
Folien zum Lehrmodul

Objektorientierte
Datenbanksysteme



Lernziele:

- OODBMS als Technologie einordnen kennen
- wesentliche Funktionsmerkmale von OODBMS kennen (kom-

plexe Objekte, komplexe Werte, Surrogate, ...)
- Persistenzkonzepte in Programmiersprachen kennen
- Vor- und Nachteile / sinnvolle Anwendungsbereiche von

OODBMS kennen
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1 Einleitung

Objektorientierte DBMS (OODBMS) vereinigen

1. Datenbankkonzepte (Abfragesprachen, Transaktionen, ...)
2. Konzepte der objektorientierten Programmierung / Modellie-

rung

Historie:
- 1980er Jahre: sehr viel Forschung
- später 1980er Jahre: erste kommerzielle Systeme
- frühe 1990er Jahre: gewisse Euphorie; mehrere Standards
- heute: wenige Überlebende, primär oo Erweiterungen relatio-

naler Systeme
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2 Nichtkonventionelle Anwendungen

Merkmale konventioneller Anwendungen:

- relativ einfach und homogen strukturierter Daten
- relativ kleine Tupel, oft Sätze fester Länge
- atomare Datenfelder
- Datenbankschemata werden sehr selten geändert
- kurze Transaktionen
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Beispiele für nichtkonventionelle Anwendungen:

- Technische Entwurfsumgebungen (CAD, CASE usw.): textuelle
und binäre Dokumente, Bitmaps, Versionen, komplexe Struktur

- Multimedia-Datenbanken: u.a. Video- und Audio-“Dateien”,
streaming Formate

- Büroinformationssysteme: Briefe, digitalisierte Papiervorlagen
u.ä.; Information Retrieval

- Expertensystem-Datenbanken
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Konventionelle DBMS für nichtkonventionelle Anwendungen wenig
geeignet, weil:

- unnatürliche Datenmodellierung
z.B. Syntaxbaum → Relationen; beim Lesen sehr komplexe,
ineffiziente Verbunde; z.T. rekursive Datenstrukturen

- spezielle Datentypen wie Videos, Rasterbilder etc. nicht unter-
stützt

- impedance mismatch: aufwendige Konversion zwischen den
Typsystemen von Programmiersprachen und Datenbankmodel-
len (viel Programmcode)

- oft auch bei Transaktionen, Verteilungs- und Zugriffsschutz-
konzepten usw. spezielle Leistungen erforderlich
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3 Eigenschaften objektorientierter
DBMS

Ziel: Vorteile von DBMS und objektorientierten Programmierspra-
chen vereinigen; oft Kompromisse erforderlich

- Ausgangsbasis objektorientierte Programmiersprache: erwei-
tert um Persistenzkonzept, Transaktionen, mengenorientierte
Abfragen, Mehrbenutzerunterstützung

- Ausgangsbasis relationales DBMS: erweitert um “lange Felder”,
benutzerdefinierbare Datentypen usw.
→ objektrelationale DBMS
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Merkmale von OODBMS gemäß dem “object-oriented database
system manifesto”

[oo Merkmale:]
- komplexe Objekte, strukturierte Attributwerte
- Objektidentität
- Datenabstraktion (Kapselung, Schnittstellen)
- typisierte Objekte
- Typhierarchien
- Polymorphie
- algorithmisch vollständige Datenbank-Programmierspra-

che (kein impedance mismatch)
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[DBMS-Merkmale:]
- Persistenz
- internes Schema
- Concurrency-Control- und Recovery-Mechanismen
- mengenorientierte, deklarative Abfragesprache
- dynamisch erweiterbares Datenbankschema

[weitere wünschenswerte Merkmale:]
- versionierbare Objekte
- lange Transaktionen
- Trigger und andere Merkmale “aktiver” Datenbanken
- verteilte Datenbank
- Unterstützung multimedialer Objekte
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4 Datenkapselung

4.1 Motivation

konventionelle Datenbanken widersprechen dem Prinzip Daten-
kapselung:
– DB = komplexe Variable
– Schema = Datenstruktur — ist offen!!
Sonst wären keine ad-hoc-Abfragen möglich
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Warum überhaupt Datenkapselung?
(in konventionellen Programmiersprachen)

Datenstruktur
Modul

Modul

nutzendes

einkapselndes
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Datenkapselung ist bei konventionellen Datenbank-Anwendungen
meistens verzichtbar (!):

- Änderung der Datenstruktur unwahrscheinlich
u.a. weil sehr aufwendig wegen erforderlicher DB-Konversion –
ein analoges Problem existiert bei Laufzeitobjekten nicht

- oft nur 1:1-Zuordnung Attribut zu Lese-/Schreiboperation,
Datenstruktur wird nicht wirklich versteckt

- Schutz der Konsistenz der Daten besser durch Identifizierungs-
und Fremdschlüssel u.ä. als durch individuelle Algorithmen
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4.2 Implementierungssprachen und Ausfüh-
rungsort von Operationen

mögliche Ausführungsorte von einkapselnden Operationen:

- GUI / Applikations-Serverprozeß
- DBMS-Serverprozeß (stored procedures)
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involvierte Prozesse und deren virtuelle Hauptspeicher:

Server

Bibliothek

Kommunikation z.B. über RPC oder über Sockets

Bibliothek Datenbank

Appl−API DBMS−API

[G]UI der

Applikation

DBMS−

Server

gespeicherte

Prozeduren

Applikations−
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1. Ausführung von Operationen im DBMS-Serverpro-
zeß:
Vorteile:

- spart aufwendige Kommunikationen und Datentransporte
- effizient bei vielen Zugriffen zu einzelnen Datenelementen,

motiviert stored procedures (unabhängig von Datenkapselung)
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Probleme:

1. Sicherheit:
einkapselnde Operationen sind von Anwendern geschrieben
→ suspekt, sehr hohes Schadenspotential bei unsicheren Spra-
chen wie C / C++
→ nur Skriptsprachen u.ä. erlauben (aber ineffizient / einge-
schränkte Mächtigkeit)
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2. Arbeitslast / Performance:
CPU-Belastung des Rechners, auf dem der DBMS-Serverprozeß
läuft (komplexe Algorithmen, Endlosschleife, ...)
problematisch: Verlagerung der Rechenlast vom Arbeitsplatz-
rechner / Applikationsserver auf DBMS-Server
→ Ansatz ungeeignet für Systeme mit vielen Nutzern
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2. Ausführung von Operationen im Applikationspro-
zeß:
Problem: wer stellt sicher, daß auf einem Objekt nur passende
Operationen ausgeführt werden?
DBMS als zentrale Aufsichtsinstanz? (lädt Bibliotheken in die
Applikationsprozesse? Für beliebige Plattformen?)
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5 Objekte und Beziehungen

i.f. Gestaltungsspielräume / Hauptvarianten von wesentlichen
Aspekten von oo Datenbankmodellen
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5.1 Homogenität der Typsysteme

Aspekt: Wahl des Typsystems des ooDBMS
impedance mismatch: Differenzen im Datenbankmodell von DBMS
und Programmiersprache

Idee: DBMS-Modell identisch wie eine bestimmte Programmier-
sprache wählen

- Probleme mit anderen Programmiersprachen
- Programmiersprache alleine reicht nicht; Bibliotheken usw.

→ sehr hoher Spezifikations- und Implementierungsaufwand
- Typsystem der Programmiersprache ggf. zu komplex als Basis

für Abfragesprachen
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5.2 Komplexe Objekte

Aspekt: Typkonstruktoren, nichtatomare Objekte
Programmiersprachen haben Typkonstruktoren wie array, set of,
record, ... sind Teil-von-Strukturen
DBMS-seitige Nachbildung: komplexe Objekte mit Kompo-
nentobjekten

- Strukturierung der Komponentobjekte mit Typkonstruktoren
wie array, set, map, record, file; beliebig schachtelbar

- können mit 1 Operationsaufruf als Ganzes bearbeitet werden.
Operationen: löschen, kopieren, versionieren, sperren, ...
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Alternativen für die Struktur komplexer Objekte:

- baum- bzw. waldartige Struktur
- halbgeordnete (also zyklusfreie) Struktur, gemeinsame Teilob-

jekte
- Graph, Zyklen erlaubt
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Alternativen für die Handhabung von Komponentobjek-
ten:

- (spezielle) Attribute, die Objektreferenzen oder Mengen von
Objektreferenzen enthalten

- Menge der Komponenten eines Objekts als abstraktes Daten-
objekt mit Interface betrachten (kein explizites Attribut)

- Teil-von-Eigenschaft als Merkmal von Beziehungstypen
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5.3 Beziehungen

Aggregationen und Assoziationen erforderlich
referentielle Integrität auf Wunsch überprüfbar → paarweise ge-
genläufige Beziehungen
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5.4 Objektidentität

wertbasierte Identität hat diverse Nachteile →

Surrogate; Eigenschaften:

- bei Erzeugung eines Objekt automatisch zugewiesen
- wird nie verändert
- zeitlich und “räumlich” eindeutig

Benutzung für:
- Test, ob zwei Objektreferenzen auf gleiches Objekt verweisen
- teilweise für Direktzugriff

Realisierung: längerer String (externe Darstellung, komprimierbar)
→ “schwergewichtige” Objekte (auch wegen anderer Features)
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5.5 Komplexe Objekte vs. komplexe Werte

komplexer Wert in einem Attribut:

- wird auf 1 Bytefeld abgebildet, Länge u.U. schon zur Compile-
Zeit bestimmbar

- wird nur als ganzes zwischen der Datenbank und dem Adreß-
raum der Anwendung übertragen
→ sehr effiziente Verarbeitung

- “Komponenten” in komplexem Wert sind keine Objekte:
- haben keine Identität (kein Surrogat)
- können keine Rolle in Beziehungen spielen
- können nicht Ziel von Objektreferenzen sein

- Struktur des komplexen Werts ist offen
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Probleme mit komplexen Werten:

- heterogene Plattformen
- Typsystem von DBMS und Gastsprache müssen kompatibel

sein → i.w. nur 1 Gastsprache möglich
- Abhängigkeit vom Compiler / Laufzeitsystem
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6 Vererbung

Frage zu Bedeutung von Abfragen:
gegeben ein Typ, welche Basismenge an Instanzen gehört dazu?

1. Instanzen nur des exakten Objekttyps (ohne Subtypen)
(Vergleich: horizontale Partitionierung)

2. Instanzen eines Typs und aller seiner direkten und indirekten
Subtypen
(Vergleich: vertikale Partitionierung)

3. statt pauschaler Festlegung: Objektmengen völlig unabhängig
von der Typstruktur definieren (eher lästig)
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7 Persistente Programmiersprachen

Grundidee:

- Typsysteme von Programmiersprache und DBMS identisch
- persistente Objekte: werden automatisch beim Programmende

gerettet und beim erneuten Programmstart rekonstruiert
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7.1 Konzeptuelle Trennung persistenter und
transienter Daten

transiente (normale) Daten: werden bei Programmende gelöscht

Problem: es werden transiente und persistente Daten benötigt

transiente Varianten sind anders:
- kein Surrogat
- i.a. Konsistenzbedingungen des DB-Schemas nicht anwendbar
- ggf. andere Rechte
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Anforderungen (ideal):

- einfache Spezifikation der Persistenz
- kein Unterschied in der Handhabung persistenter und transien-

ter Daten
- wenig Korrekturaufwand bei Umstellung
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Methoden zur Spezifikation, daß Daten persistent sein sollen:

1. Persistenz als Klasseneigenschaft:
vordefinierte Klasse namens persistent_object o.ä.;
hiervon Unterklassen bilden
Nachteil: transiente und persistente Instanzen der gleichen
Klasse schlecht zu trennen

2. Explizite Markierung:
Angabe zu beliebigem Zeitpunkt während Lebensdauer
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3. Persistente Wurzel(n):
alle von dort erreichbaren Objekte implizit persistent
→ wenig Spezifikationsaufwand,
u.U. schlecht durchschaubare Effekte von Änderungen an Ob-
jektstrukturen
nur implizites Löschen
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7.2 Bindung persistenter Objekte an Pro-
grammausführungen

gleiches Programm muß mit verschiedenen Objekten ausführbar
sein;
Auswahl der DB-Objekte, mit denen ein Programm ausgeführt
werden soll, über:

1. Surrogate
2. identifizierende Attribute an Objekten

(ggf. nur für Wurzelobjekte relevanter Teilbäume)
3. einzelne OODB-Objekte erhalten explizit einen Namen (ähnlich

Tagging in SVN), explizite Bindung der OODB-Objekte an
Programmvariablen
nur bei kleiner Anzahl von komplexen Objekten praktikabel
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7.3 Persistenzmechanismen

bisher offen: Implementierung der Persistenz
irrelevant für Konzepte, sehr relevant für Performance
(-versprechungen)

Annahme i.f.: Programmteile, die auf die Datenstrukturen von
Objekten zugreifen, werden im Applikationsprozeß ausgeführt
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7.3.1 Grundformen

als persistent markierte Laufzeitobjekte müssen bei Beendigung
des Programms in die Datenbank übertragen werden
Implementierungsansätze:

1. Verarbeiten einzelner (atomarer) Objekte:
Struktur der Objekte durchlaufen, atomare Objekte einzeln
speichern (1 Objekt = 1 Tupel)
erlaubt Einsatz beliebiger DBMS, automatische Konversionen
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2. Behandlung komplexer Objekte als komplexe Werte:
weniger Kommunikationen zum DBMS-Serverprozeß
Zerlegung des komplexen Werts im DBMS-Serverprozeß, ggf.
Konversion in anderes Typsystem;
Sonderfall hiervon: Paging-Verfahren
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7.3.2 Seitenorientierte Persistenzmechanismen

Grundidee: einzelne Seiten des Hauptspeichers, in denen Objekte
gespeichert sind, direkt auf Sektoren der Platte speichern

Arbeitsspeicher des Applikationsprozesses

Magnetplatte

192xxx 204xxx 255xxx
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ähnlich Paging / memory-mapped IO
Schichtenarchitektur des DBMS-Kerns: Verwaltung von Speicher-
sätzen und Einzeltupeln entfällt!

unter “persistente Programmiersprache” wird oft dieses Implemen-
tierungsverfahren verstanden;
wirkt sehr elegant und performant (Hardware-Unterstützung!)
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ABER:

1. funktioniert doch nicht so einfach
2. Performance-Vorteile nur unter speziellen günstigen Randbe-

dingungen
3. bedingt Verzicht auf viele übliche Leistungsmerkmale eines

DBMS
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Pointer Swizzling.
Problem: Referenzen auf andere Objekte werden im Laufzeitsystem
durch Zeiger (Adreßwerte) realisiert
Zeiger stehen mitten in komplexen Werten

Frage: wo stehen die Objekte nach Neuladen im Hauptspeicher???

1. an der gleichen Adresse wie vorher → Zeiger bleiben korrekt
→ Objekte müssen feste Hauptspeicheradresse haben
→ DB-Größe durch virtuellen Adreßraum beschränkt!
nicht akzeptabel bei 32-Bit-Rechnern
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2. andere Adresse als vorher
→ Zeiger müssen angepaßt werden, d.h.:

- beim Speichern Adressen in Objektidentifizierer umsetzen
d.h. Seite kann nicht unverändert gespeichert werden!

- beim Laden Adressen in dann gültige Adressen umsetzen

Bezeichnung hierfür: pointer swizzling
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Probleme beim pointer swizzling:

- braucht Rechenzeit und/oder Speicherplatz
- Applikation kann (bei “unsicheren” Programmiersprachen wie

C++) Inhalt der Seite beschädigt haben
→ Analyse der Seite vor dem Speichern notwendig

- nicht anwendbar bei heterogenen Plattformen
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Wann verbessern die seitenorientierten Verfahren die
Performance?

- 1. Zugriff auf ein Objekt: zeitraubender Transport eines Sektors
von der Platte in den Hauptspeicher unverändert notwendig
2. und folgende Zugriffe zum gleichen Objekt: Performance
verbessert
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- Performance-Verbesserung beim initialen Laden: allenfalls
durch günstige Gruppierung (Clusterung):

- mehrere kleine Objekte auf 1 Seite
- gemäß Zugriffsverhalten EINER Applikation

Angabe der Clusterungsstruktur durch Applikation! (erzeuge
neues Objekt “in der Nähe” eines vorhandenen)

ABER: diese Angaben gehören zum “internen Schema”,
widersprechen dem Ziel der Datenunabhängigkeit
(die aber bei nichtkonventionellen Anwendungen sowieso nicht
erreicht wird)
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Fehlende Leistungen von Datenbanksystemen bei seiten-
orientierten Verfahren.

1. Sprachunabhängigkeit:
DBMS ist abhängig von Compiler oder sogar Versionen “des-
selben” Compilers

2. heterogene Plattformen

3. Sichten:
Basis für Zugriffskontrollen und Datenunabhängigkeit
Filterung im DBMS → ggf. völliger Umbau der Seiteninhalte
Filterung im Laufzeitsystem der Programmiersprache: u.U.
nicht sicher, bedingt völlig neue Sprachkonzepte
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4. effiziente Suche durch Indexe:
Datenstrukturen in Laufzeitsystemen unterstützen i.a. keine
(Primär-) Indexe (sind nicht plattenorientiert)
Sekundärindexe: verschlechtern Performance
Problem: Daten, die andere Prozesse frisch erzeugt haben

5. paralleler Zugriff:
gleiche Seite in mehrere Adreßräume einspiegeln
→ lokale Änderungen der Kopien; wie mischen??
→ Seiten müssen gleichgehalten werden
→ zeitaufwendige Prozeßkommunikation
Sperren / Concurrency-Control: nicht dezentral handhabbar
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6. Recovery:
hoher Aufwand für Logging; wird nicht reduziert
Schattenobjekte erfordern völlig andere Handhabung von Ob-
jekten als in Laufzeitsystemen
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Quintessenz:
- klassische Leistungen eines DBMS haben ihren Preis, nur margi-

nale Performance-Gewinne, wenn klassische DBMS-Leistungen
gefragt sind

- “Effizienz” der seitenorientierten Verfahren besteht darin, diese
Leistungen nicht zu erbringen.
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8 Märkte und Standards

OODBMS sind sehr komplexe Systeme → teuere Implementierung
enge Märkte → lange Reifezeit, teuer; als Produkte kaum überle-
bensfähig

Standards:

- SQL3: Erweiterungen von SQL2 um ADTs, rekursive Verbun-
de, Trigger und weitere Merkmale

- IRDS und PCTE: spezielle OODBMS, als Basis von Software-
Entwicklungsumgebungen konzipiert

- Standards der ODMG
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Standards der ODMG (Object Data Management Group; hat
sich inzwischen aufgelöst)

- Objektmodell (OM), das grundlegende Konzepte wie Objekt,
Typ. Attribut usw. definiert.

- Objekt[typ]definitionssprache (object definition language;
ODL)
vergleichbar mit DDL
definiert auch Signaturen von Operationen

- object query language (OQL)
Abfragesprache für Objektbanken, angelehnt an SQL

- Sprachanbindungen für die Sprachen C++, Java und Smalltalk
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- object interchange format (OIF)
Sprache zur Definition von Objekten (Instanzen von Objektty-
pen); zum Transport von Datenbankinhalten zwischen Daten-
banken
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Objektrelationale DBMS (ORDBMS)
Basis: erprobtes relationales DBMS
mit Erweiterungen, die die Anforderungen der Objektorientierung
zumindest teilweise erfüllen:

- benutzerdefinierte Attributtypen
- abgeleitete Attribute, die durch eine Abfrage definiert sind
- automatisch vergebene Surrogate
- benutzerdefinierte Funktionen
- Typhierarchien
- erweiterte Triggermechanismen
- lange Felder (binary large objects, BLOBs)

Umfang und die konkrete Ausgestaltung der Erweiterungen nicht
einheitlich bei verschiedenen Produkten
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