Folien zum Lehrmodul

Objektorientierte
Datenbanksysteme



Lernziele:

— OODBMS als Technologie einordnen kennen

- wesentliche Funktionsmerkmale von OODBMS kennen (kom-
plexe Objekte, komplexe Werte, Surrogate, ...)

— Persistenzkonzepte in Programmiersprachen kennen

- Vor- und Nachteile / sinnvolle Anwendungsbereiche von
OODBMS kennen
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Einleitung

1 Einleitung

Objektorientierte DBMS (OODBMS) vereinigen

1. Datenbankkonzepte (Abfragesprachen, Transaktionen, ...)
2. Konzepte der objektorientierten Programmierung / Modellie-
rung

Historie:

— 1980er Jahre: sehr viel Forschung
— spéter 1980er Jahre: erste kommerzielle Systeme
— frithe 1990er Jahre: gewisse Euphorie; mehrere Standards

- heute: wenige Uberlebende, primir oo Erweiterungen relatio-
naler Systeme
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2 Nichtkonventionelle Anwendungen

Merkmale konventioneller Anwendungen:

— relativ einfach und homogen strukturierter Daten
— relativ kleine Tupel, oft Satze fester Lange

- atomare Datenfelder

— Datenbankschemata werden sehr selten gedndert

- kurze Transaktionen
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Beispiele fiir nichtkonventionelle Anwendungen:

- Technische Entwurfsumgebungen (CAD, CASE usw.): textuelle
und bindre Dokumente, Bitmaps, Versionen, komplexe Struktur

— Multimedia-Datenbanken: u.a. Video- und Audio-“Dateien”,
streaming Formate

— Biiroinformationssysteme: Briefe, digitalisierte Papiervorlagen
u.4.; Information Retrieval

- Expertensystem-Datenbanken
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Konventionelle DBMS fiir nichtkonventionelle Anwendungen wenig
geeignet, weil:

- wunnatirliche Datenmodellierung
z.B. Syntaxbaum — Relationen; beim Lesen sehr komplexe,
ineffiziente Verbunde; z.T. rekursive Datenstrukturen

— spezielle Datentypen wie Videos, Rasterbilder etc. nicht unter-
stiitzt

— impedance mismatch: aufwendige Konversion zwischen den
Typsystemen von Programmiersprachen und Datenbankmodel-
len (viel Programmcode)

— oft auch bei Transaktionen, Verteilungs- und Zugriffsschutz-
konzepten usw. spezielle Leistungen erforderlich
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3 Eigenschaften objektorientierter
DBMS

Ziel: Vorteile von DBMS und objektorientierten Programmierspra-
chen vereinigen; oft Kompromisse erforderlich

— Ausgangsbasis objektorientierte Programmiersprache: erwei-
tert um Persistenzkonzept, Transaktionen, mengenorientierte
Abfragen, Mehrbenutzerunterstiitzung

- Ausgangsbasis relationales DBMS: erweitert um “lange Felder”,
benutzerdefinierbare Datentypen usw.

— objektrelationale DBMS
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Merkmale von OODBMS geméfs dem “object-oriented database
system manifesto”

[0oo Merkmale:]

komplexe Objekte, strukturierte Attributwerte
Objektidentitét

Datenabstraktion (Kapselung, Schnittstellen)

typisierte Objekte

Typhierarchien

Polymorphie

algorithmisch vollstdndige Datenbank-Programmierspra-
che (kein impedance mismatch)



Eigenschaften objektorientierter DBMS

[DBMS-Merkmale:]

— Persistenz

- internes Schema

— Concurrency-Control- und Recovery-Mechanismen
- mengenorientierte, deklarative Abfragesprache

— dynamisch erweiterbares Datenbankschema

[weitere wiinschenswerte Merkmale:]

— versionierbare Objekte

— lange Transaktionen

— Trigger und andere Merkmale “aktiver” Datenbanken
— verteilte Datenbank

Unterstiitzung multimedialer Objekte



l Datenkapselung / Motivation 12

4 Datenkapselung

4.1 Motivation

konventionelle Datenbanken widersprechen dem Prinzip Daten-
kapselung:

— DB = komplexe Variable

— Schema = Datenstruktur — ist offen!!

Sonst wiren keine ad-hoc-Abfragen moglich
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Warum iiberhaupt Datenkapselung?
(in konventionellen Programmiersprachen)

Modul

nutzendes

~
~
~
A

einkapselndes
Modul

Datenstruktur
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Datenkapselung ist bei konventionellen Datenbank-Anwendungen
meistens verzichtbar (!):

- Anderung der Datenstruktur unwahrscheinlich

u.a. weil sehr aufwendig wegen erforderlicher DB-Konversion —
ein analoges Problem existiert bei Laufzeitobjekten nicht

— oft nur 1:1-Zuordnung Attribut zu Lese-/Schreiboperation,
Datenstruktur wird nicht wirklich versteckt

— Schutz der Konsistenz der Daten besser durch Identifizierungs-
und Fremdschliissel u.4. als durch individuelle Algorithmen
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4.2 Implementierungssprachen wund Ausfiih-
rungsort von Operationen

mogliche Ausfithrungsorte von einkapselnden Operationen:

- GUI / Applikations-Serverprozefs
- DBMS-Serverprozef (stored procedures)
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involvierte Prozesse und deren virtuelle Hauptspeicher:

[G]UI der
Applikation

Appl-API

Applikations—

Server

DBMS-=API

DBMS-
Server

gespeicherte
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Kommunikation z.B. iiber RPC oder iiber Sockets

Bibliothek
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1. Ausfiihrung von Operationen im DBMS-Serverpro-
zefs:

Vorteile:

- spart aufwendige Kommunikationen und Datentransporte
— effizient bei vielen Zugriffen zu einzelnen Datenelementen,

motiviert stored procedures (unabhéngig von Datenkapselung)
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Probleme:

1. Sicherheit:
einkapselnde Operationen sind von Anwendern geschrieben
— suspekt, sehr hohes Schadenspotential bei unsicheren Spra-
chen wie C / C++
— nur Skriptsprachen u.. erlauben (aber ineffizient / einge-
schrankte Méchtigkeit)
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2. Arbeitslast / Performance:
CPU-Belastung des Rechners, auf dem der DBMS-Serverprozef$
lauft (komplexe Algorithmen, Endlosschleife, ...)
problematisch: Verlagerung der Rechenlast vom Arbeitsplatz-
rechner / Applikationsserver auf DBMS-Server
— Ansatz ungeeignet fiir Systeme mit vielen Nutzern
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2. Ausfiihrung von Operationen im Applikationspro-
zefs:

Problem: wer stellt sicher, daf auf einem Objekt nur passende
Operationen ausgefiihrt werden?

DBMS als zentrale Aufsichtsinstanz? (14dt Bibliotheken in die
Applikationsprozesse? Fiir beliebige Plattformen?)
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5 Objekte und Beziehungen

i.f. Gestaltungsspielriume / Hauptvarianten von wesentlichen
Aspekten von oo Datenbankmodellen
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5.1 Homogenitat der Typsysteme

Aspekt: Wahl des Typsystems des 00DBMS

impedance mismatch: Differenzen im Datenbankmodell von DBMS
und Programmiersprache

Idee: DBMS-Modell identisch wie eine bestimmte Programmier-
sprache wahlen

— Probleme mit anderen Programmiersprachen

— Programmiersprache alleine reicht nicht; Bibliotheken usw.
— sehr hoher Spezifikations- und Implementierungsaufwand

— Typsystem der Programmiersprache ggf. zu komplex als Basis
fiir Abfragesprachen
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5.2 Komplexe Objekte

Aspekt: Typkonstruktoren, nichtatomare Objekte

Programmiersprachen haben Typkonstruktoren wie array, set of,
record, ... sind Teil-von-Strukturen

DBMS-seitige Nachbildung: komplexe Objekte mit Kompo-
nentobjekten

— Strukturierung der Komponentobjekte mit Typkonstruktoren
wie array, set, map, record, file; beliebig schachtelbar

— konnen mit 1 Operationsaufruf als Ganzes bearbeitet werden.
Operationen: 16schen, kopieren, versionieren, sperren, ...
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Alternativen fiir die Struktur komplexer Objekte:
- baum- bzw. waldartige Struktur

- halbgeordnete (also zyklusfreie) Struktur, gemeinsame Teilob-
jekte

— Graph, Zyklen erlaubt
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Alternativen fiir die Handhabung von Komponentobjek-
ten:

- (spezielle) Attribute, die Objektreferenzen oder Mengen von
Objektreferenzen enthalten

— Menge der Komponenten eines Objekts als abstraktes Daten-
objekt mit Interface betrachten (kein explizites Attribut)

— Teil-von-Eigenschaft als Merkmal von Beziehungstypen
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5.3 Beziehungen

Aggregationen und Assoziationen erforderlich

referentielle Integritdt auf Wunsch iiberpriifbar — paarweise ge-
genldufige Beziehungen
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5.4 Objektidentitat

27

wertbasierte Identitat hat diverse Nachteile —

Surrogate; Eigenschaften:

- bei Erzeugung eines Objekt automatisch zugewiesen
— wird nie verdndert
- zeitlich und “rdumlich” eindeutig

Benutzung fiir:

— Test, ob zwei Objektreferenzen auf gleiches Objekt verweisen
- teilweise fiir Direktzugriff

Realisierung: ldngerer String (externe Darstellung, komprimierbar)
— “schwergewichtige” Objekte (auch wegen anderer Features)
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5.5 Komplexe Objekte vs. komplexe Werte
komplexer Wert in einem Attribut:

- wird auf 1 Bytefeld abgebildet, Lange u.U. schon zur Compile-
Zeit bestimmbar

— wird nur als ganzes zwischen der Datenbank und dem Adrefs-
raum der Anwendung {ibertragen
— sehr effiziente Verarbeitung
- “Komponenten” in komplexem Wert sind keine Objekte:
- haben keine Identitit (kein Surrogat)
- konnen keine Rolle in Beziehungen spielen
- kénnen nicht Ziel von Objektreferenzen sein

— Struktur des komplexen Werts ist offen
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Probleme mit komplexen Werten:

- heterogene Plattformen

— Typsystem von DBMS und Gastsprache miissen kompatibel
sein — i.w. nur 1 Gastsprache moglich

- Abhéngigkeit vom Compiler / Laufzeitsystem
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6 Vererbung

Frage zu Bedeutung von Abfragen:
gegeben ein Typ, welche Basismenge an Instanzen gehort dazu?

1. Instanzen nur des exakten Objekttyps (ohne Subtypen)
(Vergleich: horizontale Partitionierung)

2. Instanzen eines Typs und aller seiner direkten und indirekten
Subtypen
(Vergleich: vertikale Partitionierung)

3. statt pauschaler Festlegung: Objektmengen vollig unabhéngig
von der Typstruktur definieren (eher listig)
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7 Persistente Programmiersprachen
Grundidee:

— Typsysteme von Programmiersprache und DBMS identisch

— persistente Objekte: werden automatisch beim Programmende
gerettet und beim erneuten Programmstart rekonstruiert
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7.1 Konzeptuelle Trennung persistenter und
transienter Daten

transiente (normale) Daten: werden bei Programmende geloscht
Problem: es werden transiente und persistente Daten benétigt

transiente Varianten sind anders:

— kein Surrogat

- i.a. Konsistenzbedingungen des DB-Schemas nicht anwendbar
— ggf. andere Rechte
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Anforderungen (ideal):

— einfache Sperzifikation der Persistenz

— kein Unterschied in der Handhabung persistenter und transien-
ter Daten

— wenig Korrekturaufwand bei Umstellung
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Methoden zur Spezifikation, daf Daten persistent sein sollen:

1. Persistenz als Klasseneigenschaft:
vordefinierte Klasse namens persistent_object 0.4.;
hiervon Unterklassen bilden
Nachteil: transiente und persistente Instanzen der gleichen
Klasse schlecht zu trennen

2. Explizite Markierung:
Angabe zu beliebigem Zeitpunkt wahrend Lebensdauer
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3. Persistente Wurzel(n):
alle von dort erreichbaren Objekte implizit persistent
— wenig Spezifikationsaufwand,
u.U. schlecht durchschaubare Effekte von Anderungen an Ob-
jektstrukturen
nur implizites Loschen
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7.2 Bindung persistenter Objekte an Pro-
grammausfiithrungen

gleiches Programm muf mit verschiedenen Objekten ausfithrbar
sein;

Auswahl der DB-Objekte, mit denen ein Programm ausgefiihrt
werden soll, tiber:

1. Surrogate

2. identifizierende Attribute an Objekten
(ggf. nur fiir Wurzelobjekte relevanter Teilbdume)

3. einzelne OODB-Objekte erhalten ezplizit einen Namen (dhnlich
Tagging in SVN), explizite Bindung der OODB-Objekte an
Programmvariablen
nur bei kleiner Anzahl von komplexen Objekten praktikabel
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7.3 Persistenzmechanismen

bisher offen: Implementierung der Persistenz

irrelevant fiir Konzepte, sehr relevant fiir Performance
(-versprechungen)

Annahme i.f.: Programmteile, die auf die Datenstrukturen von
Objekten zugreifen, werden im Applikationsprozefs ausgefiihrt
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7.3.1 Grundformen

als persistent markierte Laufzeitobjekte miissen bei Beendigung
des Programms in die Datenbank iibertragen werden

Implementierungsansatze:

1. Verarbeiten einzelner (atomarer) Objekte:
Struktur der Objekte durchlaufen, atomare Objekte einzeln
speichern (1 Objekt = 1 Tupel)
erlaubt Einsatz beliebiger DBMS, automatische Konversionen
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2. Behandlung komplexer Objekte als komplexe Werte:
weniger Kommunikationen zum DBMS-Serverprozefs
Zerlegung des komplexen Werts im DBMS-Serverprozef, ggf.
Konversion in anderes Typsystem;

Sonderfall hiervon: Paging-Verfahren
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7.3.2 Seitenorientierte Persistenzmechanismen

Grundidee: einzelne Seiten des Hauptspeichers, in denen Objekte
gespeichert sind, direkt auf Sektoren der Platte speichern

Arbeitsspeicher des Applikationsprozesses

192xxx 204xxx 255xxx
¥
AN

Magnetplatte -~ - \
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ahnlich Paging / memory-mapped 10

Schichtenarchitektur des DBMS-Kerns: Verwaltung von Speicher-
sitzen und Einzeltupeln entféllt!

unter “persistente Programmiersprache” wird oft dieses Implemen-
tierungsverfahren verstanden;

wirkt sehr elegant und performant (Hardware-Unterstiitzung!)
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ABER:

1. funktioniert doch nicht so einfach

2. Performance-Vorteile nur unter speziellen giinstigen Randbe-
dingungen

3. bedingt Verzicht auf viele iibliche Leistungsmerkmale eines
DBMS
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Pointer Swizzling.

Problem: Referenzen auf andere Objekte werden im Laufzeitsystem
durch Zeiger (Adrefwerte) realisiert

Zeiger stehen mitten in komplezen Werten
Frage: wo stehen die Objekte nach Neuladen im Hauptspeicher???

1. an der gleichen Adresse wie vorher — Zeiger bleiben korrekt
— Objekte miissen feste Hauptspeicheradresse haben
— DB-Grofse durch virtuellen Adrefsraum beschrankt!
nicht akzeptabel bei 32-Bit-Rechnern
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2. andere Adresse als vorher
— Zeiger miissen angepalt werden, d.h.:

— beim Speichern Adressen in Objektidentifizierer umsetzen
d.h. Seite kann nicht unveréndert gespeichert werden!

- beim Laden Adressen in dann giiltige Adressen umsetzen

Bezeichnung hierfiir: pointer swizzling
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Probleme beim pointer swizzling:

braucht Rechenzeit und/oder Speicherplatz

Applikation kann (bei “unsicheren” Programmiersprachen wie
C++) Inhalt der Seite beschidigt haben
— Analyse der Seite vor dem Speichern notwendig

nicht anwendbar bei heterogenen Plattformen
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Wann verbessern die seitenorientierten Verfahren die
Performance?

— 1. Zugriff auf ein Objekt: zeitraubender Transport eines Sektors
von der Platte in den Hauptspeicher unveréindert notwendig

2. und folgende Zugriffe zum gleichen Objekt: Performance
verbessert
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— Performance-Verbesserung beim initialen Laden: allenfalls
durch giinstige Gruppierung (Clusterung):

— mehrere kleine Objekte auf 1 Seite
- gemal Zugriffsverhalten EINER Applikation

Angabe der Clusterungsstruktur durch Applikation! (erzeuge
neues Objekt “in der N&he” eines vorhandenen)

ABER: diese Angaben gehéren zum “internen Schemda’,
widersprechen dem Ziel der Datenunabhingigkeit

(die aber bei nichtkonventionellen Anwendungen sowieso nicht
erreicht wird)
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Fehlende Leistungen von Datenbanksystemen bei seiten-
orientierten Verfahren.

1. Sprachunabhingigkeit:
DBMS ist abhingig von Compiler oder sogar Versionen “des-
selben” Compilers

2. heterogene Plattformen

3. Sichten:
Basis fiir Zugriffskontrollen und Datenunabhéngigkeit
Filterung im DBMS — ggf. volliger Umbau der Seiteninhalte
Filterung im Laufzeitsystem der Programmiersprache: u.U.
nicht sicher, bedingt vollig neue Sprachkonzepte
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4. effiziente Suche durch Indexe:
Datenstrukturen in Laufzeitsystemen unterstiitzen i.a. keine
(Primér-) Indexe (sind nicht plattenorientiert)
Sekundérindexe: verschlechtern Performance
Problem: Daten, die andere Prozesse frisch erzeugt haben

5. paralleler Zugriff:
gleiche Seite in mehrere Adrefirdume einspiegeln
— lokale Anderungen der Kopien; wie mischen??
— Seiten miissen gleichgehalten werden
— zeitaufwendige Prozefskommunikation
Sperren / Concurrency-Control: nicht dezentral handhabbar
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6. Recovery:
hoher Aufwand fiir Logging; wird nicht reduziert
Schattenobjekte erfordern vollig andere Handhabung von Ob-

jekten als in Laufzeitsystemen
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Quintessenz:

— klassische Leistungen eines DBMS haben ihren Preis, nur margi-
nale Performance-Gewinne, wenn klassische DBMS-Leistungen
gefragt sind

- “Effizienz” der seitenorientierten Verfahren besteht darin, diese
Leistungen nicht zu erbringen.
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8 Markte und Standards

OODBMS sind sehr komplexe Systeme — teuere Implementierung

enge Markte — lange Reifezeit, teuer; als Produkte kaum {iiberle-
bensfahig

Standards:

- SQL3: Erweiterungen von SQL2 um ADTs, rekursive Verbun-
de, Trigger und weitere Merkmale

- IRDS und PCTE: spezielle OODBMS, als Basis von Software-
Entwicklungsumgebungen konzipiert

— Standards der ODMG
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Standards der ODMG (Object Data Management Group; hat
sich inzwischen aufgelost)

- Objektmodell (OM), das grundlegende Konzepte wie Objekt,
Typ. Attribut usw. definiert.

- Objekt[typ]definitionssprache (object definition language;
ODL)
vergleichbar mit DDL
definiert auch Signaturen von Operationen
- object query language (OQL)
Abfragesprache fiir Objektbanken, angelehnt an SQL
— Sprachanbindungen fiir die Sprachen C++, Java und Smalltalk
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- object interchange format (OIF)
Sprache zur Definition von Objekten (Instanzen von Objektty-
pen); zum Transport von Datenbankinhalten zwischen Daten-

banken
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Objektrelationale DBMS (ORDBMS)
Basis: erprobtes relationales DBMS

mit Erweiterungen, die die Anforderungen der Objektorientierung
zumindest teilweise erfiillen:

— benutzerdefinierte Attributtypen

— abgeleitete Attribute, die durch eine Abfrage definiert sind
— automatisch vergebene Surrogate

— benutzerdefinierte Funktionen

— Typhierarchien

- erweiterte Triggermechanismen

- lange Felder (binary large objects, BLOBs)

Umfang und die konkrete Ausgestaltung der Erweiterungen nicht
einheitlich bei verschiedenen Produkten
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