektorientierter DBMS
	Datenkapselung
	Motivation
	Implementierungssprachen und Ausführungsort von Operationen

	Objekte und Beziehungen
	Homogenität der Typsysteme
	Komplexe Objekte
	Beziehungen
	Objektidentität
	Komplexe Objekte vs. komplexe Werte

	Vererbung
	Persistente Programmiersprachen
	Konzeptuelle Trennung persistenter und transienter Daten
	Bindung persistenter Objekte an Pro grammausführungen
	Persistenzmechanismen
	Grundformen
	Seitenorientierte Persistenzmechanismen

	Märkte und Standards

