
OMS-orientierte Werkzeugarchitekturen

Udo Kelter

15.11.1999

Zusammenfassung dieses Lehrmoduls

Durch Einsatz eines Objektmanagementsystems (OMS) soll im Prin-
zip der Aufwand für die Realisierung von Werkzeugen reduziert werden
und/oder die Qualität der Werkzeuge verbessert werden. In diesem
Lehrmodul untersuchen wir, welche Dienste des OMS in diesem Sinne
ausnutzbar sind und wie die Werkzeuge beschaffen sein müssen, damit
sie diese Dienste überhaupt effektiv ausnutzen können. Hierzu disku-
tieren wir OMS-orientierte Werkzeugarchitekturen. Weiter skizzieren
wir Anforderungen, die an einige Dienste von OMS zu stellen sind.

Vorausgesetzte Lehrmodule:
obligatorisch: - Vorgehensmodelle

- Software-Entwicklungsumgebungen
- Integrationsrahmen für Software-Entwicklungsum-

gebungen

Stoffumfang in Vorlesungsdoppelstunden: 1.3

1

OMS-orientierte Werkzeugarchitekturen 2

Inhaltsverzeichnis
1 Einleitung 3

2 Potentiell ausnutzbare OMS-Dienste 4

3 Konventionelle Werkzeugarchitekturen 6
3.1 Merkmale . 6
3.2 Probleme konventioneller Werkzeugarchitekturen 6
3.3 Management temporärer Objekte 8

4 OMS-orientierte Werkzeugarchitekturen 9
4.1 Direkte Propagation von Änderungen 9
4.2 Redundanzfreie Architekturen 10
4.3 Generatoren . 11
4.4 Interpreterarchitekturen . 12
4.5 Konstruktion graphischer Bedienschnittstellen 12

5 Anforderungen an ein OMS in OMS-orientierten Architek-
turen 14
5.1 Performance . 14
5.2 Werkzeuge als Bindemodule 15
5.3 Problempunkte bei der Ausnutzung von OMS-Leistungen . . 18

Literatur . 21
Index . 21

c©1999 Udo Kelter Stand: 15.11.1999
Dieser Text darf für nichtkommerzielle Nutzungen als Ganzes und unverändert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Veränderung und Überführung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist über http://kltr.de erreichbar.

OMS-orientierte Werkzeugarchitekturen 3

1 Einleitung

In diesem Lehrmodul gehen wir von der Annahme aus, daß die Daten
einer SEU in einem Objektmanagementsystem (wie z.B. H-PCTE) ver-
waltet werden sollen, und untersuchen die Frage, welche Konsequenzen
dies für die Architektur von Werkzeugen, insb. Editoren, in einer SEU
hat, oder anders gesagt, wie sich ein OMS in die Gesamtarchitektur
einer SEU einordnet.

Ein zentrales Ziel eines OMS sollte es sein,

1. die Realisierung von SEU bzw. Werkzeugen zu vereinfachen und
insbesondere den Aufwand zur Programmierung und Wartung von
Werkzeugen zu reduzieren1, indem komplexe Datenverwaltungsfunk-
tionen nur einmal im OMS realisiert werden und nicht in jedem
Werkzeug erneut2. Eine Aufwandsreduktion ist möglich, indem
Teilprobleme bei der Werkzeugrealisierung durch Dienstleistungen
des OMS gelöst werden. Der Nutzeffekt eines OMS sollte deutlich
sichtbar sein, möglichst in gleicher Weise wie bei konventionellen
DBMS und konventionellen Anwendungen, wo viele Standardpro-
bleme durch eine einfache und kurze Anfrage gelöst werden können,
während ohne ein DBMS ein längliches und fehlerträchtiges Pro-
gramm geschrieben werden müßte.

2. bessere Werkzeuge zu ermöglichen, d.h. es zu erlauben, Funktionen
und Eigenschaften von Werkzeugen zu realisieren, deren Realisierung
ohne ein OMS zu aufwendig wäre.

3. einen hohen Grad der Integration der Werkzeuge einer SEU zu
ermöglichen.

Mit anderen Worten sollte ein Entwickler einer SEU einen meßbaren
Nutzen erkennen, wenn er ein OMS verwendet (andernfalls verwendet

1im Vergleich zur Benutzung von Dateisystemen.
2Dies gilt ganz allgemein für application frameworks; bei der Realisierung von

SEU wird man speziell für graphische Werkzeuge neben einen OMS auch ein UIMS
und ggf. weitere Basissysteme einsetzens. auch [IRA].

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 4

er nämlich keins). Letztlich sind die vorgenannten Punkte software-
technische Ziele für eine spezielle Klasse von Software, nämlich gerade
SEU.

Aus den vorstehenden Überlegungen folgt, daß die von einem OMS
angebotenen Funktionen möglichst direkt die Probleme bei der Ver-
waltung von Entwicklungsdaten einzelner Werkzeuge lösen sollten –
dies kann man als eine Anforderung an ein OMS ansehen3. Umge-
kehrt ergeben sich aber auch Anforderungen an die Architektur von
SEU! Um es an einem krassen Beispiel zu zeigen: wenn man die lan-
gen Felder, die OMS üblicherweise anbieten4, dazu mißbraucht, ein
Dateisystem zu simulieren, und eine SEU in altgewohnter Weise auf
diesem Ersatz-Dateisystem realisiert, ist natürlich kein Vorteil durch
das OMS gegenüber einem Dateisystem zu erwarten. Man muß also
solche SEU-Architekturen anstreben, die es erlauben, die Leistungen
eines OMS tatsächlich auszunutzen; solche SEU-Architekturen nennen
wir “OMS-orientiert”.

2 Potentiell ausnutzbare OMS-Dienste

Beispiele für Problemkomplexe, die bei der Konstruktion von Werkzeu-
gen auftreten und die potentiell durch Dienste und technische Merkmale
von OMS lösbar erscheinen, sind:

- die Datenintegration verschiedener Werkzeuge mit Hilfe externer
Sichten

- die Überwachung der Konsistenz von Dokumenten mit Hilfe von
Schemamechanismen oder Triggern
3Tatsächlich fällt es sehr schwer, diese Anforderung zu konkretisieren, ohne sich

auf eine bestimmte Werkzeugarchitektur und die spezielle Art, wie diese Werkzeuge
auf den Daten operieren, festzulegen.

Unabhängig davon erfüllen real existierende OMS nur selten alle Anforderungen,
die man aus der Analyse des Bedarfs unterschiedlicher Werkzeuge ableiten kann.
Bei den PCTE-Standards fehlen z.B. mengenorientierte Abfragemöglichkeiten.

4In H-PCTE sind z.B. alle String-Attribute an Objekten lange Felder: ihre Län-
ge ist praktisch nicht begrenzt, und sie können zeichenweise gelesen und geschrieben
werden.

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 5

- Zugriffskontrollen, die möglichst Gruppenstrukturen und rollenori-
entierte Rechte unterstützen sollten

- Synchronisation von parallelen Zugriffen mehrerer Werkzeugprozesse
auf das gleiche Dokument, wobei verschiedene Grade denkbar sind,
in denen Werkzeugprozesse voneinander isoliert werden.

- Notifizierung der Werkzeugprozesse über Änderungen an den Daten,
die sie zuvor gelesen haben.

Speziell bei der Konstruktion von (graphischen) Editoren und An-
zeigewerkzeugen erscheinen noch folgende Dienste des OMS potentiell
ausnutzbar:

- die selektive Anzeige von Dokumenten mit Hilfe externer Sichten

- Generierung bestimmter Menüs / Kommandos der Editoren aus dem
Datenbankschema

- die Realisierung von Undo-Kommandos in Editoren mit Hilfe von
eines partiellen Rollbacks von Transaktionen

- die Propagation von Änderungen zwischen Fenstern mit Hilfe eines
Benachrichtigungsmechanismus

- Suche nach relevanten Dokumenten oder Dokumentteilen mit Hilfe
von Abfragesprachen

Der Umfang der Leistungen, die bei der Konstruktion von Werk-
zeugen ausnutzbar erscheinen, ist auf den ersten Blick groß; tatsächlich
sind jedoch vielerlei Randbedingungen einzuhalten, um eine tatsächliche
Aufwandsreduktion bei der Konstruktion von Werkzeugen zu erzielen.

Eine erste Randbedingung betrifft die Verwaltung von Dokumenten
im Hauptspeicher von Werkzeugen. Wir wollen im folgenden zunächst
zeigen, daß die Leistungen eines OMS mit konventionellen Werkzeugar-
chitekturen nicht effektiv ausgenutzt werden können.

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 6

3 Konventionelle Werkzeugarchitekturen

3.1 Merkmale

Konventionelle Werkzeuge speichern Dokumente in Dateien, z.B. je
ein OOA-Diagramm in einer Datei. Wir sprechen hier von einer grob-
granularen Datenmodellierung. Der Dateiinhalt hat eine bestimmte
Syntax, mit deren Hilfe die Feinstruktur des Dokuments rekonstruiert
werden kann. Allerdings können die Funktionen eines Werkzeugs (z.B.
das Erzeugen oder Löschen einer Klasse beim Editieren eines OOA-
Diagramms) nicht direkt auf dem Dateiinhalt durchgeführt werden;
stattdessen muß zunächst der Dateiinhalt in eine temporäre Kopie im
Hauptspeicher des Werkzeugprozesses konvertiert werden, bei Quellpro-
grammen beispielsweise in einen Syntaxbaum (s. Bild 1). Die temporäre
Kopie eines Dokuments wird beim “Sichern” oder “Schließen” des Do-
kuments wieder zurückkonvertiert.

fct1 fct2 fctn

parse unparse

datei1 datei2

persistenter

Speicher

(Dateisystem)

Hauptspeicher

des Werkzeugs

Abbildung 1: Arbeiten auf Dateien

3.2 Probleme konventioneller Werkzeugarchitekturen

Die grobgranulare Datenmodellierung und das mit einhergehende Ar-
beiten auf temporären Kopien weist eine ganze Reihe von Nachteilen

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 7

auf, die hier aus Platzgründen nur teilweise aufgezählt werden sollen.

1. Zunächst ist die Datenunabhängigkeit der Werkzeuge sehr gering.
Sofern z.B. ein neues Werkzeug in eine Umgebung integriert wer-
den soll und dieses Werkzeug spezielle zusätzliche Daten innerhalb
von bereits vorhandenen Dokumenttypen benutzt, muß die Syn-
tax der Dateien entsprechend erweitert werden. Daher müssen die
Parser und Unparser in allen betroffenen Werkzeugen verändert wer-
den, was überhaupt nicht möglich ist, wenn die Werkzeuge nicht
in Quellform verfügbar sind. Weiterhin entstehen erhebliche Pro-
bleme beim Transport der zusätzlichen Daten durch vorhandene
Werkzeuge hindurch.

2. Erfahrungsgemäß ist auch die Datenintegration mehrerer Werkzeuge
nicht optimal oder nur unter ganz erheblichem Aufwand zu errei-
chen, weil hierzu viele Konvertierer, die äquivalente Daten zwischen
unterschiedlichen Formaten umformen, konstruiert werden müssen,
was aber nicht immer völlig verlustfrei möglich ist.

3. Ein weiterer, in der Praxis ganz entscheidender Nachteil ist, daß
diese Architektur keine inkrementelle Überprüfung dokumentüber-
greifender Konsistenzkriterien erlaubt. Nehmen wir als Beispiel ein
Programmsystem an, dessen Modulstruktur in einem Modulstruk-
turdiagramm beschrieben wird, das in einer Datei gespeichert ist.
Für jedes Modul möge das Quellprogramm in einer weiteren Datei
gespeichert sein. Wenn nun mit einem Editor der Typ eines Para-
meters in dem Modulstrukturdiagramm geändert wird, muß in den
zugehörigen Quellprogrammen diese Änderung nachvollzogen bzw.
bei allen Aufrufen der betroffenen Prozedur geprüft werden, ob der
aktuelle Parameterwert kompatibel mit dem neuen Typ des forma-
len Parameters ist. Für derartige Prüfungen nehmen wir ein anderes
Werkzeug an (“Prüfer”).

Bei grobkörniger Datenmodellierung muß nun der Quelltext des
Moduls wieder linearisiert und in die Datei zurückgeschrieben wer-
den; anschließend liest und analysiert das Prüfprogramm den Inhalt
dieser Datei und ggf. den Inhalt Dutzender anderer Dateien, da
typischerweise alle Konsistenzkriterien überprüft werden müssen,

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 8

nicht nur diejenigen, die mit dem einen veränderten Parametertyp
zusammenhängen.

4. Weil so konstruierte Umgebungen nicht inkrementell arbeiten können,
arbeiten sie oft extrem ineffizient. In der Praxis werden dokument-
übergreifende Prüfungen deshalb möglichst aufgeschoben oder ganz
unterlassen und Fehler u.U. überhaupt nicht oder erst in einem
späten Stadium entdeckt.

Um jetzt Dateien als Speichermedium nicht zu sehr zu verteufeln,
sei gleich zugegeben, daß vielfach gar keine Alternative verfügbar ist
und daß auch OMS Nachteile haben, die wir später besprechen werden
und die die Einsatzmöglichkeiten von OMS einschränken.

3.3 Management temporärer Objekte

Bei konventionellen Werkzeugen müssen die temporären Kopien der
Dokumente im Hauptspeicher verwaltet werden; hierzu beinhaltet die
Architektur konventioneller Werkzeuge naheliegenderweise für jeden
Dokumenttyp, mit dem das Werkzeug arbeitet, ein Modul, das die tem-
porären Kopien von Dokumenten im Hauptspeicher verwaltet, s. Modul
MTO (Management temporärer Objekte) in Bild 2. Es handelt sich hier
um ein klassisches Datentyp-Modul, das alle elementaren Operationen
anbietet, mit denen man Exemplare dieses Dokumenttyps anlegen, ver-
ändern, Einzeldaten auslesen und ganz aus einem Dateinhalt aufbauen
oder dorthin zurückschreiben kann.

Ersetzt man nun in dieser Architektur das Dateisystem durch ein
OMS, so ergibt sich der neueste Stand der Dokumente nur noch aus
den temporären Kopien! An dieser Stelle ist es wichtig, sich daran zu
erinnern, daß bei der Softwareentwicklung fast ständig irgendwelche
Entwicklungsdokumente verändert werden. Das OMS enthält deshalb
sehr bald veraltete Daten und sämtliche Leistungen des OMS, wie z.B.
Abfragesprachen, werden praktisch wertlos5.

5Die gleichen Nachteile treten ein, wenn man zwar ein OMS verwendet, aber aus
diesem nur per check-out und check-in Daten zum bzw. von Werkzeug überträgt.

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 9

Benutzungsschnittstelle

Dokumentschnittstelle

Management temporärer Objekte
(MTO)

“Systemaufrufe”

Dateisystem

Abbildung 2: Konventionelle Werkzeugarchitektur

4 OMS-orientierte Werkzeugarchitekturen

4.1 Direkte Propagation von Änderungen

Will man die Leistungen eines OMS ausnutzen, muß man dafür sorgen,
daß die Objektbank die richtigen Daten enthält. Aus dieser und den
vorstehenden Beobachtungen ergeben sich zwei wesentliche Merkmale
OMS-orientierter SEU-Architekturen:

1. Die Werkzeuge einer SEU müssen alle relevanten Änderungen an den
Dokumenten, namentlich solche,die ein Benutzer durch eine Einga-
be veranlaßt hat, inkrementell und sofort in das unterliegende OMS
weitergeben.

Dies schließt nicht aus, daß in den Werkzeugen trotzdem noch Ko-
pien der Daten vorhanden sind, dies kann aus Performance-Gründen
unverzichtbar sein.

2. Die Entwicklungsdaten müssen feingranular modelliert werden, d.h.
die Feinstruktur der Dokumente muß vollständig im OMS nachge-
bildet werden. Hierfür gibt es mehrere Gründe:

- Viele Dienste eines OMS (Abfragen, Sperren, Rollback u.a.) sind

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 10

nur denkbar, wenn das OMS die Feinstruktur der Daten kennt.

- Theoretisch kann man auch bei einer grobgranularen Datenmo-
dellierung bei jeder relevanten Änderung an einem Dokument
dieses komplett zurückschreiben; dies würde aber zu erheblichen
Performance-Problemen führen (vgl. unten die Diskussion der
Performance-Probleme bei redundanzfreien Architekturen).

Ein weiterer Nachteil der in Bild 2 gezeigten Architektur ist, daß der
Aufwand zur Implementierung der Werkzeuge durch den Einsatz eines
OMS praktisch nicht reduziert wird: die Parser und Unparser, die zwi-
schen Dateiinhalten und Hauptspeicherdatenstrukturen konvertieren,
werden ersetzt durch andere Software, die zwischen Datenbankinhalt
und Hauptspeicherdatenstrukturen konvertiert. Diese Software ist aus
Sicht von Werkzeugentwicklern möglicherweise sogar schwerer (!) zu
realisieren als ein Parser und Unparser für eine einfache Syntax6, weil
hierzu Datenbankschemata entwickelt und ein kompliziertes API des
OMS erlernt werden muß.

Wegen der komplexen Struktur der meisten Dokumenttypen werden
die MTO-Module relativ umfangreich, typischerweise in der Größenord-
nung von 3000 bis 7000 Zeilen Quelltext. Da in einer Umgebung meist
mehrere Dokumenttypen auftreten (typischerweise 8 - 12), stellen die
MTO-Module ein erhebliches Implementierungs- und Wartungsproblem
dar.

I.f. skizzieren wir mehrere denkbare Lösungsansätze.

4.2 Redundanzfreie Architekturen

Eine radikale Lösung besteht darin, die MTO-Module im Prinzip
schlichtweg zu vermeiden und direkt auf den Daten in der Objekt-
bank zu arbeiten (s. Bild 3). Diese Architektur ist in doppelter Hinsicht
redundanzfrei: die doppelte Datenhaltung in der Objektbank und im
Hauptspeicher und die doppelte Realisierung von Dienstleistungen im
OMS und durch die Applikation werden vermieden.

6Womit nicht gesagt sein soll, es sei trivial, einen Compiler zu schreiben...

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 11

fct1 fct2 fctn

persistenter

Speicher

(OMS)

des Werkzeugs

Hauptspeicher

Abbildung 3: Direktes Arbeiten auf der Objektbank

Da hier noch nicht einmal Lesepuffer vorhanden sind, ist diese Lö-
sung aus Performance-Gründen allerdings nur selten anwendbar, i.w.
wenn nur wenige Objekte angezeigt werden7.

4.3 Generatoren

Ein weiterer naheliegende Ansatz besteht darin, die MTO-Module zu
generieren. Als Ausgangangsbasis kommen die Datenbankschemata in-
frage. Alternativ können die Datenbankschemata und die MTO-Module
aus einer gemeinsamen Quelle generiert werden.

Nachteilig an der Generierung ist, daß die erforderlichen Generatoren
(genaugenommen sind dies Übersetzer, die Spezifikationen in Quellcode
transformieren) einen signifikanten Implementierungsaufwand verur-

7Bei graphischen Editoren und Anzeigewerkzeugen erweist sich hier das Neu-
anzeigen von Bildschirmen, bei dem jeweils alle Objekte eines Dokumente gelesen
werden müssen, als “Killeroperation”: Wenn ein Benutzer das Fenstersystem so ein-
gestellt hat, daß das Fenster, über dem sich der Mauszeiger befindet, nach oben
geholt wird, wird diese Operation sehr häufig ausgelöst.
Probleme sind auch bei Verschiebeoperationen in Graphiken zu erwarten. Be-

trachten wir als Beispiel ein netzartiges Diagramm (z.B. ein ER-Diagramm) und
den Fall, daß man die Koordinaten eines Knotens oder die Stützpunkte einer Ver-
bindungslinie in einem Attribut speichert und einen Knoten oder Stützpunkt mit
der Maus verschiebt: dies führt zu einer hohen Rate von Ereignissen, bei denen
die neuen Koordinaten in der Objektbank gespeichert werden müssen. Hinzu kom-
men weitere Leseoperationen, wenn aufgedeckte Fensterteile neu gezeichnet werden
müssen. In solche Fällen ist allerdings denkbar, nur die Stützpunkte in Puffern zu
speichern, während die restlichen Dokumentdaten nicht gepuffert werden.

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 12

sachen und daß sie wenig flexibel sind, denn für jede Änderung im
generierten Code sind auch die Generatoren zu ändern.

Problematisch sind insb. Ausnahmefälle und semantische Besonder-
heiten einzelner Dokumenttypen, die entweder den Generator aufblähen
oder, falls man hierfür nachträglich den generierten Code ändert, zu
praktischen Problemen führen.

4.4 Interpreterarchitekturen

Anstatt Code der MTO-Module mit Hilfe von Generatoren aus Spezifi-
kationen zu generieren, kann man prinzipiell auch die Spezifikationen
dynamisch interpretieren. Der Interpreter erscheint dann als ein ge-
nerisches MTO-Modul, das durch die Datenbankschemata und ggf.
zusätzliche Steuerparameter gesteuert wird. Die Steuerparameter könn-
ten z.B.

- in einer Resource-Datei

- als Programm-Konstanten

- in Objekten der Objektbank (!)

verwaltet werden.
Auf Interpreterarchitekturen trifft der Nachteil der mangelnden Fle-

xibilität genauso zu wie auf Generatoren. Realisiert man den Interpreter
allerdings in einer objektorientierten Sprache, können Ausnahmefäl-
le noch vergleichsweise einfach durch geeignetes Überschreiben von
Operationen integriert werden.

4.5 Konstruktion graphischer Bedienschnittstellen

Die vorstehenden Überlegungen abstrahierten vom konkreten Werkzeug-
typ. Bei der wichtigen Klasse der (heute meist graphischen) Editoren
und Anzeigewerkzeuge ergeben sich einige Besonderheiten.

Setzt man zur Konstruktion der graphischen Bedienschnittstellen
ein UIMS ein, so muß man für dieses doch wiederum temporäre Ko-
pien erzeugen; UIMS arbeiten nämlich normalerweise auf Basis des

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 13

Model-View-Controller-Paradigmas, und das Model darin ist eine Dar-
stellung des angezeigten Dokuments im Hauptspeicher. Eine völlig
redundanzfreie Architektur ist hier nicht ohne massive Eingriffe in das
UIMS möglich und praktisch unrealistisch. Am ehesten kann man die
oben vorgestellen Interpreterarchitekturen mit UIMS kombinieren, da
ähnliche Konzepte auch in den UIMS eingesetzt werden.

Weiter zielten unsere bisherigen Überlegungen nur auf die Aufwands-
reduktion bei der Konstruktion der MTO-Module; die Konstruktion
der Bedienschnittstellen vieler Editoren und Anzeigewerkzeuge stellt
aber ein ganz ähnliches Aufwandsproblem dar. Für jeden Editor muß
nämlich die Bedienschnittstelle neu realisiert werden, da normalerweise
dokumenttypspezifische Besonderheiten auftreten. Beispiele für solche
Besonderheiten in graphischen Editoren für netzartige Diagramme sind:

- Typischerweise gibt es Menüs, durch die man Elemente der Gra-
phen (z.B. Klassen in OOA-Diagrammen, Entitätstypen in ER-
Diagrammen oder Zustände in Zustandsübergangsdiagrammen) er-
zeugen kann. Die erlaubten Knotentypen und ihre Darstellungen
sind dokumenttypspezifisch.

- Analog gibt es Menüeinträge, durch die Verbindungen zwischen den
Elementen erzeugt werden können, teilweise mit speziellen Dar-
stellungsformen und Beschriftungen (z.B. eine Verbindung zwischen
einem Entitätstyp und einem Beziehungstyp in einem ER-Diagramm,
ggf. mit Kardinalitäten).

- Beim Erzeugen von Verbindungen müssen vielfach spezielle Konsi-
stenztests durchgeführt werden (z.B. können in einem ER-Diagramm
nicht zwei Beziehungstypen mit einer Kante verbunden werden, Na-
men innerhalb eines Diagramms müssen oft eindeutig sein usw.).
Sowohl die Tests als auch die Fehlermeldungen oder sonstigen Inter-
aktionen bei Auftreten eines Fehlers sind dokumenttypspezifisch.

- Es kann dokumenttypspezifische Kommandos geben. Beispielswei-
se ist es für das Bearbeiten von Klassendiagrammen sehr praktisch,
wenn man mit einer einzigen Interaktion ein Attribut von einer Klas-
se zu einer anderen verschieben kann (z.B. indem man das Attribut

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 14

anklickt, “festhält”, über die andere Klasse verschiebt und dort “fal-
len läßt”) oder aus einem Attribut eine neue Komponentenklasse,
die zunächst nur dieses eine Attribut enthält, machen kann.

Es liegt natürlich nahe, einen generischen Kern für alle Editoren
zu bilden und die dokumenttypspezifischen Anteile in Steuerparameter
einzukapseln, die der generische Kern interpretiert.

Wegen der Komplexität der dokumenttypspezifischen Anteile ist
aber der Realisierungsaufwand bei diesen Vorgehensweisen erheblich.
Besonders unschön ist, daß inhaltliche Redundanzen zwischen diesen
Steuerstrukturen und dem Objektbankschema auftreten: die Menüein-
träge entsprechen exakt bestimmten Objekt- oder Beziehungstypen in
der Objektbank. Es liegt nahe, diese Redundanz zu vermeiden, indem
man das Datenbankschema selbst als Steuerungsparameter verwendet.

5 Anforderungen an ein OMS in OMS-
orientierten Architekturen

5.1 Performance

Da die architektonischen Vorteile des direkten Arbeitens auf der Objekt-
bank und der feinkörnigen Datenmodellierung offensichtlich sind, stellt
sich die Frage, warum derartige Architekturen bisher kaum realisiert
werden. Ein erste entscheidendes Problem ist die Leistung des OMS.
Die Leistungsanforderungen hängen stark von der Art des Werkzeugs
ab. Syntaxeditoren oder Editoren für netzartige Diagramme benöti-
gen eine Leistung von etwa 500 Operationen pro Sekunde, Editoren für
sehr komplexe Graphiken oder Simulatoren benötigen eine Leistung
von 10.000 oder sogar wesentlich mehr Operationen pro Sekunde8 (ty-
pische Operationen sind das Lesen oder Schreiben von Attributwerten
oder das Erzeugen oder Löschen von “elementaren” Objekten). Wenn

8Derartige Leistungen sind mit heutiger Datenbanktechnologie nicht erreich-
bar; deshalb betrachten wir diese Anwendungen nicht weiter im Kontext dieser
Architektur.

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 15

man Leistungen in diesen Größenordnungen erzielen möchte, treten vor
allem zwei Implementierungsprobleme auf:

1. Ein Plattenzugriff dauert selbst bei den heutigen sehr schnellen Plat-
ten größenordnungsmäßig etwa 10 ms. Wenn die Zeit für Plattenzu-
griffe nur einen Bruchteil der gesamten Operationsausführungszeiten
ausmachen soll, dann darf nur ein Plattenzugriff bei mehreren hun-
dert Operationen auftreten. Praktisch dürfen also überhaupt keine
Plattenzugriffe auftreten, das OMS muß als Hauptspeicher-DBMS
realisiert werden.

2. Auf heute erhältlichen Standardworkstations dauert der Austausch
einer Nachricht zwischen zwei Prozessen etwa 0.2 - 1.0 ms. Wer-
den OMS-Kern und Applikation in eigenen Prozessen ausgeführt
- wie bei konventionellen DBMS üblich -, so fällt allein wegen der
Interprozeßkommunikation die Leistung i.d.R. unter 1000 Operatio-
nen pro Sekunde. Hieraus folgt, daß derzeit, wenn man sehr hohe
Leistungen erreichen will, OMS-Kern (incl. DB-Puffer) und Ap-
plikationen im gleichen Prozeß und insb. im gleichen Arbeitsspeicher
ausgeführt werden müssen. Die resultierende Architektur nennen
wir Ein-Prozeß-Architektur.

Ihr gravierendster Nachteil ist ihre Unsicherheit: bei Sprachen
wie C oder C++, die einen beliebigen Umgang mit Zeigern erlauben,
muß man damit rechnen, daß durch Programmierfehler (oder sogar
absichtlich) von der Applikation auf die Puffer oder den OMS-Kern
zugriffen wird und dort Daten oder Programme verändert werden.
Wirksame Schutzmaßnahmen, die nicht wieder zu Performance-
Verlusten führen, sind schwer zu finden [Se93].

5.2 Werkzeuge als Bindemodule

Die Ein-Prozeß-Architektur hat deutliche Auswirkungen auf den Begriff
eines Werkzeugs: Während dieser Begriff klassischerweise so interpre-
tiert wird, daß ein Werkzeug als ausführbares Programm vorliegt, muß
es bei der Ein-Prozeß-Architektur als Bindemodul vorliegen. Die voll-
ständige Umgebung muß dann durch Binden dieser Bindemodule und
des OMS-Kerns generiert werden. Dies stellt aber kein ernsthaftes

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 16

Hindernis dar; moderne Betriebssysteme unterstützen außerdem das
dynamische Binden, bei dem einzelne Module erst bei ihrer ersten Be-
nutzung zum laufenden Programm hinzugebunden werden. In einer
ersten Näherung kann man sich den Hauptspeicher des SEU-Prozesses
wie in Bild 4 dargestellt vorstellen. Die Module W1 ... Wn sollen
einzelne “Werkzeuge” darstellen.

� -

W Wn——–

SEU-Prozeß

Puffer

OMS-Hintergrundprozeß

lokales OMS

1

Abbildung 4: Hauptspeicher eines SEU-Prozesses

Werkzeuge vs. SEU-Komponenten. Der Begriff Werkzeug bzw.
Komponente einer SEU entfernt sich hier etwas von dem, was man nor-
malerweise als Benutzer unter einem “Werkzeug”versteht; er entspricht
vielmehr dem Konzept eines unabhängig realisierbaren, wiederverwend-
baren Moduls. Der Unterschied zwischen einem Werkzeug aus Benut-
zersicht und einer SEU-Komponente sei am Beispiel eines Werkzeugs
zur Verwaltung von Modulhierarchien erläutert. Ein solches Werkzeug
können wir uns aus folgenden SEU-Komponenten zusammengesetzt
denken:

- Eine erste SEU-Komponente zeigt eine graphische Darstellung der
gesamten Modulhierarchie in einem Fenster an. Hier sind die ein-
zelnen Module nur sehr vergröbert als Rechtecke dargestellt und
es können z.B. neue Module erzeugt, Modulnamen verändert und
Import-/Export-Verbindungen eingetragen werden.

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 17

- Eine zweite SEU-Komponente zeigt die Details einer einzelnen Mo-
dulbeschreibung formularartig an und bietet übliche Editierkom-
mandos an. Diese Komponente kann mehrfach parallel ausgeführt
werden, um mehrere Modulbeschreibungen parallel ansehen und
editieren zu können.

- Weitere SEU-Komponenten bieten Funktionen wie Konsistenzprü-
fungen, Drucken, Konversion in andere Darstellung usw. an. Diese
Funktionen laufen originär nicht-interaktiv ab und enden schließ-
lich mit einem Fehlercode. Aufgerufen werden sie aus den Editoren
heraus (z.B. über Menüeinträge) oder über einen Browser.

Diese SEU-Komponenten können ebensogut als Teile anderer Werk-
zeuge erscheinen. Die Editoren für einzelne Modulbeschreibungen
könnten z.B. auch innerhalb eines “Werkzeugs” zum Programmieren
im Kleinen erscheinen, wenn z.B. die Parameterliste einer exportierten
Funktion geändert werden muß. Konsistenzprüfungen könnten auch
von einem Vorgehensmodelltreiber aufgerufen werden.

Leichtgewichtige Prozesse. Das vorstehende Beispiel des Modulbe-
schreibungseditors zeigt nebenbei, daß man strikt trennen muß zwischen
einer SEU-Komponente im Sinne eines Stücks Software (also dem Bin-
demodul) und Ausführungen dieser Software: die gleiche Komponente
kann nämlich mehrfach parallel ausgeführt werden. Bei konventionel-
len Werkzeugen geht dies einher mit einem Kopieren der Programme
(in die virtuellen Adreßräume der ausführenden Prozesse). Bei unserer
Ein-Prozeß-Architektur ist dies natürlich nicht möglich (ein Bindemo-
dul kann nur einmal angebunden werden). Stattdessen benötigt man
leichtgewichtige Prozesse (threads).

Für das OMS bedeutet dies, daß es möglich sein muß, in einem einzi-
gen (“schwergewichtigen”) Betriebssystemprozeß mehrere OMS-Prozesse
zustarten, die unterschiedliche Schemata, Zugriffsrechte usw. haben
können.

Verkompliziert wird die Situation bei graphischen interaktiven Werk-
zeugen dadurch, daß das UIMS oder Fenstersystem selbst in Form meh-
rerer Prozesse abläuft und u.U. davon ausgeht, selbst nach Belieben

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 18

Prozesse oder threads, in denen Benutzerinteraktionen bearbeitet wer-
den, erzeugen und vernichten zu können. Die Details hängen stark von
technischen Merkmalen des UIMS ab.

5.3 Problempunkte bei der Ausnutzung von OMS-
Leistungen

Wir setzen im folgenden eine OMS-orientierte oder Interpreter-
Architektur voraus und untersuchen, ob und wie unter dieser Annahme
OMS-Leistungen effektiv ausnutzbar sind. Aus der in Abschnitt 2 auf-
gestellten Liste gehen wir vor allem auf Punkte ein, derentwegen die
Werkzeugarchitektur weiter angepaßt werden muß oder aus denen sich
weitere Anforderungen an ein OMS ergeben.

Aus Platzgründen können hier viele Themen nur angerissen werden;
eine detaillierte Behandlung wird auf eigene Lehrmodule vertagt.

Konsistenzüberwachung durch Schemamechanismen: Softwa-
redokumente müssen in korrektem Zustand meist mehr oder weniger
komplexe Konsistenzbedingungen einhalten. Viele DBMS erlauben es,
entsprechende Integritätsbedingungen in Schemata zu definieren. Die-
se Bedingungen werden bei jeder Datenmanipulation oder beim Ende
einer Transaktion überprüft und führen zur Zurückweisung der Opera-
tion bzw. zum Rollback der Transaktion. Diese Mechanismen sind nur
sehr begrenzt oder gar nicht brauchbar:

- Ein Benutzer erwartet, wenn eine Inkonsistenz entdeckt wird, nicht
nur eine Meldung, daß irgendwo irgendein Fehler vorhanden ist,
sondern genaue Hinweise, welcher Fehler wo und in welchem Zusam-
menhang aufgetreten ist, damit er ihn sofort beheben kann.

Schemamechanismen liefern normalerweise nur einen simplen
Fehlercode, aus dem nur grob die Art der Konsistenzverletzung her-
vorgeht, nicht aber, welche Objekte involviert sind und welches
Kriterium verletzt worden ist. Bei nichttrivialen Konsistenzkriteri-
en bräuchte man eine Schnittstelle, über die im Fehlerfall auch eine
komplexe Situationsbeschreibung geliefert werden kann. Derarti-
ge Schnittstellen fehlen normalerweise. Dies hat zur Folge, daß das

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 19

Werkzeug im Fehlerfall praktisch die gesamte Konsistenzprüfung wie-
derholen muß, um die betroffenen Objekte zu finden. M.a.W. muß
der komplette Konsistenztest, den das OMS ausführt, im Werkzeug
re-implementiert werden. Es wird also keinerlei Programmierauf-
wand durch das OMS eingespart. Im Gegenteil entsteht das Problem,
daß der Konsistenztest im OMS und die nachprogrammierte Version
möglicherweise nicht völlig einheitlich sind.

- In SEU müssen auch unfertige, inkonsistente Dokumente verwaltet
werden. Inkonsistente Zwischenzustände treten auch bei klassischen
Applikationen auf, aber nur sehr kurzfristig, so daß man dort das
Problem umgehen kann, indem man die Konsistenztests erst am En-
de einer Transaktion durchführt. Die Zeiträume, während der ein
Dokument unfertig und inkonsistent ist, sind wesentlich länger9 und
liegen nicht komplett innerhalb eines Sitzung; daher kann auch nicht
das klassische Transaktionskonzept zur Definition der Zeitpunkte,
an denen Konsistenztests durchgeführt werden, heranhiehen.

Wegen dieser Probleme kann man durch Konsistenzbedingungen,
die im Schema definiert werden und die sofort bei jeder Datenmani-
pulationsoperation oder am Ende einer Transaktion überprüft werden,
nur sehr einfache Konsistenzbedingungen sinnvoll prüfen lassen, die (a)
so wichtig sind, daß man auch eine kurzfristige Verletzung nicht zulas-
sen möchte und die (b) sehr einfach in einer Fehlermeldung erläuterbar
sind.

Weitergehende Kriterien sollten nur auf explizite Anforderung des
Benutzers überprüft werden; hierzu eignen sich primär Abfragen, in de-
nen nach den fehlerhaften Stellen eines Dokuments gesucht wird. Eine
leistungsfähige Abfragesprache ist somit für die Konsistenzüberwachung
viel wertvoller als Schemamechanismen.

Realisierung von Undo-Kommandos in Editoren mit Hilfe von
eines partiellen Rollbacks von Transaktionen: Die ist im Prin-
zip ohne große Probleme realisierbar, sofern das OMS ein partielles

9Es soll sogar Dokumente geben, die nie fertig werden.

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 20

Rollback auf Sicherungspunkte unterstützt. Allerdings ist aus Benut-
zersicht ein Undo ohne die Möglichkeit eines Redo fast inakzeptabel.
Ein partielles Redo innerhalb von Transaktionen wird von fast keinem
OMS angeboten und stellt ein erhebliches Implementierungsproblem
dar.

Datenintegration verschiedener Werkzeuge mit Hilfe exter-
ner Sichten (sog. multiple view environments): Dies bedeutet, daß
unterschiedliche Dokumente inhaltlich überlappen können, daß der
Gesamtzustand aller Dokumente in der Objektbank redundanzfrei mo-
delliert wird und daß der Teil, der für ein bestimmtes Werkzeug relevant
ist, durch eine Sicht herausgefiltert wird.

Probleme mit diesem trivial klingenden Ansatz entstehen, wenn
mehrere Werkzeuge direkt parallel auf überlappenden Dokumenten ar-
beiten: ändert ein bestimmter Werkzeugprozeß ein Dokument, erhält
er Schreibsperren, durch die andere Werkzeugprozesse das Dokument
nicht mehr geschützt lesen können. Diese Probleme sind nur lösbar,
wenn zum einen das OMS eine Kombination aus ungeschütztem Lesen
und geschützem Schreiben (mit Recovery) anbietet und wenn zum an-
deren das Schema der Objektbank sehr sorgfältig entworfen wird, um
unnötige Sperrkonflikte zu vermeiden.

Propagation von Änderungen zwischen Fenstern mit Hilfe
eines Benachrichtigungsmechanismus: die wesentliche Leistung
solcher Benachrichtigungsmechanismen besteht darin, daß sich ein Pro-
zeß, der Dokumente anzeigt, von Änderungen an diesem Dokument
(durch andere parallele Prozesse) informieren lassen kann. Bei einem
verteilten Benachrichtigungsmechanismus können die anderen Prozesse
auch auf anderen Rechnern ablaufen.

Sog. aktive Datenbanken sind für die vorliegende Aufgabe prinzi-
piell nicht geeignet, weil als Reaktion auf Änderungen (oder andere
überwachbare Ereignisse) jeweils nur eine Datenmanipulation oder ei-
ne gespeicherte Prozedur ausgeführt wird, durch die typischerweise
Änderungen innerhalb der Objektbank propagiert werden, es ist nicht
intendiert, einen oder mehrere externe Prozesse gezielt anzusprechen.

c©1999 Udo Kelter Stand: 15.11.1999

OMS-orientierte Werkzeugarchitekturen 21

Zur Lösung der vorliegenden Aufgabe werden teilweise Mechanis-
men eingesetzt, bei denen Prozesse, die Dokumente ändern, selbst
Änderungsnachrichten generieren müssen und bei denen die Empfänger
der Nachrichten explizit Nachrichtenwarteschlangen verwalten müs-
sen. Beides führt zu erheblichem Programmieraufwand und weiteren
Problemen, die in [PlK97] ausführlicher diskutiert werden. Wesentlich
weniger Probleme und Programmieraufwand verursachen Mechanismen,
bei denen

- Nachrichten vom OMS generiert werden

- Nachrichten die vollständige Information über den neuen Zustand
der geänderten Daten enthalten

- durch einen “upcall” direkt Operationen zur Korrektur des Bildschir-
minhalts vom OMS aus aufgerufen werden können.

Es muß dabei möglich sein, auch Nachrichten bzgl. Änderungen an
Objekten infolge Rollback generieren zu lassen.

Literatur

[PlK97] Platz, D.; Kelter, U.: Konsistenzerhaltung von Fensterinhalten
in Software-Entwicklungsumgebungen; Informatik – Forschung
und Entwicklung 12:4, p.196-205; 1997/12 (ISSN 0178-3564)

[Se93] Seelbach, Wolfgang: Adreßraum-Partitionierung; Datenbank-
Rundbrief, Mitteilungsblatt der GI-Fachgruppe Datenbanken
(GI-FG 2.5.1) 11, p.5-8; 1993/03

[DBI] Kelter, U.: Lehrmodul “Einführung in Datenbanksysteme”;
1999/10

[IRA] Kelter, U.: Lehrmodul “Integrationsrahmen für Software-Ent-
wicklungsumgebungen”; 1999/11

[SEU] Kelter, U.: Lehrmodul “Software-Entwicklungsumgebungen”;
1999/11

c©1999 Udo Kelter Stand: 15.11.1999

Index
Abfragesprache, 5
Änderung

Propagation, 20
Architektur, 3

Datenintegration, 4, 7, 20
Datenmodellierung

feingranulare, 10
grobgranulare, 7

Datenunabhängigkeit, 7
DBMS

aktives, 21
Dokument

Konsistenz, 4
Konsistenztest

inkrementeller, 7

Editor
graphischer, 5

Ein-Prozeß-Architektur, 15
Sicherheit, 15

Generierung, 5

Konsistenz
-Bedingungen in Schemata, 18
inkonsistente Dokumente, 19
komplexe -Bedingungen, 20
Überwachung, 18

leichtgewichtiger Prozeß, 17

MTO-Module, 10, 13
multiple view environments, 20

Notifizierung, 5, 20

Objektmanagementsystem, 3

Performance, 14

Redundanzfreiheit, 20
Rollback, 5, 20, 21

SEU-Architektur, 4
SEU-Komponente, 16
Sicht, 5, 20
Software-Entwicklungsumgebung, 3
Synchronisation, 5

threads, 18
Transaktion, 5, 19, 20

Undo-Kommando, 20

Werkzeug
Architekturen, 6
Implementationsaufwand, 5
vs. SEU-Komponente, 16

Werkzeugarchitektur
Generatoren, 12
Interpreterarchitekturen, 12
OMS-orientierte, 4, 9
redundanzfreie, 10, 13

Werkzeuge
Bindemodule, 16
Implementierungsaufwand, 10

Zugriffskontrollen, 5

22

	Einleitung
	Potentiell ausnutzbare OMS-Dienste
	Konventionelle Werkzeugarchitekturen
	Merkmale
	Probleme konventioneller Werkzeugarchitekturen
	Management temporärer Objekte

	OMS-orientierte Werkzeugarchitekturen
	Direkte Propagation von Änderungen
	Redundanzfreie Architekturen
	Generatoren
	Interpreterarchitekturen
	Konstruktion graphischer Bedienschnittstellen

	Anforderungen an ein OMS in OMS-orientierten Architekturen
	Performance
	Werkzeuge als Bindemodule
	Problempunkte bei der Ausnutzung von OMS-Leistungen
	Literatur
	Index

