Objektorientierte Datenbanksysteme

Udo Kelter

18.04.2004

Zusammenfassung dieses Lehrmoduls

Objektorientierte Datenbanksysteme (OODBMS) versuchen, die Lei-
stungen und Vorteile von Datenbanken und objektorientierter Pro-
grammierung zu vereinigen. Im Gegensatz zu konventionellen DBMS,
bei denen die Datenstrukturen, also Schemata, offenliegen, werden
die Daten in OODBMS durch Operationen verkapselt. Motiviert sind
OODBMS vor allem bei nichtkonventionellen Anwendungen mit kom-
plex strukturierten Daten. Dieses Lehrmodul stellt die wichtigsten
Merkmale von OODBMS und Alternativen fiir deren Auspriagung vor,
u.a. komplexe Objekte, Objektidentitit, Kapselung und Verwaltung der
Operationen u.a. Ferner werden einige einschlédgige Standards skizziert.

Vorausgesetzte Lehrmodule:

obligatorisch: — Datenverwaltungssysteme
— Architektur von DBMS

Stoffumfang in Vorlesungsdoppelstunden: 1.7

Objektorientierte Datenbanksysteme 2

Inhaltsverzeichnis

11 Nichtkonventionelle Anwendungen| 3

2 Eigenschaften objektorientierter DBMSY| 5

13 Datenkapselung| 7
8.1 Motivationl 7
3.2 Implementierungssprachen und Austuhrungsort von Operationen| 9

4 Objekte und Beziehungen| 12
4.1 Homogenitat der Typsysteme| 12
4.2 Komplexe Objektel oL 13

4.3 Beziehungen|. L 15
4 Objektidentitat]o 16

4.5 Objekte vs. Werte| 16

V bung; 18

16 Persistente Programmiersprachen)| 19
[6.1 ‘Irennung persistenter und transienter Daten| 19
6.2 indung persistenter jekte an Programmausfuhrungen| . . 20
6.3 Persistenzmechanismenl. 0L 21
6.3.1 Grundformen| 21

16.3.2 Seitenorientierte Persistenzmechamismenl 22
[r__Markte und Standards| 28
LitBrafurd 30
Index] 31
(©2004 Udo Kelter Stand: 18.04.2004

Dieser Text darf fiir nichtkommerzielle Nutzungen als Ganzes und unveréndert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Verdnderung und Uberfiihrung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist iiber http://kltr.de erreichbar.

Objektorientierte Datenbanksysteme 3

1 Nichtkonventionelle Anwendungen

Das Hauptcharakteristikum objektorientierter Datenbankmanagement-
systeme (OODBMS) besteht darin, daf ihr Datenbankmodell objek-
torientierte Konzepte beinhaltet, namentlich die Kapselung von Da-
tenstrukturen durch Operationenﬂ Typhierarchien und Polymorphie.
Bei vielen (nicht allen) OODBMS ist nicht nur das Datenbankmodell
nichtkonventionell, sondern dies gilt auch fiir Transaktions- und Ver-
teilungskonzepte und andere Aspekte, so dafs derartige Systeme auch
nichtkonventionelle DBMS genannt werden. Wir untersuchen i.f. zu-
néchst die Motivation fiir derartige DBMS und beschreiben danach nur
die objektorientierten Datenbankmodelle; auf die anderen erwédhnten
nichtkonventionellen technischen Merkmale dieser DBMS gehen wir in
diesem Lehrmodul nicht ein.

Objektorientierte bzw. nichtkonventionelle DBMS sind motiviert
durch die Anforderungen, die nichtkonventionelle Anwendungen an die
Datenverwaltung stellen. Wir listen zum Vergleich zunéchst einige we-
sentliche Merkmale konventioneller Anwendungen (also i.w. {ibliche
betriebliche Informationssysteme) auf:

— Es handelt sich um grofte Mengen relativ einfach und homogen
strukturierter Daten, z.B. Buchungen.

— Einzelne Tupel (oder Records) sind relativ klein (wenige 100 Byte);
oft werden Sétze fester Lange verwendet.

— Einzelne Datenfelder sind atomar (s. erste Normalform).
— Die Datenbankschemata werden sehr selten geéndert.

— Andernde Zugriffe zur Datenbank betreffen meist nur wenige Da-
tengranulate; dementsprechend sind Transaktionen sehr kurz und
dauern in der Gréfenordnung von 1 Sekunde.

Beispiele fiir nichtkonventionelle Anwendungen sind:

'Dies ist eigentlich kein originir objektorientiertes Konzept, es stammt aus der
Konzeptwelt modularer Sprachen wie Modula-2.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 4

— Technische Entwurfsumgebungen (CAD, CASE usw.): Als Daten-
arten treten hier Quell- und Bin&r-Programme, Dokumentation,
Zeichnungen, Bitmaps usw. auf, die oft als Dokument aufgefafst
werden. Es miissen Versionen der Dokumente verwaltet werden. Do-
kumente koénnen eine sehr komplexe Struktur, insb. hinsichtlich der
Konsistenzbedingungen, haben.

— Multimedia-Datenbanken: Als Datenarten treten hier u.a. Video-
und Audio-“Dateien” auf. Deren enorme Grofe verbietet ein ato-
mares Lesen oder Schreiben wie bei Tupeln. Stattdessen miissen
die Daten mit bestimmten Datenraten iiber Netzwerkverbindungen
abgeliefert werden (sog. streaming Formate).

— Biiroinformationssysteme: Als Datenarten treten hier insb. Briefe,
digitalisierte Papiervorlagen u.a. auf. Die Suchfunktionen sind i.w.
die aus dem Information Retrieval bekannten.

— Expertensystem-Datenbanken: diese speichern Fakten und Regeln;
aus diesen konnen andere Fakten abgeleitet werden.

Konventionelle DBMS sind fiir diese Anwendungen nicht konzi-
piert worden und dort mehr oder weniger unbrauchbar, es treten die
folgenden gravierenden Probleme auf:

— Die Daten der nichtkonventionellen Anwendungen kénnen nicht auf
natiirliche Art und Weise modelliert werden. Wenn man z.B. eine
Modulsperzifikation (fiir eine Sprache wie Java, C, Modula-2 o.4.)
strukturiert in einer relationalen Datenbank speichern will, beno-
tigt man alleine Relationen fiir die Module, die exportierten Typen,
die Operationen, die Parameter der Operationen, die Typen der Pa-
rameter sowie ggf. die darin auftretenden Typkonstruktoren. Will
man eine Modulspezifikation aus der Datenbank auslesen, muf man
sehr komplexe Verbunde bilden, die i.a. sehr ineffizient sein werden.
Es treten oft sogar rekursive Strukturen auf (Verfeinerungshierar-
chien, Blockschachtelungen), die mit den iiblichen Abfragesprachen
fiir relationale DBMS nicht bearbeitet werden kénnen.

— Die unnatiirliche Datenmodellierung kann zu erheblichen Perform-
ance-Problemen fiihren.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 5

— Fiir Rasterbilder, Karten, Videos usw. bendtigt man spezielle Ope-
rationen bzw. Datentypen; diese werden nicht unterstiitzt.

— Aus der Datenbank ausgelesene Daten werden i.a. nicht einfach in
Tabellen oder Formularen angezeigt, sondern von Programmen wei-
terverarbeitet und z.B. graphisch angezeigt. Die Typsysteme von
Programmiersprachen und Datenbankmodellen unterscheiden sich
aber meist deutlich. Dies hat zur Folge, dafs die Daten zwischen
diesen Typsystemen konvertiert werden miissen; der hierfiir erfor-
derliche Code macht oft einen erheblichen Anteil der Programme
aus und ist dementsprechend ein erheblicher Kostenfaktor.

Man charakterisiert die Situation hier mit einem Begriff aus der
Elektrotechnik und spricht vom “impedance mismatch”’, also Lei-
stungsverlusten infolge einer Impedanz-Fehlanpassung.

— Bei manchen Anwendungen muft man die Schemata der Datenbank
vergleichsweise rasch dndern kénnen, also wiahrend der Laufzeit der
Applikation und ohne explizite Konversion der gesamten Datenbank.

Transaktions-, Verteilungs- und Zugriffsschutzkonzepte und ande-
re Systemfunktionen konventioneller DBMS kénnen fallweise ebenfalls
ungeeignet sein. Aus der obigen Skizzierung nichtkonventioneller An-
wendungen sollte deutlich geworden sein, daf nicht allein die Daten-
bankmodelle, sondern auch diese anderen Merkmale an die jeweiligen
Anforderungen angepafst sein miissen. Objektorientierte DBMS sind iib-
rigens auch gut fiir konventionelle Anwendungen geeignet, d.h. hier wére
die Kombination aus objektorientiertem Datenbankmodell und kon-
ventionellen Transaktions-, Verteilungs- und Zugriffsschutzkonzepten
erwiinscht.

Die unterschiedlichen Anforderungen haben zu einer Vielzahl von
nichtkonventionellen DBMS gefiihrt; fast alle beinhalten in mehr oder
weniger grofem Umfang objektorientierte Konzepte.

2 Eigenschaften objektorientierter DBMS

Ziel von objektorientierten DBMS ist es, die Vorteile von DBMS und
objektorientierten Programmiersprachen zu vereinigen. Das ist nicht

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 6

einfach; bei den meisten Systemen diente eine der beiden Seiten als
Ausgangsbasis, wurde — i.d.R. mit einigen Abstrichen und Kompromis-
sen — um Merkmale der anderen Seite erweitert, bleibt aber dennoch
dominierend fiir den Gesamteindruck:

— Ausgangsbasis ist eine objektorientierte Programmiersprache: ei-
ne Sprache wie C++ oder Smalltalk wird um ein Persistenzkonzept
erweitert, das es ermoglicht, daft Objekte das Ende einer Program-
mausfithrung iiberleben, also bei der ndchsten Programmausfiihrung
wieder ohne explizite Lade- oder Konversionsaktivitdten vorhanden
sind. Man spricht hier auch von persistenten Programmierspra-
chen?} Diese Systeme beinhalten auch Konzepte wie Transaktionen
(Concurrency Control und Recovery), Mehrbenutzerunterstiitzung
und mengenorientierte Abfragen.

— Ausgangsbasis relationales DBMS: Dieses wird z.B. um “lange Fel-
der”, benutzerdefinierbare Datentypen usw. erweitert. Man nennt
derartige Systeme auch objektrelationale DBMS.

Welche Funktionsmerkmale entscheidend fiir ein OODBMS sind,
war lange umstritten. Eine grofere Autorengruppe schliagt in [At+89)
einen Kompromifs vor. In dieser Liste werden die Merkmale 1 - 12 als
unerlaflich eingestuft, Merkmale 13ff sind wiinschenswerte, aber je nach
Kontext verzichtbare Eigenschaften. Die Merkmale 1 - 7 sind Merkmale
der Objektorientierung, Merkmale 8 - 12 sind DBS-Merkmale:

1. Es gibt komplexe Objekte. Attributwerte konnen strukturiert sein.

2. Objekte haben eine eigene Identitéat, die unabhéngig vom Inhalt ist
und sich wéahrend der Lebensdauer des Objekts nicht &ndert.

3. Datenabstraktion (Kapselung), also Trennung zwischen der expor-
tierten Schnittstelle und der internen Realisierung.

4. Objekte sind typisiert.

?Dieser Begriff ist unsauber, aber iiblich. Persistent sind nicht die Sprachen,
auch nicht die in den Sprachen geschriebenen Programme, sondern die von diesen
Programmen erzeugten Objekte. Als bessere Begriffe wurden Persistent Application
System und Persistent Object System vorgeschlagen.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 7

5. Es gibt Typhierarchien.

6. Operationen kénnen polymorph sein, also auf Objekte unterschiedli-
chen Typs angewandt werden, wobei je nach dem Typ der Argumente
andere Implementierungen verwendet werden.

7. Es gibt eine algorithmisch vollstdndige Datenbank-Programmier-
sprache (also keinen impedance mismatch).

8. Daten werden persistent gespeichert.

9. Die Abbildung der Daten auf die Sekundéarspeicher ist fiir Anwen-
dungen transparent modifizierbar (vgl. internes Schema)

10.Es gibt Transaktionen und die damit verbundenen Concurrency-
Control- und Recovery-Mechanismen.

11.Es gibt eine mengenorientierte, deklarative Abfragesprache.

12.Das Datenbankschema ist dynamisch erweiterbar (entsprechend hier-
zu ggf. auch die Zugriffspfade).

13.0Objekte sind versionierbar.

14.Die Kooperation von Benutzern und Benutzergruppen wird durch
lange Transaktionen unterstiitzt.

15.Es gibt Trigger und andere Merkmale “aktiver” Datenbanken.

16.Die Datenbank kann verteilt sein.

17.Multimediale Objekte werden unterstiitzt.

usw. In den folgenden Abschnitten besprechen wir einige der techni-
schen Merkmale detaillierter. Wir betrachten zunéchst zwei zentrale
Eigenschaften von OODBMS: Datenkapselung und die Vermeidung des
impedance mismatch.

3 Datenkapselung

3.1 Motivation

Das Prinzip der Datenkapselung ist in Programmiersprachen seit lan-
gem eine absolute Selbstverstdndlichkeit und ein zentrales Konzept
von Sprachen wie Modula-2 oder Ada, die in den 70er Jahren entstan-
den. Umso verbliiffender ist, daft konventionelle Datenbanken eindeutig

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 8

im Widerspruch zu diesem Prinzip stehen: eine Datenbank entspricht
in etwa einer globalen Variablen, deren Struktur in Form ihres kon-
zeptuellen Schemas und der externen Schemata offengelegt ist. Die
Offenlegung dieser Struktur ist sogar eine unverzichtbare Vorbedingung
fiir ad-hoc-Abfragen in SQL oder anderen Sprachen.

Ist die Datenkapselung bei persistent gespeicherten Daten also un-
wichtig? An dieser Stelle sei daran erinnert, dafs das Hauptziel der
Datenkapselung darin besteht, Datenstrukturen bei Bedarf ohne Neben-
wirkungen auf andere Module, Klassen oder Teilsysteme austauschen
zu konnen, also durch Kenntnis der Datenstrukturen entstehende Ab-
héngigkeiten zwischen solchen Programmteilen zu vermeiden. Hierzu
miissen Datenstrukturen vor unkontrollierten Eingriffen “von aufien”
geschiitzt werden. Bei konventionellen Anwendungen liegen indes meist
die folgenden Verhéltnisse vor:

— Die Daten sind relativ einfach strukturiert, d.h. eine Verkapselung
durch je eine Lese- und Schreiboperation pro Attribut “versteckt”
nicht wirklich die interne Struktur.

— Die typischen Konsistenzbedingungen (Identifizierungs- und Fremd-
schliissel u.d.) lassen sich einfacher und besser im DBMS-Kern
durch generische Algorithmen, die durch geeignete deskriptive Anga-
ben in der Schemadefinition gesteuert werden, behandeln als durch
individuelle (also fiir jedes Relationenschema neu geschriebene) Al-
gorithmen.

— Eine Anderung der Datenstruktur bedingt eine komplette Konversion
der Datenbank und ist daher dufierst unwahrscheinlich.

Bei konventionellen Anwendungen ist also die Verkapselung der
Datenbank auf der Ebene der externen bzw. konzeptuellen Schemata
durch Operationen deutlich weniger motiviert als die Verkapselung von
Datenstrukturen in Programmen.

Bei vielen nichtkonventionellen Anwendungen treten deutlich kom-
plexere Schemastrukturen auf, so daf die Kapselung hier wieder stéarker
motiviert ist. Festzuhalten bleibt, dafs dann, wenn ad-hoc-Abfragen
moglich sein sollen, zumindest die externen Schemata offengelegt werden
miissen.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 9

nutzendes S
Modul) X - -
= s

~
~
~

Datenstruktur

~ /7

. o

einkapselndes | -
Modul

Abbildung 1: Datenkapselung im Programmen

3.2 Implementierungssprachen und Ausfiihrungsort von
Operationen

Bei der Kapselung von Datenstrukturen in Programmen wird unter-
stellt, dafs sich normalerweise die Implementierungen der einkapselnden
Operationen und der sie benutzenden Programmteile im gleichen Adrefs-
raum befinden, in der gleichen Sprache geschrieben sind und von gleichen
Prozessor ausgefiihrt Werdeﬂﬂ Bild [l deutet den Adrefraum durch das
dufsere Rechteck an. Die inneren Rechtecke sind Teile des Adrefsraums,
die folgendes enthalten:

— eine eingekapselte Datenstruktur,

— einen Programmteil, der die Datenstruktur einkapselt und Zugriffs-
operationen exportiert, und

— einen Programmteil, der diese Zugriffsoperationen nutzt.

Bei Datenbanksystemen kann der einkapselnde Programmteil ent-
weder im Applikationsprozefs oder im DBMS-Prozeft ausfiihrt werden;
hierzu betrachten wir erneut die schon in Abschnitt [3]in [DBSA] einge-
fiihrte ProzeRarchitektur von Informationssystemen.

3Es sind natiirlich auch Sprachmischungen méglich und mit entsprechenden Netz-
werktechnologien (RPC, CORBA usw.) sind auch verteilte Ausfiihrungen mdoglich;
hierauf gehen wir hier nicht naher ein.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 10

o DBMS-
[G]UI der Applikations— S
o , Server
Applikation Server
gespeicherte
Prozeduren
Appl-API DBMS-API
Bibliothek Bibliothek Datenbank

Kommunikation z.B. iiber RPC oder iiber Sockets

Abbildung 2: Prozeflarchitektur von Informationssystemen mit gespei-
cherten Prozeduren

Ausfiihrung von Operationen im DBMS-Serverprozefi: Gera-
de dann, wenn Operationen auf den Daten komplex sind und viele
Zugriffe zu einzelnen Datenelementen durchfiihren, ist es attraktiv, sie
im Serverprozefs auszufiihren, weil auf diese Weise viele aufwendige
Kommunikationen und Datentransporte vermieden werden. Exakt die-
se Performance-Verbesserung motiviert auch vorkompilierte Statements
und gespeicherte Prozeduren (stored procedures), die unabhéngig von
der Datenkapselung motiviert sind.

Nun sind die einkapselnden Operationen allerdings von Anwendern
geschrieben und damit aus Sicht des DBMS suspekt; die Trennung der
Adrefsraume von Applikation und Datenbankkern war ja gerade durch
das Mifitrauen gegeniiber Anwendersoftware motiviert. Serverseitig
auszufithrender Code kann daher allenfalls in einer “sicheren” Sprache
geschrieben sein, die keine Adrefirechnungen und versehentliches Be-
schidigen fremder Datenstrukturen erlaubt. Hochgradig unsicher sind
Sprachen wie z.B. C / C++. Giinstig sind Skriptsprachen, die vom
DBMS-Kern selbst interpretiert werden, allerdings sind solche Sprachen
ineffizient und fiir rechenintensive Operationen weniger geeignet. Fest-
zuhalten bleibt, daf dann, wenn die Operationen serverseitig ausgefiihrt
werden, spezielle Programmiersprachen notwendig werden.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 11

Neben der Gefahr unzuléssiger Zugriffe besteht das Problem, daf
eine Operation infolge eines Programmierfehlers in eine Endlosschleife
geraten konnte oder einfach wegen ihrer Komplexitét eine sehr hohe Be-
lastung der CPU verursacht; entsprechend weniger Rechenleistung steht
fiir den DBMS-Kern und damit fiir die Bedienung anderer paralleler
Nutzer zur Verfiigung.

Prinzipiell wird hier die Rechenlast fiir die Fachlogik vom Applika-
tionsserver in den DBMS-Server verlagert; bei einer groferen Zahl von
parallelen Nutzern kann die CPU-Leistung des DBMS-Server-Rechners
leicht zu einem Engpafs werden. Die Ausfithrung von Operationen im
DBMS-Serverprozef ist daher bei Hochlastsystemen nicht sinnvoll.

Bei der Ausfiihrung von Operationen im DBMS-Serverprozefs sind
noch einige technische Probleme zu l6sen, u.a. miissen die Operationen
in Form von dynamisch bindbaren Bibliotheken an das DBMS iiber-
geben und als Teil der Datenbank gespeichert werden und das DBMS
muf sicherstellen, dafs auf einem Objekt nur passende Operationen
ausgefiihrt werden.

Ausfiihrung von Operationen im Applikationsprozefs: FEin al-
ternativer Ansatz besteht darin, die einkapselnden Programmteile im
Applikationsprozefs auszufiihren und die benétigten Teile der Daten-
bank direkt in den Applikationsprozef zu laden. Dieser Ansatz ist nur
bei persistenten Programmiersprachen sinnvoll und wird in Abschnitt [6]
noch ausfiihrlicher diskutiert werden.

Die schon aufgeworfene Frage, wie sichergestellt wird, daft auf die
eingekapselten Datenstrukturen nur iiber die passenden Operationen zu-
gegriffen wird, stellt sich hier verstirkt. Wenn man diese Verantwortung
dem DBMS in Sinne einer zentralen Aufsichtsinstanz iibertrigt, miifiten
die Implementierungen der Operationen in der Datenbank gespeichert
werden und bei Bedarf in den Applikationsprozefs z.B. als dynamisch
bindbare Bibliothek eingebunden werden; ein nicht unerheblicher Auf-
wand. Das Problem unsicherer Sprachen stellt sich auch verstérkt, weil
nicht nur die Fachlogik, sondern auch Bedienschnittstellen in dieser
Sprache implementiert werden miissen.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 12

4 Objekte und Beziehungen

In diesem und den folgenden Abschnitten stellen wir wesentliche Aspek-
te vor, die bei der Definition eines objektorientierten Datenbankmodells
eine Rolle spielen bzw. Entscheidungsfreirdume bieten. Wir beginnen
mit den statischen Datenstrukturen.

4.1 Homogenitiat der Typsysteme

Der schon erwidhnte impedance mismatch resultiert daraus, dak die
Typsysteme der Programmiersprachen, in denen die Applikationen ge-
schrieben sind, und das Typsystem (also Datenbankmodell) des DBMS
differieren. Die Daten miissen also beim Laden bzw. Speichern von ei-
nem Typsystem in das andere “iibersetzt” werden. Beim Laden miissen
neben der reinen Konversion ggf. zusdtzliche Priifungen durchgefiihrt
werden, weil die Datenbank von einem Programm, das in einer ande-
ren Sprache geschrieben worden ist, modifiziert sein kann. Der Umfang
dieser Programmteile ist oft erheblich, ein Anteil von 10 - 30% ist nicht
ungewohnlich. Das Erstellen dieser Programmteile verursacht erhebli-
che Kosten und ist bei Programmierern eher unbeliebt, weil der Code
relativ stupide istl]

Fiir eine ausgewahlte Programmiersprache kann man diese Differenz
reduzieren oder ganz aufheben, indem man das Datenbankmodell des
DBMS an das Typsystem der Sprache annéhert oder mit ihm identisch
macht. In diesem Fall sind die Typdefinitionen in einem Programm
zugleich Schemadefinitionen. Diesem Vorteil stehen allerdings auch
Nachteile gegeniiber:

4Der Code kann unter bestimmten Bedingungen auch generiert werden, dann
reduzieren sich die Kosten erheblich.

Softwaretechnisch gesehen stellen diese Programmteile auch ein Wartungsproblem
dar: bei langlebigen Applikationen mufs man damit rechnen, daf das unterliegende
DBMS mehrfach ausgetauscht wird, im einfachsten Fall durch neue Produktver-
sionen, die aber nicht 100% kompatibel sind. Daher werden diese Programmteile
bei der 5-Schichten-Architektur fiir Informationssysteme in einer eigenen Datenhal-
tungszugriffsschicht zwischen der Fachlogikschicht und der Datenhaltungsschicht
angeordnet.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 13

— Fir alle anderen Sprachen vergrofsern sich wahrscheinlich die Diffe-
renzen zwischen den Typsystemen. Im Extremfall sind diese Spra-
chen nicht mehr sinnvoll einsetzbar, d.h. man ist auf die ausgewéhlte
Programmiersprache festgelegt.

Dies steht im Widerspruch dazu, dafs Daten in einer Datenbank
moglichst fiir Applikationen, die in unterschiedlichen Sprachen ge-
schrieben sein kénnen, zugreifbar sein sollten. Die Typsysteme kon-
ventioneller DBMS sind relativ einfach, deshalb konnen die Inhalte
der Datenbank in den Typsystemen sehr vieler Programmiersprachen
reprasentiert werden.

— Fiir komplexere Applikationen reicht eine reine Programmiersprache
meist nicht aus, sondern man benétigt zuséatzlich diverse Bibliotheken
usw., also letztlich eine komplette Anwendungsentwicklungsumge-
bung. Der Aufwand fiir die Entwicklung solcher Umgebungen und
der zugehorigen Entwicklungswerkzeuge ist hoch und u.U. nicht zu
leisten.

— Da die Typsysteme von Programmiersprachen relativ komplex sind,
werden auch Abfragesprachen entsprechend komplex, wodurch sie
flir ad-hoc-Abfragen weniger brauchbar werden kénnen.

4.2 Komplexe Objekte

Strukturierte Typen bzw. Variablen, z.B. ein Array von Records, die
weitere strukturierte Komponenten enthalten kénnen, sind in allen mo-
dernen Programmiersprachen iiblich. Die grundlegende Motivation fiir
komplexe Objekte (auch als zusammengesetzte, molekulare oder ag-
gregierte Objekte bezeichnet) besteht darin, die gleichen Strukturen
auch datenbankseitig zu haben. Gemaéfs den iiblichen Modellierungsre-
geln représentieren komplexe Objekte Teil-von-Strukturen. Zentral ist
der Begriff der Komponente: Ein Objekt kann Komponente eines an-
deren Objekts sein. FErwiinschte Merkmale von komplexen Objekten
sind somit:

— Zur Strukturierung der Komponentobjekte sind Typkonstruktoren
wie array, set, map, record, file usw. verwendbar. Die Typkonstruk-

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 14

toren sollen beliebig schachtelbar sein.

— Typen elementarer Objekte sind die {iblichen Basistypen sowie Ob-
jektreferenzen.

— Komplexe Objekte kdnnen mit diversen “generischen” Operationen
(I6schen, kopieren, versionieren, sperren u.aEI) als Ganzes bearbeitet
werden.

Fiir die Struktur der komplexen Objekte einer Datenbank sind
folgende Alternativen denkbar:

— baum- bzw. waldartige Struktur: ausgehend von einem Wurzelob-
jekt erreicht man alle Komponentobjekte des komplexen Objekts.
Jedes Objekt gehort zu hochstens einem duferen Objekt.

— halbgeordnete (also zyklusfreie) Struktur: hier sind gemeinsame
Teilobjekte erlaubt. Hiermit kénnen z.B. gemeinsame Module in
mehreren Softwaresystemen oder gemeinsame Abschnitte in mehre-
ren Biichern modelliert werden.

— uneingeschriankte Struktur, d.h. es sind Zyklen erlaubt. Zyklen wi-
dersprechen eigentlich der Vorstellung von einer Teil-von-Struktur;
will man Zyklen ausschliefen, muff aber innerhalb jeder Operati-
on, die ein Objekt zur Komponente eines komplexen Objekts macht,
ein Zyklustest durchgefiihrt werden. Derartige Tests sind aufwen-
dig oder in verteilten OODBMS, bei denen auch komplexe Objekte
verteilt sein kénnen (z.B. PCTE), nicht immer sofort moglich, weil
Teile des komplexen Objekts auf einem Rechner liegen konnen, der
gerade nicht erreichbar ist.

Auch fiir die Art und Weise, wie die (direkten) Komponentobjek-
te eines Objekts gehandhabt werden, sind verschiedene Ansétze zu
beobachten:

5In dieser Liste fehlt bewuRt das Erzeugen von komplexen Objekten. Es ist
sinnvoller, initiale Objektstrukturen durch individuell programmierte Konstruktor-
Operationen zu erzeugen.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 15

— Es gibt Attribute, die Objektreferenzen oder Mengen von Objektre-
ferenzen enthalten.

Ggf. ist zusétzlich bei solchen Attributen unterscheidbar, ob die
Zielobjekte als Komponenten zu behandeln sind oder nicht.

— Bei OODBMS, die auf dem ER-Modell basieren und die explizit Be-
ziehungen unterstiitzen, kann analog zum vorigen Ansatz einzelnen
Beziehungstypen das semantische Merkmal verliechen werden, daf
das Zielobjekt als Komponente des Ausgangsobjekts zu behandeln
ist.

— Man betrachtet die Menge der Komponenten eines Objekts als ab-
straktes Datenobjekt und stellt Operationen bereit, durch die Kom-
ponentobjekte in die Menge eingefiigt oder aus ihr entfernt werden
konnen bzw. mit denen alle Elemente der Menge durchlaufen werden
kénnen.

4.3 Beziehungen

Beziehungen zwischen realen Entitédten, die Teil-von-Strukturen sind,
konnen in der Datenbank durch komplexe Objekte nachgebildet wer-
den. Daneben werden aber auch zusétzlich ungerichtete Assoziationen
benétigt (fiir Beispiele wie “ist verheiratet mit”). Das Datenbankmodell
muf es also erlauben, Aggregationen und Assoziationen voneinander
zu unterscheiden.

Die referentielle Integritit von Beziehungen sollte auf Wunsch iiber-
wacht werden. Dies bedingt, beim Loschen eines Objekts herauszufin-
den, ob es Referenzen auf dieses Objekt gibt und, falls ja, die Loschung
abzulehnen. Diese Uberpriifung ist ohne Hilfsdaten nicht effizient mog-
lich. Eine Losung besteht darin, zu einer Referenz, deren referentielle
Integritdt iberwacht werden soll, am Zielobjekt eine zuriickfithrende
Referenz anzubringen, und zwar entweder nur intern, also fiir die Appli-
kation nicht sichtbar, oder extern sichtbar. Der zweite Ansatz bedeutet,
daf solche Referenzen aus Sicht der Applikation immer nur paarweise
erzeugt und geloscht werden kénnen.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 16

4.4 Objektidentitat

Ein Datenbank-Objekt repréisentiert meist eine Entitédt in der realen
Welt, die eine eigene Identitét besitzt. Die interessierenden Attribu-
te der Entitédten sind oft nicht mit Sicherheit eindeutig, kénnen also
bei zwei verschiedenen Entitédten komplett {ibereinstimmen; in sol-
chen nimmt man einen kiinstlichen Identifizierer hinzu. Dieser kann
allerdings durchaus im Laufe der Zeit ausgetauscht werden, d.h. es
ist nicht sichergestellt, daf er iiber die Zeit hinweg immer die gleiche
Entitdt identifiziert. Generell ungeeignet sind aus dem gleichen Argu-
ment heraus alle wiederverwendbaren Datenwerte. Als Losung dieses
Problems bieten OODBMS Surrogate an; Surrogate haben folgende
Eigenschaften:

— Jedes Objekt erhilt bei seiner Erzeugung vom DBMS ein Surrogat
zugewiesen.

— Das Surrogat bleibt wahrend der ganzen Lebensdauer des Objekts
unveréndert, auch wenn das Objekt verlagert oder konvertiert wird.

— Das Surrogat ist zeitlich und “rdumlich” eindeutig, d.h. jedes Sur-
rogat wird wahrend der Lebensdauer der Datenbank nur einmal
an ein Objekt vergeben. Es ist also identifizierend und wird nicht
wiederbenutzt.

Mit Hilfe der Surrogate kann sehr einfach gepriift werden, ob zwei
Objektreferenzen auf das gleiche Objekt verweisen.

In vielen OODBMS koénnen Surrogate auch fiir den Direktzugriff
zu Objekten benutzt werden; in diesem Fall mufs ein Primér- oder
Sekundéarindex fiir das Surrogat-Attribut vorhanden sein.

4.5 Objekte vs. Werte

Wir hatten oben erwahnt, daf zur Strukturierung der Komponenten
eines komplexen Objekts im Prinzip alle {iblichen Typkonstruktoren
verfiigbar sein sollten. Dies fiithrt zu der Frage, ob man dann noch die
iiblichen komplexen Werte, die als Inhalt entsprechend getypter Attri-
bute bzw. Variablen im Programmen auftreten kénnen, braucht. Die

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 17

Unterschiede zwischen komplexen Werten und komplexen Objekten
werden am besten klar, wenn man die typischen Implementierungen
vergleicht.

Als Beispiel fiir einen komplexen Wert betrachten wir einen Array
fester Lénge von Records, die einige Zahlen und Texte fester Lénge ent-
halten mdgen. Dieser Array wird bei Anwendung tiblicher Compilerbau-
Techniken in einem Speicherbereich fester Léange realisiert, der in einzel-
ne Abschnitte unterteilt ist, die jeweils einzelne Komponenten enthalten
und die durch Relativadressen identifiziert werden. Wir nennen dies
auch einen komplexen Wert.

Dieser Speicherbereich wird nur als ganzer zwischen der Datenbank
und dem Adrefiraum der Anwendung iibertragen; die genaue Struktur
dieses Speicherbereichs ist fiir die Strukturen in der Datenbank weitge-
hend belanglos; insb. sind keine Referenzen auf Teile dieser Struktur
moglich, Referenzen sind nur auf Objekte moglich. Insgesamt treffen
folgende Beobachtungen auf komplexe Werte zu:

— Die Werte oder Teile von ihnen haben keine Identitét (und natiirlich
auch kein Surrogat).

— Sie kénnen nicht gemeinsam benutzt werden.

— Sie konnen keine Rolle in Beziechungen spielen oder Ziel von Objek-
treferenzen sein.

— Thre Struktur ist offen, sie sind nicht gekapselt.

— Sie werden als Ganzes in entsprechend getypte Programmvariablen
iibertragen.

— Uber vordefinierte Operationen kann sehr effizient mit ihnen gearbei-
tet werden. Der mit Objekten verbundene Aufwand wird vermieden.

Insb. das letztgenannte Effizienzargument spricht dafiir, neben
komplexen Objekten auch komplexe Werte in Attributen anzubieten.
Komplexe Werte sind andererseits nicht ganz unproblematisch. Die
oben unterstellte ungepriifte Ubertragung eines Speicherbereichs, der
den komplexen Wert enthélt, funktioniert leider nicht immer so einfach:

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 18

— Wenn auf eine Datenbank von Klienten mit heterogenen Rechner-
plattformen zugegriffen wird, sind die Datenformate i.a. nicht kom-
patibel, d.h. der Speicherbereich mufs geeignet konvertiert werden.

— Sofern das Format, wie komplexe Werte auf Speicherbereiche abzu-
bilden sind, nicht durch die Sprache mitdefiniert wird — was eher
unwahrscheinlich ist —, kann jeder Konstrukteur eines Compilers
diesbeziiglich eine andere Entscheidung treffen. Es miifsten dann
verschiedene Versionen des DBMS fiir verschiedene Compiler ge-
schaffen werden, schlimmstenfalls sogar fiir verschiedene Versionen
“desselben” Compilers.

— Das Verfahren funktioniert nur, wenn das Typsystem der Gastspra-
che und des OODBMS kompatibel zueinander sind (vgl. Abschnitt
. Wenn von Programmen in signifikant verschiedenen Gastspra-
chen (z.B. C++ und Ada) aus auf die gleichen Daten aus zugegriffen
werden soll, sind aufwendige Konversionen in Ersatzdarstellungen
erforderlich.

5 Vererbung

Fiir die Vererbung gelten zunéchst die gleichen Grundregeln wie in
objektorientierten Programmiersprachen, z.B. die Substituierbarkeitsre-
gel, wonach an jeder Stelle, an der eine Instanz eines Typs T1 bendétigt
wird, auch eine Instanz eines Subtyps T2 von T1 benutzt werden kann.
Auf derartige allgemeine Regeln gehen wir hier nicht weiter ein.

Eine DBMS-spezifische Frage stellt sich im Kontext mit der geforder-
ten Abfragesprache. Diese benétigt Basismengen analog zu Relationen
in relationalen Systemen. Ansétze hierzu sind:

— Naheliegendenderweise ist die Menge der Instanzen eines Objekt-
typs (also genau dieses Typs, ohne Instanzen von Subtypen) jeweils
eine derartige Basismenge.

— Alternativ kann man, der Substituierbarkeitsregel folgend, die In-
stanzen eines Typs und aller seiner direkten und indirekten Subtypen
als eine Basismenge benutzen.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 19

— Im Prinzip kénnen Objektmengen vo6llig unabhéngig von der
Typstruktur definiert werden — wobei natiirlich unterstellt ist, daf
die Mengen homogen sind —; eine explizite Definition der Objekt-
mengen ist meist wenig sinnvoll und lastig, weil in der Praxis fast
immer einer der beiden vorstehenden Fille zutriftt.

6 Persistente Programmiersprachen

Die grundlegende Idee persistenter Programmiersprachen besteht darin,
daft man Objekte als persistent deklarieren kann. Der Zustand sol-
cher Objekte wird automatisch beim Programmende gerettet und beim
erneuten Programmstart rekonstruiert, ohne dafs seitens des Anwen-
dungsprogramms explizite Lese- bzw. Schreibzugriffe und Konversionen
vorgenommen werden mﬁssenﬁ Damit ist implizit festgelegt, daf die
Typsysteme von Programmiersprache und DBMS identisch sind (vgl.
Abschnitt . Der impedance mismatch verschwindet also vollig.

Auf eventuelle Anpassungen der Programmiersprache sind wir schon
in Abschnitt eingegangen. In diesem Abschnitt gehen wir auf ei-
nige zusatzliche Fragen hinsichtlich der Persistenzkonzepte und deren
Implementierung ein.

6.1 Trennung persistenter und transienter Daten

Im allgemeinen sollen nicht alle Objekte, die ein Programm erzeugt,
persistent sein, es mufs also auch die “normalen” transienten Objekte
geben. Es mufl also moglich sein, beide Arten von Objekten zu un-
terscheiden. Eine Anforderung in diesem Zusammenhang ist, daf mit
wenig Korrekturaufwand zwischen Persistenz und Nicht-Persistenz um-
geschaltet werden kann; dies bedingt, dafs im Regelfall kein Unterschied
beim Umgang zwischen persistenten und transienten Objekten besteht.
Fiir die Festlegung der Persistenz sind verschiedene Ansétze moglich:

5Derartige Persistenzkonzepte sind auch schon lange vor OODBMS fiir nicht-
objektorientierte Sprachen wie z.B. Pascal oder Modula-2 realisiert worden.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 20

1. Persistenz als Klasseneigenschaft: Persistenz ist eine Klasse-
neigenschaft, d.h. alle Instanzen einer solchen Klasse sind persistent.
Man kann dies auch erreichen, indem es eine vordefinierte Klasse,
die persistent_object oder dhnlich heifst, gibt; alle persistenten
Klassen miissen als Unterklasse von persistent_object definiert
werden.

Nachteil dieses Ansatzes ist, dal man oft sowohl transiente als
auch persistente Instanzen einer Klasse braucht und daft hier zu
umsténdlichen Ersatzlosungen gegriffen werden muf.

2. Explizite Markierung: Objekte, die persistent sein sollen, miissen
also solche markiert werden. Der Zeitpunkt kann entweder beliebig
sein oder als Sonderfall bei der Erzeugung des Objekts.

3. Persistente Wurzel(n): Es gibt ein oder mehrere spezielle persi-
stente Objekte; diese und alle von dort aus erreichbaren Objekte
sind persistent. Um ein Objekt persistent zu machen, muf man eine
Referenz darauf von einem bereits persistenten Objekt aus erzeugen.
Bei diesem Ansatz ist es sehr einfach, komplette Objektgeflechte
persistent zu machen. Das Erzeugen und Loschen von Referenzen
kann jetzt allerdings weitreichende Konsequenzen haben.

6.2 Bindung persistenter Objekte an Programmausfiih-
rungen

Komplexe Objekte modellieren oft Dokumente und entsprechen da-
her in mancher Hinsicht Dateien, insb. dahingehend, dafs man u.U.
ein bestimmtes Programm mit verschiedenen Dokumenten ausfithren
mochte. Einer persistenten Variablen in einem Programm sollen al-
so ohne Verédnderung des Programms verschiedene komplexe Objekte
in der Datenbank zugeordnet werden konnen. Hierzu miissen einzelne
komplexe Objekte in der Datenbank identifizierbar sein. Hierzu gibt es
mehrere Ansétze:

— Die (Wurzeln der) komplexen Objekte haben identifizierende Attri-
bute, und das Objekt kann mithilfe einer Abfragesprache lokalisiert
werden.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 21

— Man benutzt die Surrogate der Objekte, sofern der Direktzugriff zu
Objekten anhand ihrer Surrogate unterstiitzt wird. Surrogate sind
allerdings i.a. nicht sinnvoll lesbar.

— Objekte konnen explizit einen Namen zugewiesen bekommen, und es
existiert ein expliziter Mechanismus, der Objekte mit einem bestimm-
ten Namen an eine bestimmte Programmvariable bindet. Dieser
Ansatz ist nur bei einer kleinen Anzahl von komplexen Objekten
praktikabel, dhnlich wie in Dateisystemen.

6.3 Persistenzmechanismen

Die bisherigen Betrachtungen betrafen nur Konzepte (aus Sicht von
Applikationsprogrammierern) und liefen die Frage offen, durch wel-
che Algorithmen die Laufzeitobjekte persistent gemacht werden. Fiir
die Konzepte sind die Implementierungstechniken irrelevant, fiir die
Performance spielen sie dagegen eine grofie Rolle. Eines der wesent-
lichen Motive fiir die Einfithrung von OODBMS war im {ibrigen die
schlechte Performance konventioneller DBMS; die (erhoffte) Perfor-
mance von OODBMS ist vielfach werblich stark herausgestellt worden
und gipfelte in Aussagen, man kdnne auf Datenbankobjekten genauso
schnell arbeiten wie auf Laufzeitobjekten. Nach einer kurzen Ubersicht
tiber denkbare Ansétze untersuchen wir in Abschnitt [6.3.2] derartige
Moglichkeiten zur Performance-Optimierung.

In der folgenden Diskussion unterstellen wir, dafs die Programmteile,
die auf die Datenstrukturen von Objekten zugreifen, im Applikations-
prozef ausgefiihrt werden (vgl. Bilder |1 und [2/in Abschnitt .

6.3.1 Grundformen

Damit ein Laufzeitobjekt in einem Programm (genauer gesagt in ei-
nem Prozefs) persistent wird, muf es spétestens bei Beendigung des
Programms in die Datenbank iibertragen werden. Hierfiir sind zwei
Implementierungsansétze denkbar:

1. Verarbeiten einzelner (atomarer) Objekte: Die Struktur der Objekte
wird durchlaufen, fiir jedes einzelne Objekt wird dessen Zustand se-

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 22

parat in die Datenbank iibertragen. Dies ermoglicht es, auch DBMS
zu benutzen, die ein deutlich anderes Datenbankmodell als die Pro-
grammiersprache haben, z.B. ein relationales. Man wiirde hier jedes
Objekt (ohne seine Komponentobjekte) als ein Tupel speichern. Die
Konversion zwischen den verschiedenen Typsystemen findet hier
automatisiert statt.

2. Behandlung komplexer Objekte als komplexe Werte: Man kann ein
Objekt auch als einen komplexen Wert betrachten, vgl. das Bei-
spiel in Abschnitt [£.5] Man kann nun einen solchen komplexen
Wert auf einmal an das DBMS iibergeben. Ein unmittelbarer Vor-
teil hieraus im Vergleich zur ersten Alternative ist, dafs die Zahl
der Kommunikationen zwischen dem Anwendungsprozefs und dem
Datenbank-Serverprozeft deutlich reduziert wird.

Im Datenbank-Serverprozefs kann man entweder den komplexen
Wert zerlegen und in ein anderes Typsystem konvertieren (s.o.)
oder aber diese Struktur i.w. unverédndert auf persistenten Medien
speichern.

6.3.2 Seitenorientierte Persistenzmechanismen

Unter die o.g. zweite Variante fallt ein Implementierungskonzept, das
auf den ersten Blick sehr attraktiv wirkt: Die Grundidee ist, einzelne
Seiten des Hauptspeichers, in denen Objekte gespeichert sind, direkt
auf Sektoren der Platte speichern[} Bild [3 veranschaulicht dies an ei-
nem Beispiel: Die Laufzeitobjekte, auf denen eine Applikation arbeitet,
sind in dafiir reservierten Teilen des Arbeitsspeichers eines Prozesses
(der heap) angeordnet. Der Arbeitsspeicher ist ein virtueller Arbeits-
speicher und aufgeteilt in Seiten; ungenutzte Seiten kénnen einzeln vom
Betriebssystem auf Platte ausgelagert werden (paging). Bei neueren
Betriebssystemen kénnen Seiten nicht nur auf einen fiir Applikationen
unzuganglichen Teil der Platte ausgelagert werden, sondern auch in ei-
ne normale Datei, und von dort spater wieder zuriickgeladen werden

"Ein direkter Zugriff auf die Platte ist tatséchlich nicht méglich, aus Griinden,
die spéater klar werden, mufs ein DBMS-Server zwischengeschaltet werden. Die
resultierende Architektur nennt man page-server-Architektur.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 23

(sogenanntes memory-mapped 10).

Arbeitsspeicher des Applikationsprozesses
192xxx 204xxx 255xxx
7
| —
O
A 4 N
N !)
/ \
\ / \
Magnetplatte TN T \
/. l
/4 N\ N
A R

Abbildung 3: Seitenorientierte Verfahren

Im Vergleich zu einer klassischen Schichtenarchitektur eines DBMS-
Kerns (vgl. Bild [2]) entfillt die Verwaltung von Speichersitzen und
Einzeltupeln bzw. diese kann wesentlich vereinfacht werden, ferner
entféllt der Aufwand fiir Konversionen von Datentypen.

Insgesamt wirkt dieses Implementierungsverfahren auf den ersten
Blick sehr performant. Oft wird unter dem Begriff “persistente Pro-
grammiersprache” nicht nur die Sprache und ihr Persistenzkonzept,
sondern zusétzlich dieses Implementierungsverfahren verstanden. Zu
einem Konzept kann es aber viele Implementierungen geben, man sollte
beides nicht unnotig vermischen.

Der zweite Blick auf dieses Implementierungsverfahren offenbart im
iibrigen, dafs

1. das Verfahren so einfach doch nicht funktioniert,

2. Performance-Vorteile nur unter speziellen giinstigen Randbedingun-
gen moglich sind (und dann auch bei konventionellen Datenmodellen
erzielbar wéren) und

3. man auf viele iibliche Leistungsmerkmale eines DBMS verzichten
mufs; letzteres kann véllig in Ordnung sein, wenn man diese Lei-

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 24

stungsmerkmale gar nicht nutzt und man bewufst auf diese Leistun-
gen verzichtet.

Pointer Swizzling. Beziehungen zwischen Objekten werden in Lauf-
zeitsystemen durch Zeiger realisiert. Wir nehmen i.f. vereinfachend an,
daf die Attribute eines atomaren Objekts in Form eines komplexen
Werts gespeichert werden. Dann sind einzelne Felder innerhalb dieses
komplexen Werts Adressen anderer Objekte.

Werden nun Seiten unveréndert auf Platte gespeichert und spéter
neu geladen, dann miifste jede Seite wieder an die gleichen Adressen wie
frither geladen werden, andernfalls stimmten die Adressen nicht mehr.
Hierzu miifite jedem Sektor eine feste Hauptspeicheradresse zugeord-
net sein; anders gesehen miifite ein Abschnitt des Adrefsraums fiir den
Sektor exklusiv reserviert werden. Bei heute géngigen 32-Bit-Rechnern
ist der virtuelle AdreRraum aber nur 1 - 2 GB groff’] hiervon wird fer-
ner ein grofter Teil fiir die Applikation bendtigt. Die Datenbank kénnte
daher nicht grofser als ca. 1 GB sein, was nicht akzeptabel ist.

Die Losung besteht darin, beim Speichern einer Seite die darin
enthaltenen Adressen in geeignete Objektidentifizierer umzusetzen; um-
gekehrt setzt man beim spéteren Laden der Seite die Objektidentifizierer
in die dann giiltigen Adressen der Objekte um. Diese Vorginge werden
pointer swizzling genannt genannt. Fir das pointer swizzling ist eine
Vielzahl von Implementierungen bzw. Optimierungen erdacht worden,
die hier nicht diskutiert werden sollen.

Festzuhalten bleibt, daf hierfiir Rechenzeit und/oder Speicherplatz
verbraucht wird und daf die simple Vorstellung, Hauptspeicherseiten
unverdndert auf Platte abzulegen, bei heute gingigen 32-Bit-Rechnern
nicht realistisch ist.

Beim Schreiben einer Seite auf die Platte tritt bei “unsicheren” Pro-
grammiersprachen wie C oder C++ ein zusétzliches Problem auf: die
Applikation kénnte den Inhalt der Seite und damit auch der Objektbank
beschidigt haben, die Datenbank kénnte somit nach dem Speichern al-
so physisch inkonsistent werden. Vor dem Speichern muf also ggf. der

8Bei 64-Bit-Rechnern ist dies nicht mehr der Fall.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 25

Inhalt der Seite durchleuchtet werden.

Bedingungen fiir Performance-Verbesserungen. Bei ersten Zu-
griff auf ein Objekt ist der zeitraubende Transport eines Sektors von
der Platte in den Hauptspeicher unverandert notwendig, erst bei den
folgenden Zugriffen entfillt dieser Hauptkostenfaktor. Bei Applikatio-
nen, die nur einmal zu einem Datenelement zugreifen, ist also keine
signifikante Beschleunigung zu erwarten.

Vorteile beim ersten Zugriff sind dann méglich, wenn Objekte klein
sind, also viele Objekte in eine Seite passen, und wenn Objekte so
angelegt werden, dafs sie nicht wild verstreut auf den Seiten liegen,
sondern im Zusammenhang benétigte Objekte auf der gleichen Seite;
letzteres héngt natiirlich vom Verhalten der Applikationen ab, d.h. das
OODBMS benétigt von dort aus entsprechende Hinweise. Bei vielen
OODBMS kann oder mufs man daher in der Operation, die ein Objekt
erzeugt, ein anderes Objekt angeben, “in dessen Néhe” das neue Objekt
erzeugt werden soll. Mit Hilfe dieser Angaben werden dann Objekte
moglichst giinstig auf den Seiten gruppiert (“geclustert”).

Im Sinne der ANSI/SPARC-Schema-Architektur gehéren diese An-
gaben eigentlich zum internen Schema und widersprechen dem Ziel der
Datenunabhéngigkeit. Die nichtkonventionellen Anwendungen, an de-
nen OODBMS orientiert sind, sind allerdings so komplex, daff dort
Datenunabhéngigkeit praktisch nicht erreichbar ist.

Fehlende Leistungen von Datenbanksystemen. Beim simplen
Ein- und Auslagern von Seiten werden mehrere iibliche und oft wesent-
liche Leistungen von Datenbanksystemen nicht mehr erzielt, dazu ist
dieser Persistenzmechanismus viel zu trivial (ob mit oder ohne pointer
swizzling, ist hier egal). Will man diese Leistungen trotzdem reali-
sieren, muf entweder der ganze Ansatz aufgegeben werden oder die
Performance-Vorteile gehen weitestgehend verloren:

1. Sprachunabhdngigkeit: Applikationen kénnen nicht mehr in ver-
schiedenen Sprachen geschrieben werden, denn die Typsysteme der

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 26

Sprachen sind i.a. zu verschieden, erst recht das Format, in dem
die zugehorigen Compiler komplexe Werte ablegen. Letzteres ist
sogar dann ein Problem, wenn man zwar nur eine Sprache, aber
verschiedene Compiler (von konkurrierenden Anbietern) hat. Es
kann notwendig sein, verschiedene Versionen des DBMS fiir verschie-
dene Compiler zu bilden, schlimmstenfalls sogar fiir verschiedene
Versionen “desselben” Compilers.

2. heterogene Plattformen: Wenn die Datenbank von Klienten be-
nutzt werden soll, die auf heterogenen Hardware-Plattformen laufen,
kénnen die elementaren Datenformate verschieden sein, d.h. diesbe-
ziiglich ist eine Konversion erforderlich.

3. Sichten: Sichten sind das wesentliche technische Mittel, um Zu-
griffskontrollen und die Datenunabhéngigkeit von Applikationen zu
realisieren. Werden Seiten unverdndert an verschiedene Applika-
tionen geliefert, liegen die Daten auf der Ebene des konzeptuellen
Schemas ungefiltert vor.

Sofern Sichten durch das DBMS realisiert werden sollen, miis-
sen die Seiteninhalte beim Lesen gefiltert werden, die weggefilterten
Teile miissen beim Schreiben wieder passend hinzugefiigt werden.

Alternativ kénnten Sichten durch das Laufzeitsystem der Pro-
grammiersprache realisiert werden; in normalen Programmierspra-
chen ist ein derartiges Konzept aber vollig unbekannt.

4. effiziente Suche durch Indexe: Die in Compilern iiblichen Spei-
cherungsstrukturen sind nicht an Sekundéarspeichern orientiert und
enthalten keine Primérindexe, die die effiziente Suche innerhalb der
Menge der Instanzen eines Typs unterstiitzen kénnen.

Selbst dann, wenn man nur mit Sekundérindexen — die komplett
getrennt von den Primérdaten angelegt werden kénnen — arbeiten
wiirde, miifiten diese bei jedem Schreibzugriff korrigiert werden.

5. paralleler Zugriff: Eine weitere Frage ist, ob und wie mehrere An-
wendungsprozesse parallel auf den gleichen Daten arbeiten konnen.
Beispielsweise kénnten zwei Anwendungsprozesse parallel auf ein
Objekt, das ein Dokumentverzeichnis reprasentiert, zugreifen wol-

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 27

len. Hierzu mufs die entsprechende Seiten in mehrere Adrefsraume
eingespiegelt werden.

Wenn nun die beiden Anwendungsprozesse Anderungen vorneh-
men, z.B. beide fiigen ein neues Dokument in das Dokumentverzeich-
nis ein, entstehen zwei Varianten der Seite; die lokalen Anderungen
miifften beim Zuriickschreiben gemischt werden. Das DBMS kann
dies aber i.a. nicht, weil es die Logik der Applikation nicht kennt.
Wenn in unserem Beispiel zufiillig beide neuen Dokumente den glei-
chen Namen bekommen hétten, ldge sogar ein inhaltlicher Konflikt
vor. Diese Probleme sind durch Mischen nicht 16sbar, d.h. die Kopi-
en der Seiten miissen gleichgehalten werden. Hierzu mufs ein Prozefs
bei einem Schreibzugriff andere Prozesse iiber die Anderung be-
nachrichtigen, hierzu ist eine zeitaufwendige Prozefkommunikation
erforderlich.

Ferner miissen die Anwendungsprozesse durch Concurrency-Con-
trol-Mechanismen, i.d.R. Sperren, voreinander geschiitzt werden.
Die entscheidende Frage ist hier die Granularitét der Sperreinheiten.
Wiéhlt man diese zu grob (Beispiel: die Datenbank ist nur komplett
sperrbar), wird die Parallelitat zu sehr reduziert. Wéhlt man fein-
kornigere Sperreinheiten, z.B. einzelne atomare Objekte, so mufs vor
dem ersten Zugriff zu einem Objekt eine Sperre eingerichtet wer-
den. Die Gesamtmenge aller Sperren muf zentral verwaltet werden,
d.h. auch hier sind wieder zeitaufwendige Prozeftkommunikationen
erforderlich.

6. Recovery: Immer, wenn der Anwendungsprozefs eine Transaktion
beendet, miissen die modifizierten Daten sofort zum Datenbank-Ser-
verprozels ibertragen werden, dort miissen Recovery-Daten erzeugt
und Sperren freigegeben werden usw. Ferner miissen ggf. Indexe, die
von den Anderungen betroffen sind, aktualisiert werden. Zusammen
mit der ohnehin langsamen Ubertragung der Daten zwischen den
Prozessen (vgl. Abschnitt [3|in [DBSA]) sind diese Aufwénde domi-
nierend, d.h. die eingesparte Konversion der Daten fiihrt tatséchlich
nur zu marginalen Performance-Gewinnen. Dies gilt insb. fiir viele
konventionelle Anwendungen, bei denen in einer Transaktion immer

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 28

nur wenige Tupel bzw. Objekte erzeugt oder modifiziert werden.

Wegen des Aufwands fiir die Dateniibertragungen und die
Recovery-Mechanismen ist es sinnvoll, das Zuriickschreiben der Da-
ten durch die Applikation steuern zu lassen; die Persistenz ist dann
nicht mehr vollig transparent, der zusétzliche Programmieraufwand
ist aber gering.

Quintessenz der vorstehenden Betrachtungen ist, daft die klassi-
schen Leistungen eines DBMS ihren Preis haben und daf die “Effizienz”
der seitenorientierten Verfahren darin besteht, diese Leistungen nicht
zu erbringen. Je nach Anwendungskontext kénnen diese Leistungen
in der Tat unniitz sein, man sollte sich aber iiber diesen Verzicht auf
bestimmte Leistungen im klaren sein.

7 Markte und Standards

Die Liste der in Abschnitt 2] gewiinschten Merkmale von OODBMS ist
schon lang und 14t sich noch beliebig fortsetzen. Die resultierenden Sy-
steme werden immer komplexer, was einige sehr negative Konsequenzen
hat:

— Thre Implementierung immer aufwendiger, also teurer. Es gibt bis
heute kein System, das alle o.g. Forderungen komplett erfiillt.

— Die Zeit, bis eine Implementierung ausgereift und stabil ist, wird
immer langer, und der Lernaufwand fiir Anwendungsentwickler wird
immer grofser. Beides ist nicht gerade akzeptanzférdernd.

Den hohen Kosten steht eine relativ kleine Zahl von Benutzern ge-
geniiber, die diese Systeme wirklich ausnutzen kénnen. Kommerziell
iiberlebensfihig waren daher nur ganz wenige der vielen, besonders An-
fang bis Mitte der 80er Jahre entwickelten Systeme. Uberlebt haben
vor allem objektrelationale Systeme, deren Basis ein erfolgreiches und
ausgereiftes DBMS-Produkt ist. Generell kann man sagen, dafs sich an-
fangliche Erwartungen, objektorientierte DBMS wiirden auf Dauer die
konventionellen DBMS ablésen, nicht erfiillt haben.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 29

Fiir das Entstehen eines Marktes sind natiirlich Standards sehr
wichtig; einschlidgige Standardisierungsvorhaben der ISO (International
Standards Organisation) sind:

— SQL3: hierbei handelt es sich um Erweiterungen von SQL2 um
ADTs, rekursive Verbunde, Trigger und weitere o.g. Merkmale.

— IRDS und PCTE: hierbei handelt es sich um OODBMS, die spe-
ziell als Basis von Software-Entwicklungsumgebungen konzipiert
wurden, wobei IRDS an Data-Dictionary-Systemen und Mainframe-
Kontexten orientiert war, PCTE an den Verhéltnissen in Netzwerken
aus UNIX-Workstations. Beide Standards konnten sich nicht durch-
setzen.

— Die ODMG-Standards [Ca+99|: Die ODMG (Object Data Ma-
nagement Group) ist eine Vereinigung der wichtigsten Hersteller
von OODBMS. Dieser Standard wird von einigen Produkten zumin-
dest teilweise implementiert. Die Standards bestehen aus folgenden
Teilen:

— einem Objektmodell (OM), das grundlegende Konzepte wie Ob-
jekt, Typ. Attribut usw. definiert.

— einer Objekt[typ|definitionssprache (object definition language;
ODL), die vergleichbar ist mit der DDL klassischer DBMS und
mit der Schemata notiert werden kénnen. Neben den Datenstruk-
turen (Objekttypen, Attribute usw.) werden auch Signaturen
von Operationen definiert.

— einer Abfragesprache fiir Objektbanken (object query language;
OQL), die sich teilweise an die Syntax von SQL anlehnt.

— Sprachanbindungen fiir die Sprachen C+-, Java und Smalltalk.

— einer Sprache zur Definition von Objekten im Sinne von Instan-
zen von Objekttypen (object interchange format; OIF): Mit Hilfe
dieser Sprache kénnen Datenbankinhalte in eine Datei geschrie-
ben und von aus wieder in einer Objektbank eingelesen werden.
So kénnen u.a. Datenbankinhalte von einer Datenbank in eine
andere transportiert werden.

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 30

Objektrelationale DBMS. Die Grundmotivation objektrelationa-
ler DBMS (ORDBMS) besteht darin, ein erprobtes relationales DBMS
um Merkmale zu erweitern, die die Anforderungen der Objektorien-
tierung zumindest teilweise erfiillen; gleichzeitig soll hierbei konptuelle
Klarheit und die prézise mathematische Definition des relationalen
Datenbankmodells nicht unterminiert werden.

Ein ORDBMS ist immer auch ein klassisches relationales DBMS;
ein Anwender kann also die meist umfangreiche Sammlung von Anwen-
dungen, die auf dem relationalen Modell und den zugehorigen Sprachen
(wie SQL) und Schnittstellen basieren, unveréndert weiterbenutzen
und objektorientierten Erweiterungen punktuell dort einsetzen, wo sie
wirkliche Vorteile bringen.

Praktisch alle groften relationalen DBMS-Produkte bieten heute ob-
jektorientierte Erweiterungen an und kénnen als ORDBMS bezeichnet
werden. Der Umfang und die konkrete Ausgestaltung der Erweiterungen
ist nicht einheitlich; Beispiele sind:

— benutzerdefinierte Attributtypen

— abgeleitete Attribute, die durch eine Abfrage definiert sind
— automatisch vergebene Surrogate

— benutzerdefinierte Funktionen

— Typhierarchien

— erweiterte Triggermechanismen

— lange Felder (binary large objects)

ORDBMS haben deutlich héhere Chancen als reine OODBMS, zu
stabilen Produkten zu werden und am Markt zu tiberleben.

Literatur

[At+89] Atkinson, M., Bancilhon, F. and DeWitt, D. et al.: The object-
oriented database system manifesto; Proc. First Conf. Deductive
and Object-Oriented Databases, Kyoto, Japan; December 1989

[Ca+99] Cattel, R.G.G.; et al.: The Object Data Standard, ODMG 3.0;
Morgan Kaufmann Publishers; 1999

(©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 31

[DBSA| Kelter, U.: Lehrmodul “Architektur von DBMS”; 2001
[DVS| Kelter, U.: Lehrmodul “Datenverwaltungssysteme”; 2002

(©2004 Udo Kelter Stand: 18.04.2004

Index

5-Schichten-Architektur, 13 Konsistenz, 4, 8

Konversion, 12, 23
Abfragesprache, 7, 13

Basismengen, 18 Objekt
Applikationsserver, 11 aggregiertes, 13
Architektur, 10 komplexes, 13
Name, 21
Beziehung, 15, 17, 24 Persistenzfestlegung, 20

Objektidentitét, 6, 16
Objektorientierung, 6
Objektreferenz, 14, 15

Compiler, 17, 18, 26

Datenabstraktion, 7

ODL, 29
Datenkapselung, 8, 11 ;
pse uhie, S, ODMG-Standards, 29
Datenmodellierung, 4
OIF, 30
DBMS
oM, 29
-Serverprozefs, 10, 22, 28 .
. . Operation, 9
nichtkonventionelles, 5
. .. 0QL, 29
objektorientiertes, 6 ORDBMS. 30
objektrelationales, 6, 30 ’
PCTE, 15, 29

Fachlogik, 11 Performance, 4, 10, 18, 28

persistente Programmiersprache, 6, 19
persistente Wurzel, 20
Persistenzmechanismus, 21, 22

heterogene Plattformen, 18
Heterogenitéat, 26

impedance mismatch, 5, 7, 12 pointer swizzling, 24
Information Retrieval, 4 Polymorphie, 7
IRDS, 29 Primérindex, 26
Kapselung, 3, 7, 9 Recovery, 27

Sicherheit, 11 referentielle Integritét, 15
komplexer Wert, 17, 22 rekursive Datenstrukturen, 4

komplexes Objekt, 6, 13
gemeinsames Teilobjekt, 14
generische Operation, 14

Schema, 7, 8
Schemaevolution, 5, 7, 8

Zyklen, 14 Sektor, 22, 24, 25
Komponente, 14 Sicht, 26
Komponentobjekt, 14, 15 Sperre, 27

32

Objektorientierte Datenbanksysteme 33

Sprachunabhéngigkeit, 26

SQL3, 29

stored procedures, 10

Surrogat, 16, 21
Direktzugriff, 16

Transaktion, 5, 7, 27
lange, 7
transiente Daten, 19
Typkonstruktor, 14
Typsystem, 5, 18, 19
Homogenitéat, 12

Version, 7

Zugriffsschutz, 5

(©2004 Udo Kelter Stand: 18.04.2004

	Nichtkonventionelle Anwendungen
	Eigenschaften objektorientierter DBMS
	Datenkapselung
	Motivation
	Implementierungssprachen und Ausführungsort von Operationen

	Objekte und Beziehungen
	Homogenität der Typsysteme
	Komplexe Objekte
	Beziehungen
	Objektidentität
	Objekte vs. Werte

	Vererbung
	Persistente Programmiersprachen
	Trennung persistenter und transienter Daten
	Bindung persistenter Objekte an Programmausführungen
	Persistenzmechanismen
	Grundformen
	Seitenorientierte Persistenzmechanismen

	Märkte und Standards
	Literatur
	Index

