
Objektorientierte Datenbanksysteme

Udo Kelter

18.04.2004

Zusammenfassung dieses Lehrmoduls

Objektorientierte Datenbanksysteme (OODBMS) versuchen, die Lei-
stungen und Vorteile von Datenbanken und objektorientierter Pro-
grammierung zu vereinigen. Im Gegensatz zu konventionellen DBMS,
bei denen die Datenstrukturen, also Schemata, offenliegen, werden
die Daten in OODBMS durch Operationen verkapselt. Motiviert sind
OODBMS vor allem bei nichtkonventionellen Anwendungen mit kom-
plex strukturierten Daten. Dieses Lehrmodul stellt die wichtigsten
Merkmale von OODBMS und Alternativen für deren Ausprägung vor,
u.a. komplexe Objekte, Objektidentität, Kapselung und Verwaltung der
Operationen u.a. Ferner werden einige einschlägige Standards skizziert.

Vorausgesetzte Lehrmodule:
obligatorisch: – Datenverwaltungssysteme

– Architektur von DBMS

Stoffumfang in Vorlesungsdoppelstunden: 1.7

1

Objektorientierte Datenbanksysteme 2

Inhaltsverzeichnis
1 Nichtkonventionelle Anwendungen 3

2 Eigenschaften objektorientierter DBMS 5

3 Datenkapselung 7
3.1 Motivation . 7
3.2 Implementierungssprachen und Ausführungsort von Operationen 9

4 Objekte und Beziehungen 12
4.1 Homogenität der Typsysteme 12
4.2 Komplexe Objekte . 13
4.3 Beziehungen . 15
4.4 Objektidentität . 16
4.5 Objekte vs. Werte . 16

5 Vererbung 18

6 Persistente Programmiersprachen 19
6.1 Trennung persistenter und transienter Daten 19
6.2 Bindung persistenter Objekte an Programmausführungen . . 20
6.3 Persistenzmechanismen . 21

6.3.1 Grundformen . 21
6.3.2 Seitenorientierte Persistenzmechanismen 22

7 Märkte und Standards 28

Literatur . 30
Index . 31

c©2004 Udo Kelter Stand: 18.04.2004
Dieser Text darf für nichtkommerzielle Nutzungen als Ganzes und unverändert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Veränderung und Überführung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist über http://kltr.de erreichbar.

Objektorientierte Datenbanksysteme 3

1 Nichtkonventionelle Anwendungen

Das Hauptcharakteristikum objektorientierter Datenbankmanagement-
systeme (OODBMS) besteht darin, daß ihr Datenbankmodell objek-
torientierte Konzepte beinhaltet, namentlich die Kapselung von Da-
tenstrukturen durch Operationen1, Typhierarchien und Polymorphie.
Bei vielen (nicht allen) OODBMS ist nicht nur das Datenbankmodell
nichtkonventionell, sondern dies gilt auch für Transaktions- und Ver-
teilungskonzepte und andere Aspekte, so daß derartige Systeme auch
nichtkonventionelle DBMS genannt werden. Wir untersuchen i.f. zu-
nächst die Motivation für derartige DBMS und beschreiben danach nur
die objektorientierten Datenbankmodelle; auf die anderen erwähnten
nichtkonventionellen technischen Merkmale dieser DBMS gehen wir in
diesem Lehrmodul nicht ein.

Objektorientierte bzw. nichtkonventionelle DBMS sind motiviert
durch die Anforderungen, die nichtkonventionelle Anwendungen an die
Datenverwaltung stellen. Wir listen zum Vergleich zunächst einige we-
sentliche Merkmale konventioneller Anwendungen (also i.w. übliche
betriebliche Informationssysteme) auf:

– Es handelt sich um große Mengen relativ einfach und homogen
strukturierter Daten, z.B. Buchungen.

– Einzelne Tupel (oder Records) sind relativ klein (wenige 100 Byte);
oft werden Sätze fester Länge verwendet.

– Einzelne Datenfelder sind atomar (s. erste Normalform).

– Die Datenbankschemata werden sehr selten geändert.

– Ändernde Zugriffe zur Datenbank betreffen meist nur wenige Da-
tengranulate; dementsprechend sind Transaktionen sehr kurz und
dauern in der Größenordnung von 1 Sekunde.

Beispiele für nichtkonventionelle Anwendungen sind:
1Dies ist eigentlich kein originär objektorientiertes Konzept, es stammt aus der

Konzeptwelt modularer Sprachen wie Modula-2.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 4

– Technische Entwurfsumgebungen (CAD, CASE usw.): Als Daten-
arten treten hier Quell- und Binär-Programme, Dokumentation,
Zeichnungen, Bitmaps usw. auf, die oft als Dokument aufgefaßt
werden. Es müssen Versionen der Dokumente verwaltet werden. Do-
kumente können eine sehr komplexe Struktur, insb. hinsichtlich der
Konsistenzbedingungen, haben.

– Multimedia-Datenbanken: Als Datenarten treten hier u.a. Video-
und Audio-“Dateien” auf. Deren enorme Größe verbietet ein ato-
mares Lesen oder Schreiben wie bei Tupeln. Stattdessen müssen
die Daten mit bestimmten Datenraten über Netzwerkverbindungen
abgeliefert werden (sog. streaming Formate).

– Büroinformationssysteme: Als Datenarten treten hier insb. Briefe,
digitalisierte Papiervorlagen u.ä. auf. Die Suchfunktionen sind i.w.
die aus dem Information Retrieval bekannten.

– Expertensystem-Datenbanken: diese speichern Fakten und Regeln;
aus diesen können andere Fakten abgeleitet werden.

Konventionelle DBMS sind für diese Anwendungen nicht konzi-
piert worden und dort mehr oder weniger unbrauchbar, es treten die
folgenden gravierenden Probleme auf:

– Die Daten der nichtkonventionellen Anwendungen können nicht auf
natürliche Art und Weise modelliert werden. Wenn man z.B. eine
Modulspezifikation (für eine Sprache wie Java, C, Modula-2 o.ä.)
strukturiert in einer relationalen Datenbank speichern will, benö-
tigt man alleine Relationen für die Module, die exportierten Typen,
die Operationen, die Parameter der Operationen, die Typen der Pa-
rameter sowie ggf. die darin auftretenden Typkonstruktoren. Will
man eine Modulspezifikation aus der Datenbank auslesen, muß man
sehr komplexe Verbunde bilden, die i.a. sehr ineffizient sein werden.
Es treten oft sogar rekursive Strukturen auf (Verfeinerungshierar-
chien, Blockschachtelungen), die mit den üblichen Abfragesprachen
für relationale DBMS nicht bearbeitet werden können.

– Die unnatürliche Datenmodellierung kann zu erheblichen Perform-
ance-Problemen führen.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 5

– Für Rasterbilder, Karten, Videos usw. benötigt man spezielle Ope-
rationen bzw. Datentypen; diese werden nicht unterstützt.

– Aus der Datenbank ausgelesene Daten werden i.a. nicht einfach in
Tabellen oder Formularen angezeigt, sondern von Programmen wei-
terverarbeitet und z.B. graphisch angezeigt. Die Typsysteme von
Programmiersprachen und Datenbankmodellen unterscheiden sich
aber meist deutlich. Dies hat zur Folge, daß die Daten zwischen
diesen Typsystemen konvertiert werden müssen; der hierfür erfor-
derliche Code macht oft einen erheblichen Anteil der Programme
aus und ist dementsprechend ein erheblicher Kostenfaktor.

Man charakterisiert die Situation hier mit einem Begriff aus der
Elektrotechnik und spricht vom “impedance mismatch”, also Lei-
stungsverlusten infolge einer Impedanz-Fehlanpassung.

– Bei manchen Anwendungen muß man die Schemata der Datenbank
vergleichsweise rasch ändern können, also während der Laufzeit der
Applikation und ohne explizite Konversion der gesamten Datenbank.

Transaktions-, Verteilungs- und Zugriffsschutzkonzepte und ande-
re Systemfunktionen konventioneller DBMS können fallweise ebenfalls
ungeeignet sein. Aus der obigen Skizzierung nichtkonventioneller An-
wendungen sollte deutlich geworden sein, daß nicht allein die Daten-
bankmodelle, sondern auch diese anderen Merkmale an die jeweiligen
Anforderungen angepaßt sein müssen. Objektorientierte DBMS sind üb-
rigens auch gut für konventionelle Anwendungen geeignet, d.h. hier wäre
die Kombination aus objektorientiertem Datenbankmodell und kon-
ventionellen Transaktions-, Verteilungs- und Zugriffsschutzkonzepten
erwünscht.

Die unterschiedlichen Anforderungen haben zu einer Vielzahl von
nichtkonventionellen DBMS geführt; fast alle beinhalten in mehr oder
weniger großem Umfang objektorientierte Konzepte.

2 Eigenschaften objektorientierter DBMS

Ziel von objektorientierten DBMS ist es, die Vorteile von DBMS und
objektorientierten Programmiersprachen zu vereinigen. Das ist nicht

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 6

einfach; bei den meisten Systemen diente eine der beiden Seiten als
Ausgangsbasis, wurde – i.d.R. mit einigen Abstrichen und Kompromis-
sen – um Merkmale der anderen Seite erweitert, bleibt aber dennoch
dominierend für den Gesamteindruck:

– Ausgangsbasis ist eine objektorientierte Programmiersprache: ei-
ne Sprache wie C++ oder Smalltalk wird um ein Persistenzkonzept
erweitert, das es ermöglicht, daß Objekte das Ende einer Program-
mausführung überleben, also bei der nächsten Programmausführung
wieder ohne explizite Lade- oder Konversionsaktivitäten vorhanden
sind. Man spricht hier auch von persistenten Programmierspra-
chen2. Diese Systeme beinhalten auch Konzepte wie Transaktionen
(Concurrency Control und Recovery), Mehrbenutzerunterstützung
und mengenorientierte Abfragen.

– Ausgangsbasis relationales DBMS: Dieses wird z.B. um “lange Fel-
der”, benutzerdefinierbare Datentypen usw. erweitert. Man nennt
derartige Systeme auch objektrelationale DBMS.

Welche Funktionsmerkmale entscheidend für ein OODBMS sind,
war lange umstritten. Eine größere Autorengruppe schlägt in [At+89]
einen Kompromiß vor. In dieser Liste werden die Merkmale 1 - 12 als
unerläßlich eingestuft, Merkmale 13ff sind wünschenswerte, aber je nach
Kontext verzichtbare Eigenschaften. Die Merkmale 1 - 7 sind Merkmale
der Objektorientierung, Merkmale 8 - 12 sind DBS-Merkmale:

1. Es gibt komplexe Objekte. Attributwerte können strukturiert sein.
2. Objekte haben eine eigene Identität, die unabhängig vom Inhalt ist

und sich während der Lebensdauer des Objekts nicht ändert.
3. Datenabstraktion (Kapselung), also Trennung zwischen der expor-

tierten Schnittstelle und der internen Realisierung.
4. Objekte sind typisiert.

2Dieser Begriff ist unsauber, aber üblich. Persistent sind nicht die Sprachen,
auch nicht die in den Sprachen geschriebenen Programme, sondern die von diesen
Programmen erzeugten Objekte. Als bessere Begriffe wurden Persistent Application
System und Persistent Object System vorgeschlagen.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 7

5. Es gibt Typhierarchien.
6. Operationen können polymorph sein, also auf Objekte unterschiedli-

chen Typs angewandt werden, wobei je nach dem Typ der Argumente
andere Implementierungen verwendet werden.

7. Es gibt eine algorithmisch vollständige Datenbank-Programmier-
sprache (also keinen impedance mismatch).

8. Daten werden persistent gespeichert.
9. Die Abbildung der Daten auf die Sekundärspeicher ist für Anwen-

dungen transparent modifizierbar (vgl. internes Schema)
10.Es gibt Transaktionen und die damit verbundenen Concurrency-

Control- und Recovery-Mechanismen.
11.Es gibt eine mengenorientierte, deklarative Abfragesprache.
12.Das Datenbankschema ist dynamisch erweiterbar (entsprechend hier-

zu ggf. auch die Zugriffspfade).
13.Objekte sind versionierbar.
14.Die Kooperation von Benutzern und Benutzergruppen wird durch

lange Transaktionen unterstützt.
15.Es gibt Trigger und andere Merkmale “aktiver” Datenbanken.
16.Die Datenbank kann verteilt sein.
17.Multimediale Objekte werden unterstützt.

usw. In den folgenden Abschnitten besprechen wir einige der techni-
schen Merkmale detaillierter. Wir betrachten zunächst zwei zentrale
Eigenschaften von OODBMS: Datenkapselung und die Vermeidung des
impedance mismatch.

3 Datenkapselung

3.1 Motivation

Das Prinzip der Datenkapselung ist in Programmiersprachen seit lan-
gem eine absolute Selbstverständlichkeit und ein zentrales Konzept
von Sprachen wie Modula-2 oder Ada, die in den 70er Jahren entstan-
den. Umso verblüffender ist, daß konventionelle Datenbanken eindeutig

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 8

im Widerspruch zu diesem Prinzip stehen: eine Datenbank entspricht
in etwa einer globalen Variablen, deren Struktur in Form ihres kon-
zeptuellen Schemas und der externen Schemata offengelegt ist. Die
Offenlegung dieser Struktur ist sogar eine unverzichtbare Vorbedingung
für ad-hoc-Abfragen in SQL oder anderen Sprachen.

Ist die Datenkapselung bei persistent gespeicherten Daten also un-
wichtig? An dieser Stelle sei daran erinnert, daß das Hauptziel der
Datenkapselung darin besteht, Datenstrukturen bei Bedarf ohne Neben-
wirkungen auf andere Module, Klassen oder Teilsysteme austauschen
zu können, also durch Kenntnis der Datenstrukturen entstehende Ab-
hängigkeiten zwischen solchen Programmteilen zu vermeiden. Hierzu
müssen Datenstrukturen vor unkontrollierten Eingriffen “von außen”
geschützt werden. Bei konventionellen Anwendungen liegen indes meist
die folgenden Verhältnisse vor:

– Die Daten sind relativ einfach strukturiert, d.h. eine Verkapselung
durch je eine Lese- und Schreiboperation pro Attribut “versteckt”
nicht wirklich die interne Struktur.

– Die typischen Konsistenzbedingungen (Identifizierungs- und Fremd-
schlüssel u.ä.) lassen sich einfacher und besser im DBMS-Kern
durch generische Algorithmen, die durch geeignete deskriptive Anga-
ben in der Schemadefinition gesteuert werden, behandeln als durch
individuelle (also für jedes Relationenschema neu geschriebene) Al-
gorithmen.

– Eine Änderung der Datenstruktur bedingt eine komplette Konversion
der Datenbank und ist daher äußerst unwahrscheinlich.

Bei konventionellen Anwendungen ist also die Verkapselung der
Datenbank auf der Ebene der externen bzw. konzeptuellen Schemata
durch Operationen deutlich weniger motiviert als die Verkapselung von
Datenstrukturen in Programmen.

Bei vielen nichtkonventionellen Anwendungen treten deutlich kom-
plexere Schemastrukturen auf, so daß die Kapselung hier wieder stärker
motiviert ist. Festzuhalten bleibt, daß dann, wenn ad-hoc-Abfragen
möglich sein sollen, zumindest die externen Schemata offengelegt werden
müssen.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 9

Datenstruktur
Modul

Modul

nutzendes

einkapselndes

Abbildung 1: Datenkapselung im Programmen

3.2 Implementierungssprachen und Ausführungsort von
Operationen

Bei der Kapselung von Datenstrukturen in Programmen wird unter-
stellt, daß sich normalerweise die Implementierungen der einkapselnden
Operationen und der sie benutzenden Programmteile im gleichen Adreß-
raum befinden, in der gleichen Sprache geschrieben sind und von gleichen
Prozessor ausgeführt werden3. Bild 1 deutet den Adreßraum durch das
äußere Rechteck an. Die inneren Rechtecke sind Teile des Adreßraums,
die folgendes enthalten:
– eine eingekapselte Datenstruktur,
– einen Programmteil, der die Datenstruktur einkapselt und Zugriffs-

operationen exportiert, und
– einen Programmteil, der diese Zugriffsoperationen nutzt.

Bei Datenbanksystemen kann der einkapselnde Programmteil ent-
weder im Applikationsprozeß oder im DBMS-Prozeß ausführt werden;
hierzu betrachten wir erneut die schon in Abschnitt 3 in [DBSA] einge-
führte Prozeßarchitektur von Informationssystemen.

3Es sind natürlich auch Sprachmischungen möglich und mit entsprechenden Netz-
werktechnologien (RPC, CORBA usw.) sind auch verteilte Ausführungen möglich;
hierauf gehen wir hier nicht näher ein.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 10

Server

Bibliothek

Kommunikation z.B. über RPC oder über Sockets

Bibliothek Datenbank

Appl−API DBMS−API

[G]UI der

Applikation

DBMS−

Server

gespeicherte

Prozeduren

Applikations−

Abbildung 2: Prozeßarchitektur von Informationssystemen mit gespei-
cherten Prozeduren

Ausführung von Operationen im DBMS-Serverprozeß: Gera-
de dann, wenn Operationen auf den Daten komplex sind und viele
Zugriffe zu einzelnen Datenelementen durchführen, ist es attraktiv, sie
im Serverprozeß auszuführen, weil auf diese Weise viele aufwendige
Kommunikationen und Datentransporte vermieden werden. Exakt die-
se Performance-Verbesserung motiviert auch vorkompilierte Statements
und gespeicherte Prozeduren (stored procedures), die unabhängig von
der Datenkapselung motiviert sind.

Nun sind die einkapselnden Operationen allerdings von Anwendern
geschrieben und damit aus Sicht des DBMS suspekt; die Trennung der
Adreßräume von Applikation und Datenbankkern war ja gerade durch
das Mißtrauen gegenüber Anwendersoftware motiviert. Serverseitig
auszuführender Code kann daher allenfalls in einer “sicheren” Sprache
geschrieben sein, die keine Adreßrechnungen und versehentliches Be-
schädigen fremder Datenstrukturen erlaubt. Hochgradig unsicher sind
Sprachen wie z.B. C / C++. Günstig sind Skriptsprachen, die vom
DBMS-Kern selbst interpretiert werden, allerdings sind solche Sprachen
ineffizient und für rechenintensive Operationen weniger geeignet. Fest-
zuhalten bleibt, daß dann, wenn die Operationen serverseitig ausgeführt
werden, spezielle Programmiersprachen notwendig werden.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 11

Neben der Gefahr unzulässiger Zugriffe besteht das Problem, daß
eine Operation infolge eines Programmierfehlers in eine Endlosschleife
geraten könnte oder einfach wegen ihrer Komplexität eine sehr hohe Be-
lastung der CPU verursacht; entsprechend weniger Rechenleistung steht
für den DBMS-Kern und damit für die Bedienung anderer paralleler
Nutzer zur Verfügung.

Prinzipiell wird hier die Rechenlast für die Fachlogik vom Applika-
tionsserver in den DBMS-Server verlagert; bei einer größeren Zahl von
parallelen Nutzern kann die CPU-Leistung des DBMS-Server-Rechners
leicht zu einem Engpaß werden. Die Ausführung von Operationen im
DBMS-Serverprozeß ist daher bei Hochlastsystemen nicht sinnvoll.

Bei der Ausführung von Operationen im DBMS-Serverprozeß sind
noch einige technische Probleme zu lösen, u.a. müssen die Operationen
in Form von dynamisch bindbaren Bibliotheken an das DBMS über-
geben und als Teil der Datenbank gespeichert werden und das DBMS
muß sicherstellen, daß auf einem Objekt nur passende Operationen
ausgeführt werden.

Ausführung von Operationen im Applikationsprozeß: Ein al-
ternativer Ansatz besteht darin, die einkapselnden Programmteile im
Applikationsprozeß auszuführen und die benötigten Teile der Daten-
bank direkt in den Applikationsprozeß zu laden. Dieser Ansatz ist nur
bei persistenten Programmiersprachen sinnvoll und wird in Abschnitt 6
noch ausführlicher diskutiert werden.

Die schon aufgeworfene Frage, wie sichergestellt wird, daß auf die
eingekapselten Datenstrukturen nur über die passenden Operationen zu-
gegriffen wird, stellt sich hier verstärkt. Wenn man diese Verantwortung
dem DBMS in Sinne einer zentralen Aufsichtsinstanz überträgt, müßten
die Implementierungen der Operationen in der Datenbank gespeichert
werden und bei Bedarf in den Applikationsprozeß z.B. als dynamisch
bindbare Bibliothek eingebunden werden; ein nicht unerheblicher Auf-
wand. Das Problem unsicherer Sprachen stellt sich auch verstärkt, weil
nicht nur die Fachlogik, sondern auch Bedienschnittstellen in dieser
Sprache implementiert werden müssen.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 12

4 Objekte und Beziehungen

In diesem und den folgenden Abschnitten stellen wir wesentliche Aspek-
te vor, die bei der Definition eines objektorientierten Datenbankmodells
eine Rolle spielen bzw. Entscheidungsfreiräume bieten. Wir beginnen
mit den statischen Datenstrukturen.

4.1 Homogenität der Typsysteme

Der schon erwähnte impedance mismatch resultiert daraus, daß die
Typsysteme der Programmiersprachen, in denen die Applikationen ge-
schrieben sind, und das Typsystem (also Datenbankmodell) des DBMS
differieren. Die Daten müssen also beim Laden bzw. Speichern von ei-
nem Typsystem in das andere “übersetzt” werden. Beim Laden müssen
neben der reinen Konversion ggf. zusätzliche Prüfungen durchgeführt
werden, weil die Datenbank von einem Programm, das in einer ande-
ren Sprache geschrieben worden ist, modifiziert sein kann. Der Umfang
dieser Programmteile ist oft erheblich, ein Anteil von 10 - 30% ist nicht
ungewöhnlich. Das Erstellen dieser Programmteile verursacht erhebli-
che Kosten und ist bei Programmierern eher unbeliebt, weil der Code
relativ stupide ist4.

Für eine ausgewählte Programmiersprache kann man diese Differenz
reduzieren oder ganz aufheben, indem man das Datenbankmodell des
DBMS an das Typsystem der Sprache annähert oder mit ihm identisch
macht. In diesem Fall sind die Typdefinitionen in einem Programm
zugleich Schemadefinitionen. Diesem Vorteil stehen allerdings auch
Nachteile gegenüber:

4Der Code kann unter bestimmten Bedingungen auch generiert werden, dann
reduzieren sich die Kosten erheblich.

Softwaretechnisch gesehen stellen diese Programmteile auch ein Wartungsproblem
dar: bei langlebigen Applikationen muß man damit rechnen, daß das unterliegende
DBMS mehrfach ausgetauscht wird, im einfachsten Fall durch neue Produktver-
sionen, die aber nicht 100% kompatibel sind. Daher werden diese Programmteile
bei der 5-Schichten-Architektur für Informationssysteme in einer eigenen Datenhal-
tungszugriffsschicht zwischen der Fachlogikschicht und der Datenhaltungsschicht
angeordnet.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 13

– Für alle anderen Sprachen vergrößern sich wahrscheinlich die Diffe-
renzen zwischen den Typsystemen. Im Extremfall sind diese Spra-
chen nicht mehr sinnvoll einsetzbar, d.h. man ist auf die ausgewählte
Programmiersprache festgelegt.

Dies steht im Widerspruch dazu, daß Daten in einer Datenbank
möglichst für Applikationen, die in unterschiedlichen Sprachen ge-
schrieben sein können, zugreifbar sein sollten. Die Typsysteme kon-
ventioneller DBMS sind relativ einfach, deshalb können die Inhalte
der Datenbank in den Typsystemen sehr vieler Programmiersprachen
repräsentiert werden.

– Für komplexere Applikationen reicht eine reine Programmiersprache
meist nicht aus, sondern man benötigt zusätzlich diverse Bibliotheken
usw., also letztlich eine komplette Anwendungsentwicklungsumge-
bung. Der Aufwand für die Entwicklung solcher Umgebungen und
der zugehörigen Entwicklungswerkzeuge ist hoch und u.U. nicht zu
leisten.

– Da die Typsysteme von Programmiersprachen relativ komplex sind,
werden auch Abfragesprachen entsprechend komplex, wodurch sie
für ad-hoc-Abfragen weniger brauchbar werden können.

4.2 Komplexe Objekte

Strukturierte Typen bzw. Variablen, z.B. ein Array von Records, die
weitere strukturierte Komponenten enthalten können, sind in allen mo-
dernen Programmiersprachen üblich. Die grundlegende Motivation für
komplexe Objekte (auch als zusammengesetzte, molekulare oder ag-
gregierte Objekte bezeichnet) besteht darin, die gleichen Strukturen
auch datenbankseitig zu haben. Gemäß den üblichen Modellierungsre-
geln repräsentieren komplexe Objekte Teil-von-Strukturen. Zentral ist
der Begriff der Komponente: Ein Objekt kann Komponente eines an-
deren Objekts sein. Erwünschte Merkmale von komplexen Objekten
sind somit:

– Zur Strukturierung der Komponentobjekte sind Typkonstruktoren
wie array, set, map, record, file usw. verwendbar. Die Typkonstruk-

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 14

toren sollen beliebig schachtelbar sein.

– Typen elementarer Objekte sind die üblichen Basistypen sowie Ob-
jektreferenzen.

– Komplexe Objekte können mit diversen “generischen” Operationen
(löschen, kopieren, versionieren, sperren u.a.5) als Ganzes bearbeitet
werden.

Für die Struktur der komplexen Objekte einer Datenbank sind
folgende Alternativen denkbar:

– baum- bzw. waldartige Struktur: ausgehend von einem Wurzelob-
jekt erreicht man alle Komponentobjekte des komplexen Objekts.
Jedes Objekt gehört zu höchstens einem äußeren Objekt.

– halbgeordnete (also zyklusfreie) Struktur: hier sind gemeinsame
Teilobjekte erlaubt. Hiermit können z.B. gemeinsame Module in
mehreren Softwaresystemen oder gemeinsame Abschnitte in mehre-
ren Büchern modelliert werden.

– uneingeschränkte Struktur, d.h. es sind Zyklen erlaubt. Zyklen wi-
dersprechen eigentlich der Vorstellung von einer Teil-von-Struktur;
will man Zyklen ausschließen, muß aber innerhalb jeder Operati-
on, die ein Objekt zur Komponente eines komplexen Objekts macht,
ein Zyklustest durchgeführt werden. Derartige Tests sind aufwen-
dig oder in verteilten OODBMS, bei denen auch komplexe Objekte
verteilt sein können (z.B. PCTE), nicht immer sofort möglich, weil
Teile des komplexen Objekts auf einem Rechner liegen können, der
gerade nicht erreichbar ist.

Auch für die Art und Weise, wie die (direkten) Komponentobjek-
te eines Objekts gehandhabt werden, sind verschiedene Ansätze zu
beobachten:

5In dieser Liste fehlt bewußt das Erzeugen von komplexen Objekten. Es ist
sinnvoller, initiale Objektstrukturen durch individuell programmierte Konstruktor-
Operationen zu erzeugen.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 15

– Es gibt Attribute, die Objektreferenzen oder Mengen von Objektre-
ferenzen enthalten.

Ggf. ist zusätzlich bei solchen Attributen unterscheidbar, ob die
Zielobjekte als Komponenten zu behandeln sind oder nicht.

– Bei OODBMS, die auf dem ER-Modell basieren und die explizit Be-
ziehungen unterstützen, kann analog zum vorigen Ansatz einzelnen
Beziehungstypen das semantische Merkmal verliehen werden, daß
das Zielobjekt als Komponente des Ausgangsobjekts zu behandeln
ist.

– Man betrachtet die Menge der Komponenten eines Objekts als ab-
straktes Datenobjekt und stellt Operationen bereit, durch die Kom-
ponentobjekte in die Menge eingefügt oder aus ihr entfernt werden
können bzw. mit denen alle Elemente der Menge durchlaufen werden
können.

4.3 Beziehungen

Beziehungen zwischen realen Entitäten, die Teil-von-Strukturen sind,
können in der Datenbank durch komplexe Objekte nachgebildet wer-
den. Daneben werden aber auch zusätzlich ungerichtete Assoziationen
benötigt (für Beispiele wie “ist verheiratet mit”). Das Datenbankmodell
muß es also erlauben, Aggregationen und Assoziationen voneinander
zu unterscheiden.

Die referentielle Integrität von Beziehungen sollte auf Wunsch über-
wacht werden. Dies bedingt, beim Löschen eines Objekts herauszufin-
den, ob es Referenzen auf dieses Objekt gibt und, falls ja, die Löschung
abzulehnen. Diese Überprüfung ist ohne Hilfsdaten nicht effizient mög-
lich. Eine Lösung besteht darin, zu einer Referenz, deren referentielle
Integrität überwacht werden soll, am Zielobjekt eine zurückführende
Referenz anzubringen, und zwar entweder nur intern, also für die Appli-
kation nicht sichtbar, oder extern sichtbar. Der zweite Ansatz bedeutet,
daß solche Referenzen aus Sicht der Applikation immer nur paarweise
erzeugt und gelöscht werden können.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 16

4.4 Objektidentität

Ein Datenbank-Objekt repräsentiert meist eine Entität in der realen
Welt, die eine eigene Identität besitzt. Die interessierenden Attribu-
te der Entitäten sind oft nicht mit Sicherheit eindeutig, können also
bei zwei verschiedenen Entitäten komplett übereinstimmen; in sol-
chen nimmt man einen künstlichen Identifizierer hinzu. Dieser kann
allerdings durchaus im Laufe der Zeit ausgetauscht werden, d.h. es
ist nicht sichergestellt, daß er über die Zeit hinweg immer die gleiche
Entität identifiziert. Generell ungeeignet sind aus dem gleichen Argu-
ment heraus alle wiederverwendbaren Datenwerte. Als Lösung dieses
Problems bieten OODBMS Surrogate an; Surrogate haben folgende
Eigenschaften:

– Jedes Objekt erhält bei seiner Erzeugung vom DBMS ein Surrogat
zugewiesen.

– Das Surrogat bleibt während der ganzen Lebensdauer des Objekts
unverändert, auch wenn das Objekt verlagert oder konvertiert wird.

– Das Surrogat ist zeitlich und “räumlich” eindeutig, d.h. jedes Sur-
rogat wird während der Lebensdauer der Datenbank nur einmal
an ein Objekt vergeben. Es ist also identifizierend und wird nicht
wiederbenutzt.

Mit Hilfe der Surrogate kann sehr einfach geprüft werden, ob zwei
Objektreferenzen auf das gleiche Objekt verweisen.

In vielen OODBMS können Surrogate auch für den Direktzugriff
zu Objekten benutzt werden; in diesem Fall muß ein Primär- oder
Sekundärindex für das Surrogat-Attribut vorhanden sein.

4.5 Objekte vs. Werte

Wir hatten oben erwähnt, daß zur Strukturierung der Komponenten
eines komplexen Objekts im Prinzip alle üblichen Typkonstruktoren
verfügbar sein sollten. Dies führt zu der Frage, ob man dann noch die
üblichen komplexen Werte, die als Inhalt entsprechend getypter Attri-
bute bzw. Variablen im Programmen auftreten können, braucht. Die

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 17

Unterschiede zwischen komplexen Werten und komplexen Objekten
werden am besten klar, wenn man die typischen Implementierungen
vergleicht.

Als Beispiel für einen komplexen Wert betrachten wir einen Array
fester Länge von Records, die einige Zahlen und Texte fester Länge ent-
halten mögen. Dieser Array wird bei Anwendung üblicher Compilerbau-
Techniken in einem Speicherbereich fester Länge realisiert, der in einzel-
ne Abschnitte unterteilt ist, die jeweils einzelne Komponenten enthalten
und die durch Relativadressen identifiziert werden. Wir nennen dies
auch einen komplexen Wert.

Dieser Speicherbereich wird nur als ganzer zwischen der Datenbank
und dem Adreßraum der Anwendung übertragen; die genaue Struktur
dieses Speicherbereichs ist für die Strukturen in der Datenbank weitge-
hend belanglos; insb. sind keine Referenzen auf Teile dieser Struktur
möglich, Referenzen sind nur auf Objekte möglich. Insgesamt treffen
folgende Beobachtungen auf komplexe Werte zu:

– Die Werte oder Teile von ihnen haben keine Identität (und natürlich
auch kein Surrogat).

– Sie können nicht gemeinsam benutzt werden.

– Sie können keine Rolle in Beziehungen spielen oder Ziel von Objek-
treferenzen sein.

– Ihre Struktur ist offen, sie sind nicht gekapselt.

– Sie werden als Ganzes in entsprechend getypte Programmvariablen
übertragen.

– Über vordefinierte Operationen kann sehr effizient mit ihnen gearbei-
tet werden. Der mit Objekten verbundene Aufwand wird vermieden.

Insb. das letztgenannte Effizienzargument spricht dafür, neben
komplexen Objekten auch komplexe Werte in Attributen anzubieten.

Komplexe Werte sind andererseits nicht ganz unproblematisch. Die
oben unterstellte ungeprüfte Übertragung eines Speicherbereichs, der
den komplexen Wert enthält, funktioniert leider nicht immer so einfach:

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 18

– Wenn auf eine Datenbank von Klienten mit heterogenen Rechner-
plattformen zugegriffen wird, sind die Datenformate i.a. nicht kom-
patibel, d.h. der Speicherbereich muß geeignet konvertiert werden.

– Sofern das Format, wie komplexe Werte auf Speicherbereiche abzu-
bilden sind, nicht durch die Sprache mitdefiniert wird – was eher
unwahrscheinlich ist –, kann jeder Konstrukteur eines Compilers
diesbezüglich eine andere Entscheidung treffen. Es müßten dann
verschiedene Versionen des DBMS für verschiedene Compiler ge-
schaffen werden, schlimmstenfalls sogar für verschiedene Versionen
“desselben” Compilers.

– Das Verfahren funktioniert nur, wenn das Typsystem der Gastspra-
che und des OODBMS kompatibel zueinander sind (vgl. Abschnitt
4.1). Wenn von Programmen in signifikant verschiedenen Gastspra-
chen (z.B. C++ und Ada) aus auf die gleichen Daten aus zugegriffen
werden soll, sind aufwendige Konversionen in Ersatzdarstellungen
erforderlich.

5 Vererbung

Für die Vererbung gelten zunächst die gleichen Grundregeln wie in
objektorientierten Programmiersprachen, z.B. die Substituierbarkeitsre-
gel, wonach an jeder Stelle, an der eine Instanz eines Typs T1 benötigt
wird, auch eine Instanz eines Subtyps T2 von T1 benutzt werden kann.
Auf derartige allgemeine Regeln gehen wir hier nicht weiter ein.

Eine DBMS-spezifische Frage stellt sich im Kontext mit der geforder-
ten Abfragesprache. Diese benötigt Basismengen analog zu Relationen
in relationalen Systemen. Ansätze hierzu sind:

– Naheliegendenderweise ist die Menge der Instanzen eines Objekt-
typs (also genau dieses Typs, ohne Instanzen von Subtypen) jeweils
eine derartige Basismenge.

– Alternativ kann man, der Substituierbarkeitsregel folgend, die In-
stanzen eines Typs und aller seiner direkten und indirekten Subtypen
als eine Basismenge benutzen.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 19

– Im Prinzip können Objektmengen völlig unabhängig von der
Typstruktur definiert werden – wobei natürlich unterstellt ist, daß
die Mengen homogen sind –; eine explizite Definition der Objekt-
mengen ist meist wenig sinnvoll und lästig, weil in der Praxis fast
immer einer der beiden vorstehenden Fälle zutrifft.

6 Persistente Programmiersprachen

Die grundlegende Idee persistenter Programmiersprachen besteht darin,
daß man Objekte als persistent deklarieren kann. Der Zustand sol-
cher Objekte wird automatisch beim Programmende gerettet und beim
erneuten Programmstart rekonstruiert, ohne daß seitens des Anwen-
dungsprogramms explizite Lese- bzw. Schreibzugriffe und Konversionen
vorgenommen werden müssen6. Damit ist implizit festgelegt, daß die
Typsysteme von Programmiersprache und DBMS identisch sind (vgl.
Abschnitt 4.1). Der impedance mismatch verschwindet also völlig.

Auf eventuelle Anpassungen der Programmiersprache sind wir schon
in Abschnitt 3.2 eingegangen. In diesem Abschnitt gehen wir auf ei-
nige zusätzliche Fragen hinsichtlich der Persistenzkonzepte und deren
Implementierung ein.

6.1 Trennung persistenter und transienter Daten

Im allgemeinen sollen nicht alle Objekte, die ein Programm erzeugt,
persistent sein, es muß also auch die “normalen” transienten Objekte
geben. Es muß also möglich sein, beide Arten von Objekten zu un-
terscheiden. Eine Anforderung in diesem Zusammenhang ist, daß mit
wenig Korrekturaufwand zwischen Persistenz und Nicht-Persistenz um-
geschaltet werden kann; dies bedingt, daß im Regelfall kein Unterschied
beim Umgang zwischen persistenten und transienten Objekten besteht.
Für die Festlegung der Persistenz sind verschiedene Ansätze möglich:

6Derartige Persistenzkonzepte sind auch schon lange vor OODBMS für nicht-
objektorientierte Sprachen wie z.B. Pascal oder Modula-2 realisiert worden.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 20

1. Persistenz als Klasseneigenschaft: Persistenz ist eine Klasse-
neigenschaft, d.h. alle Instanzen einer solchen Klasse sind persistent.
Man kann dies auch erreichen, indem es eine vordefinierte Klasse,
die persistent_object oder ähnlich heißt, gibt; alle persistenten
Klassen müssen als Unterklasse von persistent_object definiert
werden.

Nachteil dieses Ansatzes ist, daß man oft sowohl transiente als
auch persistente Instanzen einer Klasse braucht und daß hier zu
umständlichen Ersatzlösungen gegriffen werden muß.

2. Explizite Markierung: Objekte, die persistent sein sollen, müssen
also solche markiert werden. Der Zeitpunkt kann entweder beliebig
sein oder als Sonderfall bei der Erzeugung des Objekts.

3. Persistente Wurzel(n): Es gibt ein oder mehrere spezielle persi-
stente Objekte; diese und alle von dort aus erreichbaren Objekte
sind persistent. Um ein Objekt persistent zu machen, muß man eine
Referenz darauf von einem bereits persistenten Objekt aus erzeugen.
Bei diesem Ansatz ist es sehr einfach, komplette Objektgeflechte
persistent zu machen. Das Erzeugen und Löschen von Referenzen
kann jetzt allerdings weitreichende Konsequenzen haben.

6.2 Bindung persistenter Objekte an Programmausfüh-
rungen

Komplexe Objekte modellieren oft Dokumente und entsprechen da-
her in mancher Hinsicht Dateien, insb. dahingehend, daß man u.U.
ein bestimmtes Programm mit verschiedenen Dokumenten ausführen
möchte. Einer persistenten Variablen in einem Programm sollen al-
so ohne Veränderung des Programms verschiedene komplexe Objekte
in der Datenbank zugeordnet werden können. Hierzu müssen einzelne
komplexe Objekte in der Datenbank identifizierbar sein. Hierzu gibt es
mehrere Ansätze:

– Die (Wurzeln der) komplexen Objekte haben identifizierende Attri-
bute, und das Objekt kann mithilfe einer Abfragesprache lokalisiert
werden.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 21

– Man benutzt die Surrogate der Objekte, sofern der Direktzugriff zu
Objekten anhand ihrer Surrogate unterstützt wird. Surrogate sind
allerdings i.a. nicht sinnvoll lesbar.

– Objekte können explizit einen Namen zugewiesen bekommen, und es
existiert ein expliziter Mechanismus, der Objekte mit einem bestimm-
ten Namen an eine bestimmte Programmvariable bindet. Dieser
Ansatz ist nur bei einer kleinen Anzahl von komplexen Objekten
praktikabel, ähnlich wie in Dateisystemen.

6.3 Persistenzmechanismen

Die bisherigen Betrachtungen betrafen nur Konzepte (aus Sicht von
Applikationsprogrammierern) und ließen die Frage offen, durch wel-
che Algorithmen die Laufzeitobjekte persistent gemacht werden. Für
die Konzepte sind die Implementierungstechniken irrelevant, für die
Performance spielen sie dagegen eine große Rolle. Eines der wesent-
lichen Motive für die Einführung von OODBMS war im übrigen die
schlechte Performance konventioneller DBMS; die (erhoffte) Perfor-
mance von OODBMS ist vielfach werblich stark herausgestellt worden
und gipfelte in Aussagen, man könne auf Datenbankobjekten genauso
schnell arbeiten wie auf Laufzeitobjekten. Nach einer kurzen Übersicht
über denkbare Ansätze untersuchen wir in Abschnitt 6.3.2 derartige
Möglichkeiten zur Performance-Optimierung.

In der folgenden Diskussion unterstellen wir, daß die Programmteile,
die auf die Datenstrukturen von Objekten zugreifen, im Applikations-
prozeß ausgeführt werden (vgl. Bilder 1 und 2 in Abschnitt 3.2).

6.3.1 Grundformen

Damit ein Laufzeitobjekt in einem Programm (genauer gesagt in ei-
nem Prozeß) persistent wird, muß es spätestens bei Beendigung des
Programms in die Datenbank übertragen werden. Hierfür sind zwei
Implementierungsansätze denkbar:

1. Verarbeiten einzelner (atomarer) Objekte: Die Struktur der Objekte
wird durchlaufen, für jedes einzelne Objekt wird dessen Zustand se-

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 22

parat in die Datenbank übertragen. Dies ermöglicht es, auch DBMS
zu benutzen, die ein deutlich anderes Datenbankmodell als die Pro-
grammiersprache haben, z.B. ein relationales. Man würde hier jedes
Objekt (ohne seine Komponentobjekte) als ein Tupel speichern. Die
Konversion zwischen den verschiedenen Typsystemen findet hier
automatisiert statt.

2. Behandlung komplexer Objekte als komplexe Werte: Man kann ein
Objekt auch als einen komplexen Wert betrachten, vgl. das Bei-
spiel in Abschnitt 4.5. Man kann nun einen solchen komplexen
Wert auf einmal an das DBMS übergeben. Ein unmittelbarer Vor-
teil hieraus im Vergleich zur ersten Alternative ist, daß die Zahl
der Kommunikationen zwischen dem Anwendungsprozeß und dem
Datenbank-Serverprozeß deutlich reduziert wird.

Im Datenbank-Serverprozeß kann man entweder den komplexen
Wert zerlegen und in ein anderes Typsystem konvertieren (s.o.)
oder aber diese Struktur i.w. unverändert auf persistenten Medien
speichern.

6.3.2 Seitenorientierte Persistenzmechanismen

Unter die o.g. zweite Variante fällt ein Implementierungskonzept, das
auf den ersten Blick sehr attraktiv wirkt: Die Grundidee ist, einzelne
Seiten des Hauptspeichers, in denen Objekte gespeichert sind, direkt
auf Sektoren der Platte speichern7. Bild 3 veranschaulicht dies an ei-
nem Beispiel: Die Laufzeitobjekte, auf denen eine Applikation arbeitet,
sind in dafür reservierten Teilen des Arbeitsspeichers eines Prozesses
(der heap) angeordnet. Der Arbeitsspeicher ist ein virtueller Arbeits-
speicher und aufgeteilt in Seiten; ungenutzte Seiten können einzeln vom
Betriebssystem auf Platte ausgelagert werden (paging). Bei neueren
Betriebssystemen können Seiten nicht nur auf einen für Applikationen
unzugänglichen Teil der Platte ausgelagert werden, sondern auch in ei-
ne normale Datei, und von dort später wieder zurückgeladen werden

7Ein direkter Zugriff auf die Platte ist tatsächlich nicht möglich, aus Gründen,
die später klar werden, muß ein DBMS-Server zwischengeschaltet werden. Die
resultierende Architektur nennt man page-server-Architektur.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 23

(sogenanntes memory-mapped IO).

Arbeitsspeicher des Applikationsprozesses

Magnetplatte

192xxx 204xxx 255xxx

Abbildung 3: Seitenorientierte Verfahren

Im Vergleich zu einer klassischen Schichtenarchitektur eines DBMS-
Kerns (vgl. Bild 2) entfällt die Verwaltung von Speichersätzen und
Einzeltupeln bzw. diese kann wesentlich vereinfacht werden, ferner
entfällt der Aufwand für Konversionen von Datentypen.

Insgesamt wirkt dieses Implementierungsverfahren auf den ersten
Blick sehr performant. Oft wird unter dem Begriff “persistente Pro-
grammiersprache” nicht nur die Sprache und ihr Persistenzkonzept,
sondern zusätzlich dieses Implementierungsverfahren verstanden. Zu
einem Konzept kann es aber viele Implementierungen geben, man sollte
beides nicht unnötig vermischen.

Der zweite Blick auf dieses Implementierungsverfahren offenbart im
übrigen, daß

1. das Verfahren so einfach doch nicht funktioniert,
2. Performance-Vorteile nur unter speziellen günstigen Randbedingun-

gen möglich sind (und dann auch bei konventionellen Datenmodellen
erzielbar wären) und

3. man auf viele übliche Leistungsmerkmale eines DBMS verzichten
muß; letzteres kann völlig in Ordnung sein, wenn man diese Lei-

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 24

stungsmerkmale gar nicht nutzt und man bewußt auf diese Leistun-
gen verzichtet.

Pointer Swizzling. Beziehungen zwischen Objekten werden in Lauf-
zeitsystemen durch Zeiger realisiert. Wir nehmen i.f. vereinfachend an,
daß die Attribute eines atomaren Objekts in Form eines komplexen
Werts gespeichert werden. Dann sind einzelne Felder innerhalb dieses
komplexen Werts Adressen anderer Objekte.

Werden nun Seiten unverändert auf Platte gespeichert und später
neu geladen, dann müßte jede Seite wieder an die gleichen Adressen wie
früher geladen werden, andernfalls stimmten die Adressen nicht mehr.
Hierzu müßte jedem Sektor eine feste Hauptspeicheradresse zugeord-
net sein; anders gesehen müßte ein Abschnitt des Adreßraums für den
Sektor exklusiv reserviert werden. Bei heute gängigen 32-Bit-Rechnern
ist der virtuelle Adreßraum aber nur 1 - 2 GB groß8, hiervon wird fer-
ner ein großer Teil für die Applikation benötigt. Die Datenbank könnte
daher nicht größer als ca. 1 GB sein, was nicht akzeptabel ist.

Die Lösung besteht darin, beim Speichern einer Seite die darin
enthaltenen Adressen in geeignete Objektidentifizierer umzusetzen; um-
gekehrt setzt man beim späteren Laden der Seite die Objektidentifizierer
in die dann gültigen Adressen der Objekte um. Diese Vorgänge werden
pointer swizzling genannt genannt. Für das pointer swizzling ist eine
Vielzahl von Implementierungen bzw. Optimierungen erdacht worden,
die hier nicht diskutiert werden sollen.

Festzuhalten bleibt, daß hierfür Rechenzeit und/oder Speicherplatz
verbraucht wird und daß die simple Vorstellung, Hauptspeicherseiten
unverändert auf Platte abzulegen, bei heute gängigen 32-Bit-Rechnern
nicht realistisch ist.

Beim Schreiben einer Seite auf die Platte tritt bei “unsicheren” Pro-
grammiersprachen wie C oder C++ ein zusätzliches Problem auf: die
Applikation könnte den Inhalt der Seite und damit auch der Objektbank
beschädigt haben, die Datenbank könnte somit nach dem Speichern al-
so physisch inkonsistent werden. Vor dem Speichern muß also ggf. der

8Bei 64-Bit-Rechnern ist dies nicht mehr der Fall.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 25

Inhalt der Seite durchleuchtet werden.

Bedingungen für Performance-Verbesserungen. Bei ersten Zu-
griff auf ein Objekt ist der zeitraubende Transport eines Sektors von
der Platte in den Hauptspeicher unverändert notwendig, erst bei den
folgenden Zugriffen entfällt dieser Hauptkostenfaktor. Bei Applikatio-
nen, die nur einmal zu einem Datenelement zugreifen, ist also keine
signifikante Beschleunigung zu erwarten.

Vorteile beim ersten Zugriff sind dann möglich, wenn Objekte klein
sind, also viele Objekte in eine Seite passen, und wenn Objekte so
angelegt werden, daß sie nicht wild verstreut auf den Seiten liegen,
sondern im Zusammenhang benötigte Objekte auf der gleichen Seite;
letzteres hängt natürlich vom Verhalten der Applikationen ab, d.h. das
OODBMS benötigt von dort aus entsprechende Hinweise. Bei vielen
OODBMS kann oder muß man daher in der Operation, die ein Objekt
erzeugt, ein anderes Objekt angeben, “in dessen Nähe” das neue Objekt
erzeugt werden soll. Mit Hilfe dieser Angaben werden dann Objekte
möglichst günstig auf den Seiten gruppiert (“geclustert”).

Im Sinne der ANSI/SPARC-Schema-Architektur gehören diese An-
gaben eigentlich zum internen Schema und widersprechen dem Ziel der
Datenunabhängigkeit. Die nichtkonventionellen Anwendungen, an de-
nen OODBMS orientiert sind, sind allerdings so komplex, daß dort
Datenunabhängigkeit praktisch nicht erreichbar ist.

Fehlende Leistungen von Datenbanksystemen. Beim simplen
Ein- und Auslagern von Seiten werden mehrere übliche und oft wesent-
liche Leistungen von Datenbanksystemen nicht mehr erzielt, dazu ist
dieser Persistenzmechanismus viel zu trivial (ob mit oder ohne pointer
swizzling, ist hier egal). Will man diese Leistungen trotzdem reali-
sieren, muß entweder der ganze Ansatz aufgegeben werden oder die
Performance-Vorteile gehen weitestgehend verloren:

1. Sprachunabhängigkeit: Applikationen können nicht mehr in ver-
schiedenen Sprachen geschrieben werden, denn die Typsysteme der

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 26

Sprachen sind i.a. zu verschieden, erst recht das Format, in dem
die zugehörigen Compiler komplexe Werte ablegen. Letzteres ist
sogar dann ein Problem, wenn man zwar nur eine Sprache, aber
verschiedene Compiler (von konkurrierenden Anbietern) hat. Es
kann notwendig sein, verschiedene Versionen des DBMS für verschie-
dene Compiler zu bilden, schlimmstenfalls sogar für verschiedene
Versionen “desselben” Compilers.

2. heterogene Plattformen: Wenn die Datenbank von Klienten be-
nutzt werden soll, die auf heterogenen Hardware-Plattformen laufen,
können die elementaren Datenformate verschieden sein, d.h. diesbe-
züglich ist eine Konversion erforderlich.

3. Sichten: Sichten sind das wesentliche technische Mittel, um Zu-
griffskontrollen und die Datenunabhängigkeit von Applikationen zu
realisieren. Werden Seiten unverändert an verschiedene Applika-
tionen geliefert, liegen die Daten auf der Ebene des konzeptuellen
Schemas ungefiltert vor.

Sofern Sichten durch das DBMS realisiert werden sollen, müs-
sen die Seiteninhalte beim Lesen gefiltert werden, die weggefilterten
Teile müssen beim Schreiben wieder passend hinzugefügt werden.

Alternativ könnten Sichten durch das Laufzeitsystem der Pro-
grammiersprache realisiert werden; in normalen Programmierspra-
chen ist ein derartiges Konzept aber völlig unbekannt.

4. effiziente Suche durch Indexe: Die in Compilern üblichen Spei-
cherungsstrukturen sind nicht an Sekundärspeichern orientiert und
enthalten keine Primärindexe, die die effiziente Suche innerhalb der
Menge der Instanzen eines Typs unterstützen können.

Selbst dann, wenn man nur mit Sekundärindexen – die komplett
getrennt von den Primärdaten angelegt werden können – arbeiten
würde, müßten diese bei jedem Schreibzugriff korrigiert werden.

5. paralleler Zugriff: Eine weitere Frage ist, ob und wie mehrere An-
wendungsprozesse parallel auf den gleichen Daten arbeiten können.
Beispielsweise könnten zwei Anwendungsprozesse parallel auf ein
Objekt, das ein Dokumentverzeichnis repräsentiert, zugreifen wol-

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 27

len. Hierzu muß die entsprechende Seiten in mehrere Adreßräume
eingespiegelt werden.

Wenn nun die beiden Anwendungsprozesse Änderungen vorneh-
men, z.B. beide fügen ein neues Dokument in das Dokumentverzeich-
nis ein, entstehen zwei Varianten der Seite; die lokalen Änderungen
müßten beim Zurückschreiben gemischt werden. Das DBMS kann
dies aber i.a. nicht, weil es die Logik der Applikation nicht kennt.
Wenn in unserem Beispiel zufällig beide neuen Dokumente den glei-
chen Namen bekommen hätten, läge sogar ein inhaltlicher Konflikt
vor. Diese Probleme sind durch Mischen nicht lösbar, d.h. die Kopi-
en der Seiten müssen gleichgehalten werden. Hierzu muß ein Prozeß
bei einem Schreibzugriff andere Prozesse über die Änderung be-
nachrichtigen, hierzu ist eine zeitaufwendige Prozeßkommunikation
erforderlich.

Ferner müssen die Anwendungsprozesse durch Concurrency-Con-
trol-Mechanismen, i.d.R. Sperren, voreinander geschützt werden.
Die entscheidende Frage ist hier die Granularität der Sperreinheiten.
Wählt man diese zu grob (Beispiel: die Datenbank ist nur komplett
sperrbar), wird die Parallelität zu sehr reduziert. Wählt man fein-
körnigere Sperreinheiten, z.B. einzelne atomare Objekte, so muß vor
dem ersten Zugriff zu einem Objekt eine Sperre eingerichtet wer-
den. Die Gesamtmenge aller Sperren muß zentral verwaltet werden,
d.h. auch hier sind wieder zeitaufwendige Prozeßkommunikationen
erforderlich.

6. Recovery: Immer, wenn der Anwendungsprozeß eine Transaktion
beendet, müssen die modifizierten Daten sofort zum Datenbank-Ser-
verprozeß übertragen werden, dort müssen Recovery-Daten erzeugt
und Sperren freigegeben werden usw. Ferner müssen ggf. Indexe, die
von den Änderungen betroffen sind, aktualisiert werden. Zusammen
mit der ohnehin langsamen Übertragung der Daten zwischen den
Prozessen (vgl. Abschnitt 3 in [DBSA]) sind diese Aufwände domi-
nierend, d.h. die eingesparte Konversion der Daten führt tatsächlich
nur zu marginalen Performance-Gewinnen. Dies gilt insb. für viele
konventionelle Anwendungen, bei denen in einer Transaktion immer

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 28

nur wenige Tupel bzw. Objekte erzeugt oder modifiziert werden.
Wegen des Aufwands für die Datenübertragungen und die

Recovery-Mechanismen ist es sinnvoll, das Zurückschreiben der Da-
ten durch die Applikation steuern zu lassen; die Persistenz ist dann
nicht mehr völlig transparent, der zusätzliche Programmieraufwand
ist aber gering.

Quintessenz der vorstehenden Betrachtungen ist, daß die klassi-
schen Leistungen eines DBMS ihren Preis haben und daß die “Effizienz”
der seitenorientierten Verfahren darin besteht, diese Leistungen nicht
zu erbringen. Je nach Anwendungskontext können diese Leistungen
in der Tat unnütz sein, man sollte sich aber über diesen Verzicht auf
bestimmte Leistungen im klaren sein.

7 Märkte und Standards

Die Liste der in Abschnitt 2 gewünschten Merkmale von OODBMS ist
schon lang und läßt sich noch beliebig fortsetzen. Die resultierenden Sy-
steme werden immer komplexer, was einige sehr negative Konsequenzen
hat:

– Ihre Implementierung immer aufwendiger, also teurer. Es gibt bis
heute kein System, das alle o.g. Forderungen komplett erfüllt.

– Die Zeit, bis eine Implementierung ausgereift und stabil ist, wird
immer länger, und der Lernaufwand für Anwendungsentwickler wird
immer größer. Beides ist nicht gerade akzeptanzfördernd.

Den hohen Kosten steht eine relativ kleine Zahl von Benutzern ge-
genüber, die diese Systeme wirklich ausnutzen können. Kommerziell
überlebensfähig waren daher nur ganz wenige der vielen, besonders An-
fang bis Mitte der 80er Jahre entwickelten Systeme. Überlebt haben
vor allem objektrelationale Systeme, deren Basis ein erfolgreiches und
ausgereiftes DBMS-Produkt ist. Generell kann man sagen, daß sich an-
fängliche Erwartungen, objektorientierte DBMS würden auf Dauer die
konventionellen DBMS ablösen, nicht erfüllt haben.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 29

Für das Entstehen eines Marktes sind natürlich Standards sehr
wichtig; einschlägige Standardisierungsvorhaben der ISO (International
Standards Organisation) sind:

– SQL3: hierbei handelt es sich um Erweiterungen von SQL2 um
ADTs, rekursive Verbunde, Trigger und weitere o.g. Merkmale.

– IRDS und PCTE: hierbei handelt es sich um OODBMS, die spe-
ziell als Basis von Software-Entwicklungsumgebungen konzipiert
wurden, wobei IRDS an Data-Dictionary-Systemen und Mainframe-
Kontexten orientiert war, PCTE an den Verhältnissen in Netzwerken
aus UNIX-Workstations. Beide Standards konnten sich nicht durch-
setzen.

– Die ODMG-Standards [Ca+99]: Die ODMG (Object Data Ma-
nagement Group) ist eine Vereinigung der wichtigsten Hersteller
von OODBMS. Dieser Standard wird von einigen Produkten zumin-
dest teilweise implementiert. Die Standards bestehen aus folgenden
Teilen:

– einem Objektmodell (OM), das grundlegende Konzepte wie Ob-
jekt, Typ. Attribut usw. definiert.

– einer Objekt[typ]definitionssprache (object definition language;
ODL), die vergleichbar ist mit der DDL klassischer DBMS und
mit der Schemata notiert werden können. Neben den Datenstruk-
turen (Objekttypen, Attribute usw.) werden auch Signaturen
von Operationen definiert.

– einer Abfragesprache für Objektbanken (object query language;
OQL), die sich teilweise an die Syntax von SQL anlehnt.

– Sprachanbindungen für die Sprachen C++, Java und Smalltalk.
– einer Sprache zur Definition von Objekten im Sinne von Instan-

zen von Objekttypen (object interchange format; OIF): Mit Hilfe
dieser Sprache können Datenbankinhalte in eine Datei geschrie-
ben und von aus wieder in einer Objektbank eingelesen werden.
So können u.a. Datenbankinhalte von einer Datenbank in eine
andere transportiert werden.

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 30

Objektrelationale DBMS. Die Grundmotivation objektrelationa-
ler DBMS (ORDBMS) besteht darin, ein erprobtes relationales DBMS
um Merkmale zu erweitern, die die Anforderungen der Objektorien-
tierung zumindest teilweise erfüllen; gleichzeitig soll hierbei konptuelle
Klarheit und die präzise mathematische Definition des relationalen
Datenbankmodells nicht unterminiert werden.

Ein ORDBMS ist immer auch ein klassisches relationales DBMS;
ein Anwender kann also die meist umfangreiche Sammlung von Anwen-
dungen, die auf dem relationalen Modell und den zugehörigen Sprachen
(wie SQL) und Schnittstellen basieren, unverändert weiterbenutzen
und objektorientierten Erweiterungen punktuell dort einsetzen, wo sie
wirkliche Vorteile bringen.

Praktisch alle großen relationalen DBMS-Produkte bieten heute ob-
jektorientierte Erweiterungen an und können als ORDBMS bezeichnet
werden. Der Umfang und die konkrete Ausgestaltung der Erweiterungen
ist nicht einheitlich; Beispiele sind:

– benutzerdefinierte Attributtypen
– abgeleitete Attribute, die durch eine Abfrage definiert sind
– automatisch vergebene Surrogate
– benutzerdefinierte Funktionen
– Typhierarchien
– erweiterte Triggermechanismen
– lange Felder (binary large objects)

ORDBMS haben deutlich höhere Chancen als reine OODBMS, zu
stabilen Produkten zu werden und am Markt zu überleben.

Literatur

[At+89] Atkinson, M., Bancilhon, F. and DeWitt, D. et al.: The object-
oriented database system manifesto; Proc. First Conf. Deductive
and Object-Oriented Databases, Kyoto, Japan; December 1989

[Ca+99] Cattel, R.G.G.; et al.: The Object Data Standard, ODMG 3.0;
Morgan Kaufmann Publishers; 1999

c©2004 Udo Kelter Stand: 18.04.2004

Objektorientierte Datenbanksysteme 31

[DBSA] Kelter, U.: Lehrmodul “Architektur von DBMS”; 2001
[DVS] Kelter, U.: Lehrmodul “Datenverwaltungssysteme”; 2002

c©2004 Udo Kelter Stand: 18.04.2004

Index
5-Schichten-Architektur, 13

Abfragesprache, 7, 13
Basismengen, 18

Applikationsserver, 11
Architektur, 10

Beziehung, 15, 17, 24

Compiler, 17, 18, 26

Datenabstraktion, 7
Datenkapselung, 8, 11
Datenmodellierung, 4
DBMS

-Serverprozeß, 10, 22, 28
nichtkonventionelles, 5
objektorientiertes, 6
objektrelationales, 6, 30

Fachlogik, 11

heterogene Plattformen, 18
Heterogenität, 26

impedance mismatch, 5, 7, 12
Information Retrieval, 4
IRDS, 29

Kapselung, 3, 7, 9
Sicherheit, 11

komplexer Wert, 17, 22
komplexes Objekt, 6, 13

gemeinsames Teilobjekt, 14
generische Operation, 14
Zyklen, 14

Komponente, 14
Komponentobjekt, 14, 15

Konsistenz, 4, 8
Konversion, 12, 23

Objekt
aggregiertes, 13
komplexes, 13
Name, 21
Persistenzfestlegung, 20

Objektidentität, 6, 16
Objektorientierung, 6
Objektreferenz, 14, 15
ODL, 29
ODMG-Standards, 29
OIF, 30
OM, 29
Operation, 9
OQL, 29
ORDBMS, 30

PCTE, 15, 29
Performance, 4, 10, 18, 28
persistente Programmiersprache, 6, 19
persistente Wurzel, 20
Persistenzmechanismus, 21, 22
pointer swizzling, 24
Polymorphie, 7
Primärindex, 26

Recovery, 27
referentielle Integrität, 15
rekursive Datenstrukturen, 4

Schema, 7, 8
Schemaevolution, 5, 7, 8
Sektor, 22, 24, 25
Sicht, 26
Sperre, 27

32

Objektorientierte Datenbanksysteme 33

Sprachunabhängigkeit, 26
SQL3, 29
stored procedures, 10
Surrogat, 16, 21

Direktzugriff, 16

Transaktion, 5, 7, 27
lange, 7

transiente Daten, 19
Typkonstruktor, 14
Typsystem, 5, 18, 19

Homogenität, 12

Version, 7

Zugriffsschutz, 5

c©2004 Udo Kelter Stand: 18.04.2004

	Nichtkonventionelle Anwendungen
	Eigenschaften objektorientierter DBMS
	Datenkapselung
	Motivation
	Implementierungssprachen und Ausführungsort von Operationen

	Objekte und Beziehungen
	Homogenität der Typsysteme
	Komplexe Objekte
	Beziehungen
	Objektidentität
	Objekte vs. Werte

	Vererbung
	Persistente Programmiersprachen
	Trennung persistenter und transienter Daten
	Bindung persistenter Objekte an Programmausführungen
	Persistenzmechanismen
	Grundformen
	Seitenorientierte Persistenzmechanismen

	Märkte und Standards
	Literatur
	Index

