
Folien zum Lehrmodul

Objektorientierte
Datenbanksysteme

Lernziele:

- OODBMS als Technologie einordnen kennen
- wesentliche Funktionsmerkmale von OODBMS kennen (kom-

plexe Objekte, komplexe Werte, Surrogate, ...)
- Persistenzkonzepte in Programmiersprachen kennen
- Vor- und Nachteile / sinnvolle Anwendungsbereiche von

OODBMS kennen

Inhaltsverzeichnis 3

Inhaltsverzeichnis
1 Einleitung 5

2 Nichtkonventionelle Anwendungen 6

3 Eigenschaften objektorientierter DBMS 9

4 Datenkapselung 12
4.1 Motivation . 12
4.2 Implementierungssprachen und Ausführungsort von Operationen . 15

5 Objekte und Beziehungen 21
5.1 Homogenität der Typsysteme . 22
5.2 Komplexe Objekte . 23
5.3 Beziehungen . 26
5.4 Objektidentität . 27
5.5 Komplexe Objekte vs. komplexe Werte 28

Inhaltsverzeichnis 4

6 Vererbung 30

7 Persistente Programmiersprachen 31
7.1 Konzeptuelle Trennung persistenter und transienter Daten 32
7.2 Bindung persistenter Objekte an Pro grammausführungen 36
7.3 Persistenzmechanismen . 37

7.3.1 Grundformen . 38
7.3.2 Seitenorientierte Persistenzmechanismen 40

8 Märkte und Standards 52

Einleitung 5

1 Einleitung

Objektorientierte DBMS (OODBMS) vereinigen

1. Datenbankkonzepte (Abfragesprachen, Transaktionen, ...)
2. Konzepte der objektorientierten Programmierung / Modellie-

rung

Historie:
- 1980er Jahre: sehr viel Forschung
- später 1980er Jahre: erste kommerzielle Systeme
- frühe 1990er Jahre: gewisse Euphorie; mehrere Standards
- heute: wenige Überlebende, primär oo Erweiterungen relatio-

naler Systeme

Nichtkonventionelle Anwendungen 6

2 Nichtkonventionelle Anwendungen

Merkmale konventioneller Anwendungen:

- relativ einfach und homogen strukturierter Daten
- relativ kleine Tupel, oft Sätze fester Länge
- atomare Datenfelder
- Datenbankschemata werden sehr selten geändert
- kurze Transaktionen

Nichtkonventionelle Anwendungen 7

Beispiele für nichtkonventionelle Anwendungen:

- Technische Entwurfsumgebungen (CAD, CASE usw.): textuelle
und binäre Dokumente, Bitmaps, Versionen, komplexe Struktur

- Multimedia-Datenbanken: u.a. Video- und Audio-“Dateien”,
streaming Formate

- Büroinformationssysteme: Briefe, digitalisierte Papiervorlagen
u.ä.; Information Retrieval

- Expertensystem-Datenbanken

Nichtkonventionelle Anwendungen 8

Konventionelle DBMS für nichtkonventionelle Anwendungen wenig
geeignet, weil:

- unnatürliche Datenmodellierung
z.B. Syntaxbaum → Relationen; beim Lesen sehr komplexe,
ineffiziente Verbunde; z.T. rekursive Datenstrukturen

- spezielle Datentypen wie Videos, Rasterbilder etc. nicht unter-
stützt

- impedance mismatch: aufwendige Konversion zwischen den
Typsystemen von Programmiersprachen und Datenbankmodel-
len (viel Programmcode)

- oft auch bei Transaktionen, Verteilungs- und Zugriffsschutz-
konzepten usw. spezielle Leistungen erforderlich

Eigenschaften objektorientierter DBMS 9

3 Eigenschaften objektorientierter
DBMS

Ziel: Vorteile von DBMS und objektorientierten Programmierspra-
chen vereinigen; oft Kompromisse erforderlich

- Ausgangsbasis objektorientierte Programmiersprache: erwei-
tert um Persistenzkonzept, Transaktionen, mengenorientierte
Abfragen, Mehrbenutzerunterstützung

- Ausgangsbasis relationales DBMS: erweitert um “lange Felder”,
benutzerdefinierbare Datentypen usw.
→ objektrelationale DBMS

Eigenschaften objektorientierter DBMS 10

Merkmale von OODBMS gemäß dem “object-oriented database
system manifesto”

[oo Merkmale:]
- komplexe Objekte, strukturierte Attributwerte
- Objektidentität
- Datenabstraktion (Kapselung, Schnittstellen)
- typisierte Objekte
- Typhierarchien
- Polymorphie
- algorithmisch vollständige Datenbank-Programmierspra-

che (kein impedance mismatch)

Eigenschaften objektorientierter DBMS 11

[DBMS-Merkmale:]
- Persistenz
- internes Schema
- Concurrency-Control- und Recovery-Mechanismen
- mengenorientierte, deklarative Abfragesprache
- dynamisch erweiterbares Datenbankschema

[weitere wünschenswerte Merkmale:]
- versionierbare Objekte
- lange Transaktionen
- Trigger und andere Merkmale “aktiver” Datenbanken
- verteilte Datenbank
- Unterstützung multimedialer Objekte

Datenkapselung / Motivation 12

4 Datenkapselung

4.1 Motivation

konventionelle Datenbanken widersprechen dem Prinzip Daten-
kapselung:
– DB = komplexe Variable
– Schema = Datenstruktur — ist offen!!
Sonst wären keine ad-hoc-Abfragen möglich

Datenkapselung / Motivation 13

Warum überhaupt Datenkapselung?
(in konventionellen Programmiersprachen)

Datenstruktur
Modul

Modul

nutzendes

einkapselndes

Datenkapselung / Motivation 14

Datenkapselung ist bei konventionellen Datenbank-Anwendungen
meistens verzichtbar (!):

- Änderung der Datenstruktur unwahrscheinlich
u.a. weil sehr aufwendig wegen erforderlicher DB-Konversion –
ein analoges Problem existiert bei Laufzeitobjekten nicht

- oft nur 1:1-Zuordnung Attribut zu Lese-/Schreiboperation,
Datenstruktur wird nicht wirklich versteckt

- Schutz der Konsistenz der Daten besser durch Identifizierungs-
und Fremdschlüssel u.ä. als durch individuelle Algorithmen

Datenkapselung / Implementierungssprachen und Ausführungsort von Operationen 15

4.2 Implementierungssprachen und Ausfüh-
rungsort von Operationen

mögliche Ausführungsorte von einkapselnden Operationen:

- GUI / Applikations-Serverprozeß
- DBMS-Serverprozeß (stored procedures)

Datenkapselung / Implementierungssprachen und Ausführungsort von Operationen 16

involvierte Prozesse und deren virtuelle Hauptspeicher:

Server

Bibliothek

Kommunikation z.B. über RPC oder über Sockets

Bibliothek Datenbank

Appl−API DBMS−API

[G]UI der

Applikation

DBMS−

Server

gespeicherte

Prozeduren

Applikations−

Datenkapselung / Implementierungssprachen und Ausführungsort von Operationen 17

1. Ausführung von Operationen im DBMS-Serverpro-
zeß:
Vorteile:

- spart aufwendige Kommunikationen und Datentransporte
- effizient bei vielen Zugriffen zu einzelnen Datenelementen,

motiviert stored procedures (unabhängig von Datenkapselung)

Datenkapselung / Implementierungssprachen und Ausführungsort von Operationen 18

Probleme:

1. Sicherheit:
einkapselnde Operationen sind von Anwendern geschrieben
→ suspekt, sehr hohes Schadenspotential bei unsicheren Spra-
chen wie C / C++
→ nur Skriptsprachen u.ä. erlauben (aber ineffizient / einge-
schränkte Mächtigkeit)

Datenkapselung / Implementierungssprachen und Ausführungsort von Operationen 19

2. Arbeitslast / Performance:
CPU-Belastung des Rechners, auf dem der DBMS-Serverprozeß
läuft (komplexe Algorithmen, Endlosschleife, ...)
problematisch: Verlagerung der Rechenlast vom Arbeitsplatz-
rechner / Applikationsserver auf DBMS-Server
→ Ansatz ungeeignet für Systeme mit vielen Nutzern

Datenkapselung / Implementierungssprachen und Ausführungsort von Operationen 20

2. Ausführung von Operationen im Applikationspro-
zeß:
Problem: wer stellt sicher, daß auf einem Objekt nur passende
Operationen ausgeführt werden?
DBMS als zentrale Aufsichtsinstanz? (lädt Bibliotheken in die
Applikationsprozesse? Für beliebige Plattformen?)

Objekte und Beziehungen 21

5 Objekte und Beziehungen

i.f. Gestaltungsspielräume / Hauptvarianten von wesentlichen
Aspekten von oo Datenbankmodellen

Objekte und Beziehungen / Homogenität der Typsysteme 22

5.1 Homogenität der Typsysteme

Aspekt: Wahl des Typsystems des ooDBMS
impedance mismatch: Differenzen im Datenbankmodell von DBMS
und Programmiersprache

Idee: DBMS-Modell identisch wie eine bestimmte Programmier-
sprache wählen

- Probleme mit anderen Programmiersprachen
- Programmiersprache alleine reicht nicht; Bibliotheken usw.

→ sehr hoher Spezifikations- und Implementierungsaufwand
- Typsystem der Programmiersprache ggf. zu komplex als Basis

für Abfragesprachen

Objekte und Beziehungen / Komplexe Objekte 23

5.2 Komplexe Objekte

Aspekt: Typkonstruktoren, nichtatomare Objekte
Programmiersprachen haben Typkonstruktoren wie array, set of,
record, ... sind Teil-von-Strukturen
DBMS-seitige Nachbildung: komplexe Objekte mit Kompo-
nentobjekten

- Strukturierung der Komponentobjekte mit Typkonstruktoren
wie array, set, map, record, file; beliebig schachtelbar

- können mit 1 Operationsaufruf als Ganzes bearbeitet werden.
Operationen: löschen, kopieren, versionieren, sperren, ...

Objekte und Beziehungen / Komplexe Objekte 24

Alternativen für die Struktur komplexer Objekte:

- baum- bzw. waldartige Struktur
- halbgeordnete (also zyklusfreie) Struktur, gemeinsame Teilob-

jekte
- Graph, Zyklen erlaubt

Objekte und Beziehungen / Komplexe Objekte 25

Alternativen für die Handhabung von Komponentobjek-
ten:

- (spezielle) Attribute, die Objektreferenzen oder Mengen von
Objektreferenzen enthalten

- Menge der Komponenten eines Objekts als abstraktes Daten-
objekt mit Interface betrachten (kein explizites Attribut)

- Teil-von-Eigenschaft als Merkmal von Beziehungstypen

Objekte und Beziehungen / Beziehungen 26

5.3 Beziehungen

Aggregationen und Assoziationen erforderlich
referentielle Integrität auf Wunsch überprüfbar → paarweise ge-
genläufige Beziehungen

Objekte und Beziehungen / Objektidentität 27

5.4 Objektidentität

wertbasierte Identität hat diverse Nachteile →

Surrogate; Eigenschaften:

- bei Erzeugung eines Objekt automatisch zugewiesen
- wird nie verändert
- zeitlich und “räumlich” eindeutig

Benutzung für:
- Test, ob zwei Objektreferenzen auf gleiches Objekt verweisen
- teilweise für Direktzugriff

Realisierung: längerer String (externe Darstellung, komprimierbar)
→ “schwergewichtige” Objekte (auch wegen anderer Features)

Objekte und Beziehungen / Komplexe Objekte vs. komplexe Werte 28

5.5 Komplexe Objekte vs. komplexe Werte

komplexer Wert in einem Attribut:

- wird auf 1 Bytefeld abgebildet, Länge u.U. schon zur Compile-
Zeit bestimmbar

- wird nur als ganzes zwischen der Datenbank und dem Adreß-
raum der Anwendung übertragen
→ sehr effiziente Verarbeitung

- “Komponenten” in komplexem Wert sind keine Objekte:
- haben keine Identität (kein Surrogat)
- können keine Rolle in Beziehungen spielen
- können nicht Ziel von Objektreferenzen sein

- Struktur des komplexen Werts ist offen

Objekte und Beziehungen / Komplexe Objekte vs. komplexe Werte 29

Probleme mit komplexen Werten:

- heterogene Plattformen
- Typsystem von DBMS und Gastsprache müssen kompatibel

sein → i.w. nur 1 Gastsprache möglich
- Abhängigkeit vom Compiler / Laufzeitsystem

Vererbung 30

6 Vererbung

Frage zu Bedeutung von Abfragen:
gegeben ein Typ, welche Basismenge an Instanzen gehört dazu?

1. Instanzen nur des exakten Objekttyps (ohne Subtypen)
(Vergleich: horizontale Partitionierung)

2. Instanzen eines Typs und aller seiner direkten und indirekten
Subtypen
(Vergleich: vertikale Partitionierung)

3. statt pauschaler Festlegung: Objektmengen völlig unabhängig
von der Typstruktur definieren (eher lästig)

Persistente Programmiersprachen 31

7 Persistente Programmiersprachen

Grundidee:

- Typsysteme von Programmiersprache und DBMS identisch
- persistente Objekte: werden automatisch beim Programmende

gerettet und beim erneuten Programmstart rekonstruiert

Persistente Programmiersprachen / Konzeptuelle Trennung persistenter und transienter Daten 32

7.1 Konzeptuelle Trennung persistenter und
transienter Daten

transiente (normale) Daten: werden bei Programmende gelöscht

Problem: es werden transiente und persistente Daten benötigt

transiente Varianten sind anders:
- kein Surrogat
- i.a. Konsistenzbedingungen des DB-Schemas nicht anwendbar
- ggf. andere Rechte

Persistente Programmiersprachen / Konzeptuelle Trennung persistenter und transienter Daten 33

Anforderungen (ideal):

- einfache Spezifikation der Persistenz
- kein Unterschied in der Handhabung persistenter und transien-

ter Daten
- wenig Korrekturaufwand bei Umstellung

Persistente Programmiersprachen / Konzeptuelle Trennung persistenter und transienter Daten 34

Methoden zur Spezifikation, daß Daten persistent sein sollen:

1. Persistenz als Klasseneigenschaft:
vordefinierte Klasse namens persistent_object o.ä.;
hiervon Unterklassen bilden
Nachteil: transiente und persistente Instanzen der gleichen
Klasse schlecht zu trennen

2. Explizite Markierung:
Angabe zu beliebigem Zeitpunkt während Lebensdauer

Persistente Programmiersprachen / Konzeptuelle Trennung persistenter und transienter Daten 35

3. Persistente Wurzel(n):
alle von dort erreichbaren Objekte implizit persistent
→ wenig Spezifikationsaufwand,
u.U. schlecht durchschaubare Effekte von Änderungen an Ob-
jektstrukturen
nur implizites Löschen

Persistente Programmiersprachen / Bindung persistenter Objekte an Pro grammausführungen 36

7.2 Bindung persistenter Objekte an Pro-
grammausführungen

gleiches Programm muß mit verschiedenen Objekten ausführbar
sein;
Auswahl der DB-Objekte, mit denen ein Programm ausgeführt
werden soll, über:

1. Surrogate
2. identifizierende Attribute an Objekten

(ggf. nur für Wurzelobjekte relevanter Teilbäume)
3. einzelne OODB-Objekte erhalten explizit einen Namen (ähnlich

Tagging in SVN), explizite Bindung der OODB-Objekte an
Programmvariablen
nur bei kleiner Anzahl von komplexen Objekten praktikabel

Persistente Programmiersprachen / Persistenzmechanismen 37

7.3 Persistenzmechanismen

bisher offen: Implementierung der Persistenz
irrelevant für Konzepte, sehr relevant für Performance
(-versprechungen)

Annahme i.f.: Programmteile, die auf die Datenstrukturen von
Objekten zugreifen, werden im Applikationsprozeß ausgeführt

Persistenzmechanismen / Grundformen 38

7.3.1 Grundformen

als persistent markierte Laufzeitobjekte müssen bei Beendigung
des Programms in die Datenbank übertragen werden
Implementierungsansätze:

1. Verarbeiten einzelner (atomarer) Objekte:
Struktur der Objekte durchlaufen, atomare Objekte einzeln
speichern (1 Objekt = 1 Tupel)
erlaubt Einsatz beliebiger DBMS, automatische Konversionen

Persistenzmechanismen / Grundformen 39

2. Behandlung komplexer Objekte als komplexe Werte:
weniger Kommunikationen zum DBMS-Serverprozeß
Zerlegung des komplexen Werts im DBMS-Serverprozeß, ggf.
Konversion in anderes Typsystem;
Sonderfall hiervon: Paging-Verfahren

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 40

7.3.2 Seitenorientierte Persistenzmechanismen

Grundidee: einzelne Seiten des Hauptspeichers, in denen Objekte
gespeichert sind, direkt auf Sektoren der Platte speichern

Arbeitsspeicher des Applikationsprozesses

Magnetplatte

192xxx 204xxx 255xxx

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 41

ähnlich Paging / memory-mapped IO
Schichtenarchitektur des DBMS-Kerns: Verwaltung von Speicher-
sätzen und Einzeltupeln entfällt!

unter “persistente Programmiersprache” wird oft dieses Implemen-
tierungsverfahren verstanden;
wirkt sehr elegant und performant (Hardware-Unterstützung!)

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 42

ABER:

1. funktioniert doch nicht so einfach
2. Performance-Vorteile nur unter speziellen günstigen Randbe-

dingungen
3. bedingt Verzicht auf viele übliche Leistungsmerkmale eines

DBMS

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 43

Pointer Swizzling.
Problem: Referenzen auf andere Objekte werden im Laufzeitsystem
durch Zeiger (Adreßwerte) realisiert
Zeiger stehen mitten in komplexen Werten

Frage: wo stehen die Objekte nach Neuladen im Hauptspeicher???

1. an der gleichen Adresse wie vorher → Zeiger bleiben korrekt
→ Objekte müssen feste Hauptspeicheradresse haben
→ DB-Größe durch virtuellen Adreßraum beschränkt!
nicht akzeptabel bei 32-Bit-Rechnern

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 44

2. andere Adresse als vorher
→ Zeiger müssen angepaßt werden, d.h.:

- beim Speichern Adressen in Objektidentifizierer umsetzen
d.h. Seite kann nicht unverändert gespeichert werden!

- beim Laden Adressen in dann gültige Adressen umsetzen

Bezeichnung hierfür: pointer swizzling

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 45

Probleme beim pointer swizzling:

- braucht Rechenzeit und/oder Speicherplatz
- Applikation kann (bei “unsicheren” Programmiersprachen wie

C++) Inhalt der Seite beschädigt haben
→ Analyse der Seite vor dem Speichern notwendig

- nicht anwendbar bei heterogenen Plattformen

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 46

Wann verbessern die seitenorientierten Verfahren die
Performance?

- 1. Zugriff auf ein Objekt: zeitraubender Transport eines Sektors
von der Platte in den Hauptspeicher unverändert notwendig
2. und folgende Zugriffe zum gleichen Objekt: Performance
verbessert

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 47

- Performance-Verbesserung beim initialen Laden: allenfalls
durch günstige Gruppierung (Clusterung):

- mehrere kleine Objekte auf 1 Seite
- gemäß Zugriffsverhalten EINER Applikation

Angabe der Clusterungsstruktur durch Applikation! (erzeuge
neues Objekt “in der Nähe” eines vorhandenen)

ABER: diese Angaben gehören zum “internen Schema”,
widersprechen dem Ziel der Datenunabhängigkeit
(die aber bei nichtkonventionellen Anwendungen sowieso nicht
erreicht wird)

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 48

Fehlende Leistungen von Datenbanksystemen bei seiten-
orientierten Verfahren.

1. Sprachunabhängigkeit:
DBMS ist abhängig von Compiler oder sogar Versionen “des-
selben” Compilers

2. heterogene Plattformen

3. Sichten:
Basis für Zugriffskontrollen und Datenunabhängigkeit
Filterung im DBMS → ggf. völliger Umbau der Seiteninhalte
Filterung im Laufzeitsystem der Programmiersprache: u.U.
nicht sicher, bedingt völlig neue Sprachkonzepte

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 49

4. effiziente Suche durch Indexe:
Datenstrukturen in Laufzeitsystemen unterstützen i.a. keine
(Primär-) Indexe (sind nicht plattenorientiert)
Sekundärindexe: verschlechtern Performance
Problem: Daten, die andere Prozesse frisch erzeugt haben

5. paralleler Zugriff:
gleiche Seite in mehrere Adreßräume einspiegeln
→ lokale Änderungen der Kopien; wie mischen??
→ Seiten müssen gleichgehalten werden
→ zeitaufwendige Prozeßkommunikation
Sperren / Concurrency-Control: nicht dezentral handhabbar

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 50

6. Recovery:
hoher Aufwand für Logging; wird nicht reduziert
Schattenobjekte erfordern völlig andere Handhabung von Ob-
jekten als in Laufzeitsystemen

Persistenzmechanismen / Seitenorientierte Persistenzmechanismen 51

Quintessenz:
- klassische Leistungen eines DBMS haben ihren Preis, nur margi-

nale Performance-Gewinne, wenn klassische DBMS-Leistungen
gefragt sind

- “Effizienz” der seitenorientierten Verfahren besteht darin, diese
Leistungen nicht zu erbringen.

Märkte und Standards 52

8 Märkte und Standards

OODBMS sind sehr komplexe Systeme → teuere Implementierung
enge Märkte → lange Reifezeit, teuer; als Produkte kaum überle-
bensfähig

Standards:

- SQL3: Erweiterungen von SQL2 um ADTs, rekursive Verbun-
de, Trigger und weitere Merkmale

- IRDS und PCTE: spezielle OODBMS, als Basis von Software-
Entwicklungsumgebungen konzipiert

- Standards der ODMG

Märkte und Standards 53

Standards der ODMG (Object Data Management Group; hat
sich inzwischen aufgelöst)

- Objektmodell (OM), das grundlegende Konzepte wie Objekt,
Typ. Attribut usw. definiert.

- Objekt[typ]definitionssprache (object definition language;
ODL)
vergleichbar mit DDL
definiert auch Signaturen von Operationen

- object query language (OQL)
Abfragesprache für Objektbanken, angelehnt an SQL

- Sprachanbindungen für die Sprachen C++, Java und Smalltalk

Märkte und Standards 54

- object interchange format (OIF)
Sprache zur Definition von Objekten (Instanzen von Objektty-
pen); zum Transport von Datenbankinhalten zwischen Daten-
banken

Märkte und Standards 55

Objektrelationale DBMS (ORDBMS)
Basis: erprobtes relationales DBMS
mit Erweiterungen, die die Anforderungen der Objektorientierung
zumindest teilweise erfüllen:

- benutzerdefinierte Attributtypen
- abgeleitete Attribute, die durch eine Abfrage definiert sind
- automatisch vergebene Surrogate
- benutzerdefinierte Funktionen
- Typhierarchien
- erweiterte Triggermechanismen
- lange Felder (binary large objects, BLOBs)

Umfang und die konkrete Ausgestaltung der Erweiterungen nicht
einheitlich bei verschiedenen Produkten

	Einleitung
	Nichtkonventionelle Anwendungen
	Eigenschaften objektorientierter DBMS
	Datenkapselung
	Motivation
	Implementierungssprachen und Ausführungsort von Operationen

	Objekte und Beziehungen
	Homogenität der Typsysteme
	Komplexe Objekte
	Beziehungen
	Objektidentität
	Komplexe Objekte vs. komplexe Werte

	Vererbung
	Persistente Programmiersprachen
	Konzeptuelle Trennung persistenter und transienter Daten
	Bindung persistenter Objekte an Pro grammausführungen
	Persistenzmechanismen
	Grundformen
	Seitenorientierte Persistenzmechanismen

	Märkte und Standards

