OMS-orientierte Werkzeugarchitekturen

Udo Kelter

15.11.1999

Zusammenfassung dieses Lehrmoduls

Durch Einsatz eines Objektmanagementsystems (OMS) soll im Prin-
zip der Aufwand fiir die Realisierung von Werkzeugen reduziert werden
und/oder die Qualitdt der Werkzeuge verbessert werden. In diesem
Lehrmodul untersuchen wir, welche Dienste des OMS in diesem Sinne
ausnutzbar sind und wie die Werkzeuge beschaffen sein miissen, damit
sie diese Dienste iiberhaupt effektiv ausnutzen konnen. Hierzu disku-
tieren wir OMS-orientierte Werkzeugarchitekturen. Weiter skizzieren
wir Anforderungen, die an einige Dienste von OMS zu stellen sind.

Vorausgesetzte Lehrmodule:

obligatorisch: - Vorgehensmodelle
- Software-Entwicklungsumgebungen
- Integrationsrahmen fiir Software-Entwicklungsum-
gebungen

Stoffumfang in Vorlesungsdoppelstunden: 1.3

OMS-orientierte Werkzeugarchitekturen 2

Inhaltsverzeichnis
3
2_Potentiell ausnutzbare OMS-Dienstel 4

13 Konventionelle Werkzeugarchitekturen| 6
3.1 Merkmalel 6

6

8

3.2 Probleme konventioneller Werkzeugarchitekturen|
3.3 Management temporarer Objektel

4 OMS-orientierte Werkzeugarchitekturen| 9
4.1 Direkte Propagation von Anderungen| 9
4.2 Redundanzfreie Architekturenl. 10
4.3 Generatorenl. e e e 11
4.4 Interpreterarchitekturen| 12
4.5 Konstruktion graphischer Bedienschnittstellen|. 12

[6"Anforderungen an ein OMS in OMS-orientierten Architek- |

[—turen 14
b1 Performancel.o oo 14
.2 Werkzeuge als Bindemodule]o 15
b.3 Problempunkte bei der Ausnutzung von OMS-Leistungen| . . 18

LitBrafud 21

Indexd 21

©1999 Udo Kelter Stand: 15.11.1999

Dieser Text darf fiir nichtkommerzielle Nutzungen als Ganzes und unveréndert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Verdnderung und Uberfiihrung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist iiber http://kltr.de erreichbar.

OMS-orientierte Werkzeugarchitekturen 3

1 Einleitung

In diesem Lehrmodul gehen wir von der Annahme aus, daft die Daten
einer SEU in einem Objektmanagementsystem (wie z.B. H-PCTE) ver-
waltet werden sollen, und untersuchen die Frage, welche Konsequenzen
dies fiir die Architektur von Werkzeugen, insb. Editoren, in einer SEU
hat, oder anders gesagt, wie sich ein OMS in die Gesamtarchitektur
einer SEU einordnet.

Ein zentrales Ziel eines OMS sollte es sein,

1. die Realisierung von SEU bzw. Werkzeugen zu vereinfachen und
insbesondere den Aufwand zur Programmierung und Wartung von
Werkzeugen zu reduzierenﬂ indem komplexe Datenverwaltungsfunk-
tionen nur einmal im OMS realisiert werden und nicht in jedem
Werkzeug erneutﬂ Eine Aufwandsreduktion ist moglich, indem
Teilprobleme bei der Werkzeugrealisierung durch Dienstleistungen
des OMS gelost werden. Der Nutzeffekt eines OMS sollte deutlich
sichtbar sein, moglichst in gleicher Weise wie bei konventionellen
DBMS und konventionellen Anwendungen, wo viele Standardpro-
bleme durch eine einfache und kurze Anfrage gelést werden konnen,
wahrend ohne ein DBMS ein léngliches und fehlertréachtiges Pro-
gramm geschrieben werden miifste.

2. bessere Werkzeuge zu ermoglichen, d.h. es zu erlauben, Funktionen
und Eigenschaften von Werkzeugen zu realisieren, deren Realisierung
ohne ein OMS zu aufwendig ware.

3. einen hohen Grad der Integration der Werkzeuge einer SEU zu
ermoglichen.

Mit anderen Worten sollte ein Entwickler einer SEU einen mefibaren
Nutzen erkennen, wenn er ein OMS verwendet (andernfalls verwendet

1im Vergleich zur Benutzung von Dateisystemen.

2Dies gilt ganz allgemein fiir application frameworks; bei der Realisierung von
SEU wird man speziell fiir graphische Werkzeuge neben einen OMS auch ein UIMS
und ggf. weitere Basissysteme einsetzens. auch [IRA].

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 4

er namlich keins). Letztlich sind die vorgenannten Punkte software-
technische Ziele fiir eine spezielle Klasse von Software, ndmlich gerade
SEU.

Aus den vorstehenden Uberlegungen folgt, daf die von einem OMS
angebotenen Funktionen moglichst direkt die Probleme bei der Ver-
waltung von Entwicklungsdaten einzelner Werkzeuge 16sen sollten —
dies kann man als eine Anforderung an ein OMS ansehenﬂ Umge-
kehrt ergeben sich aber auch Anforderungen an die Architektur von
SEU! Um es an einem krassen Beispiel zu zeigen: wenn man die lan-
gen Felder, die OMS iiblicherweise anbieterﬂ dazu mifbraucht, ein
Dateisystem zu simulieren, und eine SEU in altgewohnter Weise auf
diesem Ersatz-Dateisystem realisiert, ist natiirlich kein Vorteil durch
das OMS gegeniiber einem Dateisystem zu erwarten. Man mufs also
solche SEU-Architekturen anstreben, die es erlauben, die Leistungen
eines OMS tatsdchlich auszunutzen; solche SEU-Architekturen nennen
wir “OMS-orientiert”.

2 Potentiell ausnutzbare OMS-Dienste

Beispiele fiir Problemkomplexe, die bei der Konstruktion von Werkzeu-
gen auftreten und die potentiell durch Dienste und technische Merkmale
von OMS lésbar erscheinen, sind:

- die Datenintegration verschiedener Werkzeuge mit Hilfe externer
Sichten

- die Uberwachung der Konsistenz von Dokumenten mit Hilfe von
Schemamechanismen oder Triggern

3Tatséchlich fallt es sehr schwer, diese Anforderung zu konkretisieren, ohne sich
auf eine bestimmte Werkzeugarchitektur und die spezielle Art, wie diese Werkzeuge
auf den Daten operieren, festzulegen.

Unabhéngig davon erfiillen real existierende OMS nur selten alle Anforderungen,
die man aus der Analyse des Bedarfs unterschiedlicher Werkzeuge ableiten kann.
Bei den PCTE-Standards fehlen z.B. mengenorientierte Abfragemaglichkeiten.

4In H-PCTE sind z.B. alle String-Attribute an Objekten lange Felder: ihre Lin-
ge ist praktisch nicht begrenzt, und sie konnen zeichenweise gelesen und geschrieben
werden.

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 5

- Zugriffskontrollen, die moglichst Gruppenstrukturen und rollenori-
entierte Rechte unterstiitzen sollten

- Synchronisation von parallelen Zugriffen mehrerer Werkzeugprozesse
auf das gleiche Dokument, wobei verschiedene Grade denkbar sind,
in denen Werkzeugprozesse voneinander isoliert werden.

- Notifizierung der Werkzeugprozesse iiber Anderungen an den Daten,
die sie zuvor gelesen haben.

Speziell bei der Konstruktion von (graphischen) Editoren und An-
zeigewerkzeugen erscheinen noch folgende Dienste des OMS potentiell
ausnutzbar:

- die selektive Anzeige von Dokumenten mit Hilfe externer Sichten

- Generierung bestimmter Meniis / Kommandos der Editoren aus dem
Datenbankschema

- die Realisierung von Undo-Kommandos in Editoren mit Hilfe von
eines partiellen Rollbacks von Transaktionen

- die Propagation von Anderungen zwischen Fenstern mit Hilfe eines
Benachrichtigungsmechanismus

— Suche nach relevanten Dokumenten oder Dokumentteilen mit Hilfe
von Abfragesprachen

Der Umfang der Leistungen, die bei der Konstruktion von Werk-
zeugen ausnutzbar erscheinen, ist auf den ersten Blick grofs; tatséchlich
sind jedoch vielerlei Randbedingungen einzuhalten, um eine tatséchliche
Aufwandsreduktion bei der Konstruktion von Werkzeugen zu erzielen.

Eine erste Randbedingung betrifft die Verwaltung von Dokumenten
im Hauptspeicher von Werkzeugen. Wir wollen im folgenden zunéchst
zeigen, dal die Leistungen eines OMS mit konventionellen Werkzeugar-
chitekturen nicht effektiv ausgenutzt werden kénnen.

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 6

3 Konventionelle Werkzeugarchitekturen

3.1 Merkmale

Konventionelle Werkzeuge speichern Dokumente in Dateien, z.B. je
ein OOA-Diagramm in einer Datei. Wir sprechen hier von einer grob-
granularen Datenmodellierung. Der Dateiinhalt hat eine bestimmte
Syntax, mit deren Hilfe die Feinstruktur des Dokuments rekonstruiert
werden kann. Allerdings konnen die Funktionen eines Werkzeugs (z.B.
das Erzeugen oder Loschen einer Klasse beim Editieren eines OOA-
Diagramms) nicht direkt auf dem Dateiinhalt durchgefiihrt werden;
stattdessen mufs zunéchst der Dateiinhalt in eine temporéire Kopie im
Hauptspeicher des Werkzeugprozesses konvertiert werden, bei Quellpro-
grammen beispielsweise in einen Syntaxbaum (s. Bild . Die temporére
Kopie eines Dokuments wird beim “Sichern” oder “Schlieffen” des Do-
kuments wieder zuriickkonvertiert.

fetl fc}? fetn

Hauptspeicher

R P/
= / ; des Werkzeugs
O O\O

[}
parse J \unparse
\ persistenter

4 dateil ‘ ‘ datei2 ‘ Speicher
(Dateisystem)

Abbildung 1: Arbeiten auf Dateien

3.2 Probleme konventioneller Werkzeugarchitekturen

Die grobgranulare Datenmodellierung und das mit einhergehende Ar-
beiten auf temporaren Kopien weist eine ganze Reihe von Nachteilen

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 7

auf, die hier aus Platzgriinden nur teilweise aufgezahlt werden sollen.

1. Zunéachst ist die Datenunabhéangigkeit der Werkzeuge sehr gering.
Sofern z.B. ein neues Werkzeug in eine Umgebung integriert wer-
den soll und dieses Werkzeug spezielle zuséatzliche Daten innerhalb
von bereits vorhandenen Dokumenttypen benutzt, mufs die Syn-
tax der Dateien entsprechend erweitert werden. Daher miissen die
Parser und Unparser in allen betroffenen Werkzeugen veréandert wer-
den, was iiberhaupt nicht moglich ist, wenn die Werkzeuge nicht
in Quellform verfiigbar sind. Weiterhin entstehen erhebliche Pro-
bleme beim Transport der zuséatzlichen Daten durch vorhandene
Werkzeuge hindurch.

2. Erfahrungsgeméf ist auch die Datenintegration mehrerer Werkzeuge
nicht optimal oder nur unter ganz erheblichem Aufwand zu errei-
chen, weil hierzu viele Konvertierer, die dquivalente Daten zwischen
unterschiedlichen Formaten umformen, konstruiert werden miissen,
was aber nicht immer vollig verlustfrei moglich ist.

3. Ein weiterer, in der Praxis ganz entscheidender Nachteil ist, dafs
diese Architektur keine inkrementelle Uberpriifung dokumentiiber-
greifender Konsistenzkriterien erlaubt. Nehmen wir als Beispiel ein
Programmsystem an, dessen Modulstruktur in einem Modulstruk-
turdiagramm beschrieben wird, das in einer Datei gespeichert ist.
Fiir jedes Modul mége das Quellprogramm in einer weiteren Datei
gespeichert sein. Wenn nun mit einem Editor der Typ eines Para-
meters in dem Modulstrukturdiagramm geéndert wird, muf in den
zugehorigen Quellprogrammen diese Anderung nachvollzogen bzw.
bei allen Aufrufen der betroffenen Prozedur gepriift werden, ob der
aktuelle Parameterwert kompatibel mit dem neuen Typ des forma-
len Parameters ist. Fiir derartige Priifungen nehmen wir ein anderes
Werkzeug an (“Priifer”).

Bei grobkérniger Datenmodellierung muft nun der Quelltext des
Moduls wieder linearisiert und in die Datei zuriickgeschrieben wer-
den; anschlieftend liest und analysiert das Priifprogramm den Inhalt
dieser Datei und ggf. den Inhalt Dutzender anderer Dateien, da
typischerweise alle Konsistenzkriterien tiberpriift werden miissen,

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 8

nicht nur diejenigen, die mit dem einen verdnderten Parametertyp
zusammenhéngen.

4. Weil so konstruierte Umgebungen nicht inkrementell arbeiten konnen,
arbeiten sie oft extrem ineffizient. In der Praxis werden dokument-
iibergreifende Priifungen deshalb moglichst aufgeschoben oder ganz
unterlassen und Fehler u.U. iiberhaupt nicht oder erst in einem
spaten Stadium entdeckt.

Um jetzt Dateien als Speichermedium nicht zu sehr zu verteufeln,
sei gleich zugegeben, daf vielfach gar keine Alternative verfiighar ist
und dafs auch OMS Nachteile haben, die wir spéter besprechen werden
und die die Einsatzmoglichkeiten von OMS einschrénken.

3.3 Management temporirer Objekte

Bei konventionellen Werkzeugen miissen die temporaren Kopien der
Dokumente im Hauptspeicher verwaltet werden; hierzu beinhaltet die
Architektur konventioneller Werkzeuge naheliegenderweise fiir jeden
Dokumenttyp, mit dem das Werkzeug arbeitet, ein Modul, das die tem-
poriren Kopien von Dokumenten im Hauptspeicher verwaltet, s. Modul
MTO (Management temporérer Objekte) in Bild[2} Es handelt sich hier
um ein klassisches Datentyp-Modul, das alle elementaren Operationen
anbietet, mit denen man Exemplare dieses Dokumenttyps anlegen, ver-
andern, Einzeldaten auslesen und ganz aus einem Dateinhalt aufbauen
oder dorthin zuriickschreiben kann.

Ersetzt man nun in dieser Architektur das Dateisystem durch ein
OMS, so ergibt sich der neueste Stand der Dokumente nur noch aus
den temporidren Kopien! An dieser Stelle ist es wichtig, sich daran zu
erinnern, daf bei der Softwareentwicklung fast standig irgendwelche
Entwicklungsdokumente verdndert werden. Das OMS enthélt deshalb
sehr bald veraltete Daten und sdamtliche Leistungen des OMS, wie z.B.
Abfragesprachen, werden praktisch wertlosﬂ

5Die gleichen Nachteile treten ein, wenn man zwar ein OMS verwendet, aber aus
diesem nur per check-out und check-in Daten zum bzw. von Werkzeug libertragt.

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 9

Benutzungsschnittstelle

Dokumentschnittstelle

Management temporérer Objekte
(MTO)

“Systemaufrufe”

Dateisystem

Abbildung 2: Konventionelle Werkzeugarchitektur

4 OMS-orientierte Werkzeugarchitekturen

4.1 Direkte Propagation von Anderungen

Will man die Leistungen eines OMS ausnutzen, muf man dafiir sorgen,
daf die Objektbank die richtigen Daten enthélt. Aus dieser und den
vorstehenden Beobachtungen ergeben sich zwei wesentliche Merkmale
OMS-orientierter SEU-Architekturen:

1.

Die Werkzeuge einer SEU miissen alle relevanten Anderungen an den
Dokumenten, namentlich solche,die ein Benutzer durch eine Einga-
be veranlafit hat, inkrementell und sofort in das unterliegende OMS
weitergeben.

Dies schliefst nicht aus, daf in den Werkzeugen trotzdem noch Ko-
pien der Daten vorhanden sind, dies kann aus Performance-Griinden
unverzichtbar sein.

. Die Entwicklungsdaten miissen feingranular modelliert werden, d.h.

die Feinstruktur der Dokumente mufs vollstidndig im OMS nachge-
bildet werden. Hierfiir gibt es mehrere Griinde:

- Viele Dienste eines OMS (Abfragen, Sperren, Rollback u.a.) sind

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 10

nur denkbar, wenn das OMS die Feinstruktur der Daten kennt.

— Theoretisch kann man auch bei einer grobgranularen Datenmo-
dellierung bei jeder relevanten Anderung an einem Dokument
dieses komplett zuriickschreiben; dies wiirde aber zu erheblichen
Performance-Problemen fiithren (vgl. unten die Diskussion der
Performance-Probleme bei redundanzfreien Architekturen).

Ein weiterer Nachteil der in Bild [2] gezeigten Architektur ist, daf der
Aufwand zur Implementierung der Werkzeuge durch den Einsatz eines
OMS praktisch nicht reduziert wird: die Parser und Unparser, die zwi-
schen Dateiinhalten und Hauptspeicherdatenstrukturen konvertieren,
werden ersetzt durch andere Software, die zwischen Datenbankinhalt
und Hauptspeicherdatenstrukturen konvertiert. Diese Software ist aus
Sicht von Werkzeugentwicklern moglicherweise sogar schwerer (!) zu
realisieren als ein Parser und Unparser fiir eine einfache Syntax?] weil
hierzu Datenbankschemata entwickelt und ein kompliziertes API des
OMS erlernt werden muf.

Wegen der komplexen Struktur der meisten Dokumenttypen werden
die MTO-Module relativ umfangreich, typischerweise in der Gréfsenord-
nung von 3000 bis 7000 Zeilen Quelltext. Da in einer Umgebung meist
mehrere Dokumenttypen auftreten (typischerweise 8 - 12), stellen die
MTO-Module ein erhebliches Implementierungs- und Wartungsproblem
dar.

I.f. skizzieren wir mehrere denkbare Losungsansétze.

4.2 Redundanzfreie Architekturen

Eine radikale Loésung besteht darin, die MTO-Module im Prinzip
schlichtweg zu vermeiden und direkt auf den Daten in der Objekt-
bank zu arbeiten (s. Bild . Diese Architektur ist in doppelter Hinsicht
redundanzfrei: die doppelte Datenhaltung in der Objektbank und im
Hauptspeicher und die doppelte Realisierung von Dienstleistungen im
OMS und durch die Applikation werden vermieden.

5Womit nicht gesagt sein soll, es sei trivial, einen Compiler zu schreiben...

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 11

fetl fet2 fetn Hauptspeicher
des Werkzeugs

' v) persistenter
O/O N ; Speicher
N N (OMS)

Abbildung 3: Direktes Arbeiten auf der Objektbank

Da hier noch nicht einmal Lesepuffer vorhanden sind, ist diese Lo-
sung aus Performance-Griinden allerdings nur selten anwendbar, i.w.
wenn nur wenige Objekte angezeigt werdenﬂ

4.3 Generatoren

Ein weiterer naheliegende Ansatz besteht darin, die MTO-Module zu
generieren. Als Ausgangangsbasis kommen die Datenbankschemata in-
frage. Alternativ kénnen die Datenbankschemata und die MTO-Module
aus einer gemeinsamen Quelle generiert werden.

Nachteilig an der Generierung ist, daf die erforderlichen Generatoren
(genaugenommen sind dies Ubersetzer, die Spezifikationen in Quellcode
transformieren) einen signifikanten Implementierungsaufwand verur-

"Bei graphischen Editoren und Anzeigewerkzeugen erweist sich hier das Neu-
anzeigen von Bildschirmen, bei dem jeweils alle Objekte eines Dokumente gelesen
werden miissen, als “Killeroperation” Wenn ein Benutzer das Fenstersystem so ein-
gestellt hat, dafl das Fenster, iiber dem sich der Mauszeiger befindet, nach oben
geholt wird, wird diese Operation sehr haufig ausgelost.

Probleme sind auch bei Verschiebeoperationen in Graphiken zu erwarten. Be-
trachten wir als Beispiel ein netzartiges Diagramm (z.B. ein ER-Diagramm) und
den Fall, dak man die Koordinaten eines Knotens oder die Stiitzpunkte einer Ver-
bindungslinie in einem Attribut speichert und einen Knoten oder Stiitzpunkt mit
der Maus verschiebt: dies fiihrt zu einer hohen Rate von Ereignissen, bei denen
die neuen Koordinaten in der Objektbank gespeichert werden miissen. Hinzu kom-
men weitere Leseoperationen, wenn aufgedeckte Fensterteile neu gezeichnet werden
miissen. In solche Fillen ist allerdings denkbar, nur die Stiitzpunkte in Puffern zu
speichern, wiahrend die restlichen Dokumentdaten nicht gepuffert werden.

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 12

sachen und daf sie wenig flexibel sind, denn fiir jede Anderung im
generierten Code sind auch die Generatoren zu dndern.

Problematisch sind insb. Ausnahmefélle und semantische Besonder-
heiten einzelner Dokumenttypen, die entweder den Generator aufblahen
oder, falls man hierfiir nachtréglich den generierten Code &ndert, zu
praktischen Problemen fiihren.

4.4 Interpreterarchitekturen

Anstatt Code der MTO-Module mit Hilfe von Generatoren aus Spezifi-
kationen zu generieren, kann man prinzipiell auch die Spezifikationen
dynamisch interpretieren. Der Interpreter erscheint dann als ein ge-
nerisches MTO-Modul, das durch die Datenbankschemata und ggf.
zusdtzliche Steuerparameter gesteuert wird. Die Steuerparameter konn-
ten z.B.

— in einer Resource-Datei

- als Programm-Konstanten
- in Objekten der Objektbank (!)

verwaltet werden.

Auf Interpreterarchitekturen trifft der Nachteil der mangelnden Fle-
xibilitat genauso zu wie auf Generatoren. Realisiert man den Interpreter
allerdings in einer objektorientierten Sprache, konnen Ausnahmefél-
le noch vergleichsweise einfach durch geeignetes Uberschreiben von
Operationen integriert werden.

4.5 Konstruktion graphischer Bedienschnittstellen

Die vorstehenden Uberlegungen abstrahierten vom konkreten Werkzeug-
typ. Bei der wichtigen Klasse der (heute meist graphischen) Editoren
und Anzeigewerkzeuge ergeben sich einige Besonderheiten.

Setzt man zur Konstruktion der graphischen Bedienschnittstellen
ein UIMS ein, so muf man fiir dieses doch wiederum temporéare Ko-
pien erzeugen; UIMS arbeiten nédmlich normalerweise auf Basis des

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 13

Model-View-Controller-Paradigmas, und das Model darin ist eine Dar-
stellung des angezeigten Dokuments im Hauptspeicher. Eine vollig
redundanzfreie Architektur ist hier nicht ohne massive Eingriffe in das
UIMS méglich und praktisch unrealistisch. Am ehesten kann man die
oben vorgestellen Interpreterarchitekturen mit UIMS kombinieren, da
ghnliche Konzepte auch in den UIMS eingesetzt werden.

Weiter zielten unsere bisherigen Uberlegungen nur auf die Aufwands-
reduktion bei der Konstruktion der MTO-Module; die Konstruktion
der Bedienschnittstellen vieler Editoren und Anzeigewerkzeuge stellt
aber ein ganz dhnliches Aufwandsproblem dar. Fiir jeden Editor muf
namlich die Bedienschnittstelle neu realisiert werden, da normalerweise
dokumenttypspezifische Besonderheiten auftreten. Beispiele fiir solche
Besonderheiten in graphischen Editoren fiir netzartige Diagramme sind:

- Typischerweise gibt es Meniis, durch die man Elemente der Gra-
phen (z.B. Klassen in OOA-Diagrammen, Entitatstypen in ER-
Diagrammen oder Zusténde in Zustandsiibergangsdiagrammen) er-
zeugen kann. Die erlaubten Knotentypen und ihre Darstellungen
sind dokumenttypspezifisch.

- Analog gibt es Mentieintriage, durch die Verbindungen zwischen den
Elementen erzeugt werden konnen, teilweise mit speziellen Dar-
stellungsformen und Beschriftungen (z.B. eine Verbindung zwischen
einem Entitatstyp und einem Beziehungstyp in einem ER-Diagramm,
gef. mit Kardinalititen).

- Beim Erzeugen von Verbindungen miissen vielfach spezielle Konsi-
stenztests durchgefithrt werden (z.B. kénnen in einem ER-Diagramm
nicht zwei Beziehungstypen mit einer Kante verbunden werden, Na-
men innerhalb eines Diagramms miissen oft eindeutig sein usw.).
Sowohl die Tests als auch die Fehlermeldungen oder sonstigen Inter-
aktionen bei Auftreten eines Fehlers sind dokumenttypspezifisch.

- Es kann dokumenttypspezifische Kommandos geben. Beispielswei-
se ist es fiir das Bearbeiten von Klassendiagrammen sehr praktisch,
wenn man mit einer einzigen Interaktion ein Attribut von einer Klas-
se zu einer anderen verschieben kann (z.B. indem man das Attribut

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 14

anklickt, “festhalt”; iber die andere Klasse verschiebt und dort “fal-
len 14#t”) oder aus einem Attribut eine neue Komponentenklasse,
die zundchst nur dieses eine Attribut enthélt, machen kann.

Es liegt natiirlich nahe, einen generischen Kern fiir alle Editoren
zu bilden und die dokumenttypspezifischen Anteile in Steuerparameter
einzukapseln, die der generische Kern interpretiert.

Wegen der Komplexitdt der dokumenttypspezifischen Anteile ist
aber der Realisierungsaufwand bei diesen Vorgehensweisen erheblich.
Besonders unschon ist, dafl inhaltliche Redundanzen zwischen diesen
Steuerstrukturen und dem Objektbankschema auftreten: die Meniiein-
triage entsprechen exakt bestimmten Objekt- oder Beziehungstypen in
der Objektbank. Es liegt nahe, diese Redundanz zu vermeiden, indem
man das Datenbankschema selbst als Steuerungsparameter verwendet.

5 Anforderungen an ein OMS in OMS-
orientierten Architekturen

5.1 Performance

Da die architektonischen Vorteile des direkten Arbeitens auf der Objekt-
bank und der feinkérnigen Datenmodellierung offensichtlich sind, stellt
sich die Frage, warum derartige Architekturen bisher kaum realisiert
werden. Ein erste entscheidendes Problem ist die Leistung des OMS.
Die Leistungsanforderungen héngen stark von der Art des Werkzeugs
ab. Syntaxeditoren oder Editoren fiir netzartige Diagramme benoti-
gen eine Leistung von etwa 500 Operationen pro Sekunde, Editoren fiir
sehr komplexe Graphiken oder Simulatoren bendtigen eine Leistung
von 10.000 oder sogar wesentlich mehr Operationen pro Sekundeﬂ (ty-
pische Operationen sind das Lesen oder Schreiben von Attributwerten
oder das Erzeugen oder Loschen von “elementaren” Objekten). Wenn

8Derartige Leistungen sind mit heutiger Datenbanktechnologie nicht erreich-
bar; deshalb betrachten wir diese Anwendungen nicht weiter im Kontext dieser
Architektur.

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 15

man Leistungen in diesen Grofenordnungen erzielen méchte, treten vor
allem zwei Implementierungsprobleme auf:

1. Ein Plattenzugriff dauert selbst bei den heutigen sehr schnellen Plat-
ten grofenordnungsméfig etwa 10 ms. Wenn die Zeit fiir Plattenzu-
griffe nur einen Bruchteil der gesamten Operationsausfithrungszeiten
ausmachen soll, dann darf nur ein Plattenzugriff bei mehreren hun-
dert Operationen auftreten. Praktisch diirfen also iiberhaupt keine
Plattenzugriffe auftreten, das OMS mujf$ als Hauptspeicher-DBMS
realisiert werden.

2. Auf heute erhéltlichen Standardworkstations dauert der Austausch
einer Nachricht zwischen zwei Prozessen etwa 0.2 - 1.0 ms. Wer-
den OMS-Kern und Applikation in eigenen Prozessen ausgefiihrt
- wie bei konventionellen DBMS iiblich -, so fallt allein wegen der
Interprozefkommunikation die Leistung i.d.R. unter 1000 Operatio-
nen pro Sekunde. Hieraus folgt, dafs derzeit, wenn man sehr hohe
Leistungen erreichen will, OMS-Kern (incl. DB-Puffer) und Ap-
plikationen im gleichen Prozeff und insb. im gleichen Arbeitsspeicher
ausgefiihrt werden miissen. Die resultierende Architektur nennen
wir Ein-Prozef$- Architektur.

Ihr gravierendster Nachteil ist ihre Unsicherheit: bei Sprachen
wie C oder C++, die einen beliebigen Umgang mit Zeigern erlauben,
mufs man damit rechnen, daf durch Programmierfehler (oder sogar
absichtlich) von der Applikation auf die Puffer oder den OMS-Kern
zugriffen wird und dort Daten oder Programme verdndert werden.
Wirksame Schutzmafnahmen, die nicht wieder zu Performance-
Verlusten fiihren, sind schwer zu finden [Se93].

5.2 Werkzeuge als Bindemodule

Die Ein-Prozefs-Architektur hat deutliche Auswirkungen auf den Begriff
eines Werkzeugs: Wahrend dieser Begriff klassischerweise so interpre-
tiert wird, daf ein Werkzeug als ausfiihrbares Programm vorliegt, muf
es bei der Ein-Prozefs- Architektur als Bindemodul vorliegen. Die voll-
stdndige Umgebung mufs dann durch Binden dieser Bindemodule und
des OMS-Kerns generiert werden. Dies stellt aber kein ernsthaftes

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 16

Hindernis dar; moderne Betriebssysteme unterstiitzen auferdem das
dynamische Binden, bei dem einzelne Module erst bei ihrer ersten Be-
nutzung zum laufenden Programm hinzugebunden werden. In einer
ersten Naherung kann man sich den Hauptspeicher des SEU-Prozesses
wie in Bild 4] dargestellt vorstellen. Die Module W1 ... W, sollen
einzelne “Werkzeuge” darstellen.

W — W,

lokales OMS =,

Puffer

SEU-Prozefs OMS-Hintergrundprozefs

Abbildung 4: Hauptspeicher eines SEU-Prozesses

Werkzeuge vs. SEU-Komponenten. Der Begriff Werkzeug bzw.
Komponente einer SEU entfernt sich hier etwas von dem, was man nor-
malerweise als Benutzer unter einem “Werkzeug’versteht; er entspricht
vielmehr dem Konzept eines unabhéngig realisierbaren, wiederverwend-
baren Moduls. Der Unterschied zwischen einem Werkzeug aus Benut-
zersicht und einer SEU-Komponente sei am Beispiel eines Werkzeugs
zur Verwaltung von Modulhierarchien erldutert. Ein solches Werkzeug
kénnen wir uns aus folgenden SEU-Komponenten zusammengesetzt
denken:

- Eine erste SEU-Komponente zeigt eine graphische Darstellung der
gesamten Modulhierarchie in einem Fenster an. Hier sind die ein-
zelnen Module nur sehr vergrobert als Rechtecke dargestellt und
es konnen z.B. neue Module erzeugt, Modulnamen verandert und
Import-/Export-Verbindungen eingetragen werden.

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 17

- Eine zweite SEU-Komponente zeigt die Details einer einzelnen Mo-
dulbeschreibung formularartig an und bietet iibliche Editierkom-
mandos an. Diese Komponente kann mehrfach parallel ausgefiihrt
werden, um mehrere Modulbeschreibungen parallel ansehen und
editieren zu kénnen.

- Weitere SEU-Komponenten bieten Funktionen wie Konsistenzprii-
fungen, Drucken, Konversion in andere Darstellung usw. an. Diese
Funktionen laufen originér nicht-interaktiv ab und enden schliefs-
lich mit einem Fehlercode. Aufgerufen werden sie aus den Editoren
heraus (z.B. iiber Meniieintriage) oder iiber einen Browser.

Diese SEU-Komponenten kénnen ebensogut als Teile anderer Werk-
zeuge erscheinen. Die Editoren fiir einzelne Modulbeschreibungen
konnten z.B. auch innerhalb eines “Werkzeugs” zum Programmieren
im Kleinen erscheinen, wenn z.B. die Parameterliste einer exportierten
Funktion gedndert werden mufs. Konsistenzpriifungen kénnten auch
von einem Vorgehensmodelltreiber aufgerufen werden.

Leichtgewichtige Prozesse. Das vorstehende Beispiel des Modulbe-
schreibungseditors zeigt nebenbei, dafs man strikt trennen mufs zwischen
einer SEU-Komponente im Sinne eines Stiicks Software (also dem Bin-
demodul) und Ausfiihrungen dieser Software: die gleiche Komponente
kann namlich mehrfach parallel ausgefiihrt werden. Bei konventionel-
len Werkzeugen geht dies einher mit einem Kopieren der Programme
(in die virtuellen Adrefsriume der ausfithrenden Prozesse). Bei unserer
Ein-Prozefs- Architektur ist dies natiirlich nicht méglich (ein Bindemo-
dul kann nur einmal angebunden werden). Stattdessen bendtigt man
leichtgewichtige Prozesse (threads).

Fir das OMS bedeutet dies, daft es moglich sein mufs, in einem einzi-
gen (“schwergewichtigen”) Betriebssystemprozeft mehrere OMS-Prozesse
zustarten, die unterschiedliche Schemata, Zugriffsrechte usw. haben
kénnen.

Verkompliziert wird die Situation bei graphischen interaktiven Werk-
zeugen dadurch, daf das UIMS oder Fenstersystem selbst in Form meh-
rerer Prozesse ablauft und u.U. davon ausgeht, selbst nach Belieben

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 18

Prozesse oder threads, in denen Benutzerinteraktionen bearbeitet wer-
den, erzeugen und vernichten zu kénnen. Die Details hdngen stark von
technischen Merkmalen des UIMS ab.

5.3 Problempunkte bei der Ausnutzung von OMS-
Leistungen

Wir setzen im folgenden eine OMS-orientierte oder Interpreter-
Architektur voraus und untersuchen, ob und wie unter dieser Annahme
OMS-Leistungen effektiv ausnutzbar sind. Aus der in Abschnitt [2 auf-
gestellten Liste gehen wir vor allem auf Punkte ein, derentwegen die
Werkzeugarchitektur weiter angepafst werden muf oder aus denen sich
weitere Anforderungen an ein OMS ergeben.

Aus Platzgriinden kénnen hier viele Themen nur angerissen werden;
eine detaillierte Behandlung wird auf eigene Lehrmodule vertagt.

Konsistenziiberwachung durch Schemamechanismen: Softwa-
redokumente miissen in korrektem Zustand meist mehr oder weniger
komplexe Konsistenzbedingungen einhalten. Viele DBMS erlauben es,
entsprechende Integritdtsbedingungen in Schemata zu definieren. Die-
se Bedingungen werden bei jeder Datenmanipulation oder beim Ende
einer Transaktion iiberpriift und fithren zur Zuriickweisung der Opera-
tion bzw. zum Rollback der Transaktion. Diese Mechanismen sind nur
sehr begrenzt oder gar nicht brauchbar:

- Ein Benutzer erwartet, wenn eine Inkonsistenz entdeckt wird, nicht
nur eine Meldung, dafs irgendwo irgendein Fehler vorhanden ist,
sondern genaue Hinweise, welcher Fehler wo und in welchem Zusam-
menhang aufgetreten ist, damit er ihn sofort beheben kann.

Schemamechanismen liefern normalerweise nur einen simplen
Fehlercode, aus dem nur grob die Art der Konsistenzverletzung her-
vorgeht, nicht aber, welche Objekte involviert sind und welches
Kriterium verletzt worden ist. Bei nichttrivialen Konsistenzkriteri-
en briauchte man eine Schnittstelle, iber die im Fehlerfall auch eine
komplexe Situationsbeschreibung geliefert werden kann. Derarti-
ge Schnittstellen fehlen normalerweise. Dies hat zur Folge, dafs das

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 19

Werkzeug im Fehlerfall praktisch die gesamte Konsistenzpriifung wie-
derholen muf}, um die betroffenen Objekte zu finden. M.a.W. muf
der komplette Konsistenztest, den das OMS ausfiihrt, im Werkzeug
re-implementiert werden. Es wird also keinerlei Programmierauf-
wand durch das OMS eingespart. Im Gegenteil entsteht das Problem,
daf der Konsistenztest im OMS und die nachprogrammierte Version
moglicherweise nicht vollig einheitlich sind.

- In SEU miissen auch unfertige, inkonsistente Dokumente verwaltet
werden. Inkonsistente Zwischenzusténde treten auch bei klassischen
Applikationen auf, aber nur sehr kurzfristig, so daf man dort das
Problem umgehen kann, indem man die Konsistenztests erst am En-
de einer Transaktion durchfiihrt. Die Zeitrdume, wiahrend der ein
Dokument unfertig und inkonsistent ist, sind wesentlich léngelﬂ und
liegen nicht komplett innerhalb eines Sitzung; daher kann auch nicht
das klassische Transaktionskonzept zur Definition der Zeitpunkte,
an denen Konsistenztests durchgefiihrt werden, heranhiehen.

Wegen dieser Probleme kann man durch Konsistenzbedingungen,
die im Schema definiert werden und die sofort bei jeder Datenmani-
pulationsoperation oder am Ende einer Transaktion iiberpriift werden,
nur sehr einfache Konsistenzbedingungen sinnvoll priifen lassen, die (a)
so wichtig sind, daf man auch eine kurzfristige Verletzung nicht zulas-
sen mochte und die (b) sehr einfach in einer Fehlermeldung erlauterbar
sind.

Weitergehende Kriterien sollten nur auf explizite Anforderung des
Benutzers tiberpriift werden; hierzu eignen sich primédr Abfragen, in de-
nen nach den fehlerhaften Stellen eines Dokuments gesucht wird. Eine
leistungsfahige Abfragesprache ist somit fiir die Konsistenziiberwachung
viel wertvoller als Schemamechanismen.

Realisierung von Undo-Kommandos in Editoren mit Hilfe von
eines partiellen Rollbacks von Transaktionen: Die ist im Prin-
zip ohne grofte Probleme realisierbar, sofern das OMS ein partielles

9Es soll sogar Dokumente geben, die nie fertig werden.

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 20

Rollback auf Sicherungspunkte unterstiitzt. Allerdings ist aus Benut-
zersicht ein Undo ohne die Moglichkeit eines Redo fast inakzeptabel.
Ein partielles Redo innerhalb von Transaktionen wird von fast keinem
OMS angeboten und stellt ein erhebliches Implementierungsproblem
dar.

Datenintegration verschiedener Werkzeuge mit Hilfe exter-
ner Sichten (sog. multiple view environments): Dies bedeutet, daf
unterschiedliche Dokumente inhaltlich iiberlappen kénnen, daf der
Gesamtzustand aller Dokumente in der Objektbank redundanzfrei mo-
delliert wird und daf der Teil, der fiir ein bestimmtes Werkzeug relevant
ist, durch eine Sicht herausgefiltert wird.

Probleme mit diesem trivial klingenden Ansatz entstehen, wenn
mehrere Werkzeuge direkt parallel auf iiberlappenden Dokumenten ar-
beiten: dndert ein bestimmter Werkzeugprozeft ein Dokument, erhélt
er Schreibsperren, durch die andere Werkzeugprozesse das Dokument
nicht mehr geschiitzt lesen kénnen. Diese Probleme sind nur lésbar,
wenn zum einen das OMS eine Kombination aus ungeschiitztem Lesen
und geschiitzem Schreiben (mit Recovery) anbietet und wenn zum an-
deren das Schema der Objektbank sehr sorgfiltig entworfen wird, um
unnotige Sperrkonflikte zu vermeiden.

Propagation von Anderungen zwischen Fenstern mit Hilfe
eines Benachrichtigungsmechanismus: die wesentliche Leistung
solcher Benachrichtigungsmechanismen besteht darin, daf sich ein Pro-
zeR, der Dokumente anzeigt, von Anderungen an diesem Dokument
(durch andere parallele Prozesse) informieren lassen kann. Bei einem
verteilten Benachrichtigungsmechanismus konnen die anderen Prozesse
auch auf anderen Rechnern ablaufen.

Sog. aktive Datenbanken sind fiir die vorliegende Aufgabe prinzi-
piell nicht geeignet, weil als Reaktion auf Anderungen (oder andere
iiberwachbare Ereignisse) jeweils nur eine Datenmanipulation oder ei-
ne gespeicherte Prozedur ausgefiihrt wird, durch die typischerweise
Anderungen innerhalb der Objektbank propagiert werden, es ist nicht
intendiert, einen oder mehrere externe Prozesse gezielt anzusprechen.

©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 21

Zur Losung der vorliegenden Aufgabe werden teilweise Mechanis-
men eingesetzt, bei denen Prozesse, die Dokumente &dndern, selbst
Anderungsnachrichten generieren miissen und bei denen die Empfinger
der Nachrichten explizit Nachrichtenwarteschlangen verwalten miis-
sen. Beides fiihrt zu erheblichem Programmieraufwand und weiteren
Problemen, die in [PIK97] ausfiihrlicher diskutiert werden. Wesentlich
weniger Probleme und Programmieraufwand verursachen Mechanismen,
bei denen

- Nachrichten vom OMS generiert werden

- Nachrichten die vollstdndige Information iiber den neuen Zustand
der gednderten Daten enthalten

— durch einen “upcall” direkt Operationen zur Korrektur des Bildschir-
minhalts vom OMS aus aufgerufen werden kénnen.

Es muf dabei moglich sein, auch Nachrichten bzgl. Anderungen an
Objekten infolge Rollback generieren zu lassen.

Literatur

[PIK97| Platz, D.; Kelter, U.: Konsistenzerhaltung von Fensterinhalten
in Software-Entwicklungsumgebungen; Informatik — Forschung
und Entwicklung 12:4, p.196-205; 1997/12 (ISSN 0178-3564)

[Se93] Seelbach, Wolfgang: Adrefraum-Partitionierung; Datenbank-
Rundbrief, Mitteilungsblatt der GI-Fachgruppe Datenbanken
(GLFG 2.5.1) 11, p.5-8; 1993 /03

[DBI| Kelter, U.: Lehrmodul “Einfithrung in Datenbanksysteme”;
1999/10

[IRA] Kelter, U.: Lehrmodul “Integrationsrahmen fiir Software-Ent-
wicklungsumgebungen”; 1999 /11

[SEU| Kelter, U.: Lehrmodul “Software-Entwicklungsumgebungen”;
1999/11

©1999 Udo Kelter Stand: 15.11.1999

Index

Abfragesprache, 5

Anderung
Propagation, 20

Architektur, 3

Datenintegration, 4, 7, 20
Datenmodellierung
feingranulare, 10
grobgranulare, 7
Datenunabhéngigkeit, 7
DBMS
aktives, 21
Dokument
Konsistenz, 4
Konsistenztest
inkrementeller, 7

Editor
graphischer, 5
Ein-Prozefs- Architektur, 15
Sicherheit, 15

Generierung, 5

Konsistenz
-Bedingungen in Schemata, 18
inkonsistente Dokumente, 19
komplexe -Bedingungen, 20
Uberwachung, 18

leichtgewichtiger Prozef, 17

MTO-Module, 10, 13
multiple view environments, 20

Notifizierung, 5, 20

Objektmanagementsystem, 3

22

Performance, 14

Redundanzfreiheit, 20
Rollback, 5, 20, 21

SEU-Architektur, 4
SEU-Komponente, 16

Sicht, 5, 20
Software-Entwicklungsumgebung, 3
Synchronisation, 5

threads, 18
Transaktion, 5, 19, 20

Undo-Kommando, 20

Werkzeug
Architekturen, 6
Implementationsaufwand, 5
vs. SEU-Komponente, 16
Werkzeugarchitektur
Generatoren, 12
Interpreterarchitekturen, 12
OMS-orientierte, 4, 9
redundanzfreie, 10, 13
Werkzeuge
Bindemodule, 16
Implementierungsaufwand, 10

Zugriffskontrollen, 5

	Einleitung
	Potentiell ausnutzbare OMS-Dienste
	Konventionelle Werkzeugarchitekturen
	Merkmale
	Probleme konventioneller Werkzeugarchitekturen
	Management temporärer Objekte

	OMS-orientierte Werkzeugarchitekturen
	Direkte Propagation von Änderungen
	Redundanzfreie Architekturen
	Generatoren
	Interpreterarchitekturen
	Konstruktion graphischer Bedienschnittstellen

	Anforderungen an ein OMS in OMS-orientierten Architekturen
	Performance
	Werkzeuge als Bindemodule
	Problempunkte bei der Ausnutzung von OMS-Leistungen
	Literatur
	Index

