
Grundlegende Konzepte des
Datenbankmodells von PCTE

Udo Kelter

23.4.2002

Zusammenfassung dieses Lehrmoduls

Dieses Lehrmodul stellt die wichtigsten Merkmale des Datenbank-
modells von PCTE vor. Nach Durcharbeiten dieses Moduls soll man in
der Lage sein, mit dem Standardbrowser in einer PCTE-Objektbank zu
navigieren und im Browser einfache Datenmanipulationen auszuführen.

Beschrieben werden die Konzepte Objekt, Attribut, Link, Typna-
me und Schema Definition Set. Das Sichtenkonzept von PCTE wird
ausführlich vorgestellt und mit dem relationalen verglichen.

Vorausgesetzte Lehrmodule:
empfohlen: - Datenmodellierung mit ER-Modellen

- Einordnung und Historie von PCTE

Stoffumfang in Vorlesungsdoppelstunden: 1.6

1

Grundlegende Konzepte des Datenbankmodells von PCTE 2

Inhaltsverzeichnis
1 Einordnung von PCTE 3

2 Objekte, Beziehungen und Attribute 4
2.1 Objekte . 4
2.2 Beziehungen, Links und Linktypen 6
2.3 Attribute . 8
2.4 Ein Beispiel . 12

3 Identifizierung von Objekten 12
3.1 Linknamen . 13
3.2 Referenzobjekte . 17
3.3 Pfadnamen von Objekten . 17

4 Schemaverwaltung 19
4.1 Selbstreferentialität und die Metadatenbank 19
4.2 Arbeitsschemata . 21
4.3 Globale und schemaspezifische Typeigenschaften 22
4.4 Schema Definition Sets . 23
4.5 Das Setzen des Arbeitsschemas eines Prozesses 25
4.6 Typnamen . 26

Literatur . 30
Index . 30

c©2002 Udo Kelter Stand: 23.4.2002
Dieser Text darf für nichtkommerzielle Nutzungen als Ganzes und unverändert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Veränderung und Überführung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist über http://kltr.de erreichbar.

Grundlegende Konzepte des Datenbankmodells von PCTE 3

1 Einordnung von PCTE

Dieses Lehrmodul stellt die grundlegenden Konzepte des Datenbank-
modells von PCTE vor.

PCTE ist konzipiert worden als ein Nichtstandard-DBMS, das Soft-
wareentwicklungsdaten verteilt verwalten kann und die Konstruktion
von Software-Entwicklungsumgebungen (SEU) unterstützt. Derarti-
ge Systeme werden auch Objektmanagementsystem oder Repo-
sitory (vgl. [IRA]) genannt. Die PCTE-Spezifikationen wurden als
ECMA-Standard 149 [PCTE90] und ISO-Standard 13719 [PCTE94]
verabschiedet. H-PCTE ist eine hochperformante (partielle) Imple-
mentierung von PCTE, die durch die Fachgruppe Praktische Informatik
an der Universität Siegen realisiert wurde.

Das Datenbankmodell von PCTE hat folgende Hauptmerkmale:

- Es ist auf die Dokumentverwaltung und nicht auf die Verwaltung
großer Mengen tabellarischer Daten ausgerichtet.

- Seine Grundkonzepte basieren auf dem Entity-Relationship-Modell.
Eine Objektbank enthält also Objekte und Beziehungen.
In einigen Details ist es stark beeinflußt von der Denkwelt von
UNIX-Dateisystemen.

- Es ist navigierend. Die PCTE-Standards definieren keine mengen-
orientierte Abfragesprache. Man kann aber ohne weiteres Abfrage-
sprachen für PCTE-Objektbanken definieren; ein Beispiel ist NTT,
das Teil des Systems H-PCTE ist.

- PCTE unterstützt ein Verteilungskonzept, bei dem die Objektbank
in mehrere Segmente geteilt ist, die auf mehrere Rechner verteilt wer-
den können, bei dem die Segmentierung und Verteilung von Daten
für die Applikationen transparent ist und bei dem einzelne Objekte
transparent von einem Rechner auf einen anderen verlagert werden
können. Ferner sind nicht nur die Nutzdaten verteilbar, sondern
auch die Schemadaten.

- PCTE ist strukturell objektorientiert, d.h. es gibt komplexe Objek-
te und Operationen, die komplexe Objekte als Ganze verarbeiten.

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 4

PCTE ist nicht verhaltensmäßig objektorientiert, d.h. man kann
Objekte (bzw. Beziehungen) nicht mit Hilfe von benutzerdefinierten
Operationen kapseln.

Das vollständige Datenbankmodell von PCTE ist relativ komplex.
Diese Komplexität resultiert aus einer Vielzahl von Sonderfällen, die
für die eine oder andere wichtige Anwendungssituation benötigt wer-
den, die aber für ein erstes Verständnis von PCTE eher störend sind.
Wir vernachlässigen daher diese Sonderfälle zunächst. Wir geben hier
nur eine erste, z.T. vergröberte Darstellung der PCTE-Konzepte und
konzentrieren uns auf die wichtigen und häufigen Fälle.

2 Objekte, Beziehungen und Attribute

Eine Objektbank besteht aus einer Menge von Objekten und Beziehun-
gen, die ein Netzwerk zwischen diesen Objekten bilden.

2.1 Objekte

Ein Objekt entspricht in gewisser Weise einem Record in einer Pro-
grammiersprache oder einem Tupel in einer relationalen Datenbank.
Jedes Objekt hat einen Objekttyp. Dieser Typ legt fest:

1. einen oder mehrere direkte Elterntypen (multiple inheritance)
2. eine Menge von direkten Attributen
3. eine Menge von zulässigen ausgehenden Linktypen (s.u.)

Wenn OT1 Elterntyp von OT2 ist, dann nennt man OT2 auch
Subtyp von OT1, und es gilt dann folgendes: 1. OT2 erbt alle Attri-
bute und zulässigen Linktypen von OT1, 2. OT2 ist typkompatibel zu
OT1, d.h. immer da, wo eine Instanz von OT1 erforderlich ist, kann
auch eine Instanz von OT2 verwendet werden. Dies ist das normale
Prinzip objektorientierter Systeme, wonach Instanzen eines bestimmten
Typs immer durch Instanzen eines Subtyps ersetzt werden können.

Die Objekttypen bilden infolge des mehrfachen Erbens zunächst ei-
ne Halbordnung. Diese wird weiter dahingehend eingeschränkt, daß sie

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 5

genau eine Wurzel hat. Dieser vordefinierte Wurzeltyp heißt object ,
d.h. alle anderen Objekttypen sind stets Subtyp von object . Hieraus
folgt, daß alle Attribute von object auch bei allen anderen Objekt-
typen vorhanden sind. Diese Attribute werden daher Standardattri-
bute genannt. Beispiele für Standardattribute sind diverse Zähler für
ankommende oder ausgehende Links und diverse Datumsstempel1.

Es gibt eine ganze Reihe von Operationen mit Objekten, die wir
hier nur andeuten, d.h. wir erklären ihre Parameter und Wirkung erst
später im Detail:

OBJECT_CREATE (objekttyp, ...)
legt ein Objekt vom angegebenen Typ an.

OBJECT_DELETE (...)
löscht ein angegebenes Objekt.

OBJECT_COPY (...)
erzeugt eine Kopie des angegebenen Objekts.

OBJECT_SET_ATTRIBUTE (...., Attributname, wert)
setzt das Attribut mit dem angegebenen Namen auf den an-
gegebenen Wert. Dies entspricht beim Denken in Records ei-
ner Wertzuweisung der Form: recordvariable.Feldname :=
Wert

OBJECT_GET_ATTRIBUTE (...., Attributname) : wert
liest den Wert des angegebenen Attributes und gibt ihn zurück.
Dies entspricht beim Denken in Records einer Zuweisung in der
Form x := recordvariable.Feldname

Objekttypen stellen wir in folgender Weise graphisch dar:

1Weitere Hinweise hierzu folgen in Abschnitt 4.4.

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 6

Objekttyp

Subtyp

name_von_an

. . .

name_von_a1

2.2 Beziehungen, Links und Linktypen

In PCTE gibt es nur binäre Beziehungen.
Diese sind insofern eine Besonderheit von PCTE, als im Gegensatz

zu anderen Datenbankmodellen eine Beziehung zwischen zwei Objekten
als ein Paar von zwei gegenläufigen gerichteten Links realisiert wird.
Das folgende Bild zeigt eine Beziehung zwischen zwei Objekten O1 und
O2.

Die Bezeichnung Link kommt aus der POSIX-Denkwelt, wo Links
Verbindungen zwischen Verzeichnissen und Dateien herstellen.

Jeder Link hat eigene Attribute. Dies klingt zunächst etwas seltsam,
da aus einer abstrakten Sicht Attribute normalerweise einer Beziehung
zugeordnet werden und die Zuordnung zu einem der beiden involvier-
ten Links eher willkürlich erscheint. Die Ursache hierfür liegt in der
Verteilung und wird später diskutiert werden.

Links sind ebenso wie Objekte typisiert. Der Linktyp legt folgende
Merkmale der Links fest:

1. eine Folge von Schlüsselattributen; ein Linktyp kann kein, ein
oder mehrere Schlüsselattribute haben

2. eine Menge von Nicht-Schlüsselattributen

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 7

3. eine Menge zulässiger Zielobjekttypen (dies spielt nur eine Rolle
beim Erzeugen von Links)

4. eine Kategorie; diese drückt bestimmte semantische Eigenschaften
aus; beispielsweise kann ausgedrückt werden, daß das Zielobjekt als
Komponente des Ausgangsobjekts zu behandeln ist

5. die Duplikationseigenschaft (DUPLICATED / NON-DUPLICATED
; diese Eigenschaft legt fest, ob der Link mitkopiert wird, wenn das
Ausgangsobjekt kopiert wird)

6. diverse andere Eigenschaften, die wir erst später kennenlernen wer-
den

7. den Umkehrlinktyp, d.h., wenn man einen Link vom Typ X hat
und Y der Umkehrlinktyp von X ist, dann hat dieser Link vom Typ
X einen Umkehrlink vom Typ Y.

Wenn X den Umkehrlinktyp Y hat, dann hat umgekehrt Y den Um-
kehrlinktyp X. Da der Umkehrlinktyp eindeutig ist, ist der Fall, daß
zwei Linktypen X1 und X2 den gleichen Umkehrlinktyp Y haben, nicht
möglich, denn Y hätte dann ja keinen eindeutigen Umkehrlinktyp.

Auch für Links gibt es eine Reihe von Operationen, die wir hier nur
andeuten und später genauer kennenlernen werden:

LINK_CREATE (....)
erzeugt einen Link und den Umkehrlink

LINK_DELETE (....)
löscht einen Link mitsamt seinem Umkehrlink

LINK_GET_ATTRIBUTE (....)
liest ein Attribut eines Links

LINK_SET_ATTRIBUTE (....)
überschreibt ein Attribut eines Links

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 8

Auch Linktypen werden graphisch dargestellt. Diese Darstellung
ist im wesentlichen eine der vielen Varianten von Entity-Relationship-
Diagrammen.

OT2OT1

In dieser Darstellung werden der Linktyp und sein Umkehrlink-
typ durch ein einziges Symbol, nämlich durch eine Raute dargestellt.
Von dieser Raute aus gehen Pfeile zu den beiden beteiligten Objekt-
typen. Die Pfeile werden beschriftet in der Form: Schlüsselattribu-
te.Linktypname. Beispiel:

Kunde Konto

ktnr.besitzt.gehoert

2.3 Attribute

Ein Attribut ist definiert durch:

1. seinen Namen (Attributname)
2. seinen Wertebereich (Attributtyp)
3. einen Initialwert
4. eine Duplikationseigenschaft, die festlegt, ob der Wert dieses Attribu-

tes beim Kopieren des Objekts mitkopiert wird. Wenn ein Attribut
nicht duplizierbar ist, bekommt es in der Kopie eines Objekts den
Initialwert.

Als Attributtypen sind nur wenige elementare Datentypen vorge-
sehen, und zwar: boolean, integer, natural, float (d.h. reelle Zahlen),

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 9

string (long field), time, und benutzerdefinierte Aufzählungen. Strings
können fast beliebig lang werden und können bereits als eine Reali-
sierung des Konzepts langer Felder angesehen werden. Strukturierte
Attributwerte (Felder, Verbunde, Listen usw.) sind nicht vorgesehen2.

2An dieser Stelle sei die Warnung angebracht, daß wir in diesem Text die Be-
griffe Attribut und Attributtyp wie in der allgemeinen Datenbankliteratur üblich
benutzt haben. Diese beiden Begriffe werden in ECMA- bzw. ISO-PCTE völlig an-
ders (und leider nicht sehr sinnvoll) definiert. Das Problem ist, daß eine saubere
Unterscheidung von Typ und Instanz beim Attributbegriff nicht ganz einfach ist.
Eine saubere Definition des Begriffs Attribut muß so vorgehen, daß man ein Attri-
but als eine Abbildung auffaßt, die die Entitäten, die ein Attribut haben können
(genaugenommen die Menge I der Identifizierer für solche Identitäten) abbildet auf
einen Wertebereich W, der dem Attributtyp entspricht, etwa wie folgt:

attribut : I → W

Dieser Wertebereich muß noch durch einen speziellen Wert ‘undefiniert’ ergänzt
werden für den Fall, daß ein Attribut an einer solchen Entität gar nicht definiert ist.
Betrachtet man nun die in Programmiersprachen übliche Begriffswelt, und setzt

man Objekte mit Records gleich und Attribute mit Recordkomponenten, so treffen
folgende Beobachtungen zu: Es gibt im allgemeinen eine klare Trennung zwischen
Typen und Instanzen. Ein Typ ist etwas, was instanziiert werden kann bzw. von
dem Instanzen existieren. Ein Attribut (oder eine Recordkomponente) ist hingegen
ein Begriff, der sowohl auf der Typ- wie auch auf der Instanzenebene benutzt wird!
Es kann jeweils nur im Kontext entschieden werden, welche Ebene hier gemeint ist,
d.h. ob hier ein Teil einer Recordtypdefinition gemeint ist oder Teil einer Record-
variablen. Mit einem Ausdruck der Form “Attribut eines Objekttyps” meinen wir
daher die Typebene, und ein Attribut auf dieser Ebene ist gegeben durch

- einen Attributnamen und
- einen Attributtyp (also einen Datentyp, der den Wertebereich und die Operatio-

nen auf den Werten festlegt).

Da wir ja bei einem Datenbanksystem nur mit der Speicherung von Werten befaßt
sind und da Operationen auf den Werten innerhalb der Applikation stattfinden,
spielen diese Operationen für unsere Betrachtungen keine weitere Rolle. Im Gegen-
satz dazu verstehen wir unter einem Ausdruck der Form “Attribut eines Objekts O”
die Instanzenebene. Ein Attribut ist auf dieser Ebene definiert durch

- den Attributnamen und
- den Wert, den dieses Attribut bei dem Objekt O hat.

Unter “Attributtyp” verstehen wir stets einen Datentyp, z.B. integer, string usw.
Diese Doppeldeutigkeit des Attributbegriffs auf der Typ- und Instanzenebene tritt
bei allen Programmiersprachen sowie auch in der normalen Datenbankliteratur auf

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 10

Operationen mit Attributen treten nur im Zusammenhang mit Ob-
jekten oder Links auf. Von daher sind bereits oben Beispiele angegeben
worden. Zusätzlich kann man anstatt mit einem Attribut sofort mit
mehreren Attributen an einem Objekt oder Link arbeiten. Die zugehö-
rigen Operationsnamen sind:

OBJECT_SET/GET_ATTRIBUTE (...)
OBJECT_SET/GET_SEVERAL_ATTRIBUTES (...)
LINK_SET/GET_ATTRIBUTE (...)
LINK_SET/GET_SEVERAL_ATTRIBUTES (...)

und kann dadurch erklärt werden, daß Attribute von nicht alleine instanziierbar
sind, sondern nur im Kontext eines Objekts, bei dem sie auftreten.
Die in den diversen PCTE-Spezifikationen benutzten Begriffe sind leider nicht

kompatibel mit der normalen Begriffswelt (und leider noch nicht einmal völlig durch-
gängig innerhalb der PCTE-Spezifikation benutzt): Unter “attribute” versteht man
die Instanzenebene, d.h. den Namen und den Wert eines Attributs an einem Objekt
oder Link. Unter “attribute type” versteht man den Namen und den Typ des Attri-
buts in einer Typdefinition. Bildlich gesprochen entspricht dies einer Zeile innerhalb
einer Recorddefinition, in der der Name und der Typ einer Komponente stehen.
Diese Definition des Begriffs Attributtyp stellt ein absolutes Kuriosum dar und ist
in keiner Weise konsistent mit dem normalen Begriff Typ, denn Typen können im-
mer instanziiert werden. Eine derartige Zeile in einer Recorddefinition ist natürlich
nicht instanziierbar. Nachdem nun der Begriff Attributtyp bereits verbraucht ist,
muß eine andere Bezeichnung für das gefunden werden, was normalerweise als At-
tributtyp bezeichnet wird. Hierfür wird in den Standard-Dokumenten der Begriff
“attribute value type” definiert. Hiermit ist ein Datentyp gemeint, und zwar derje-
nige eines Attributes. Der Begriff value type (“Wertetyp”) ist ein völliger Mißgriff,
denn ein Typ impliziert immer bereits die Definition eines Wertebereichs. Von daher
müßte man value type als Wertebereichs-Wertebereich übersetzen.
Ein weiteres Beispiel für die stellenweise etwas verkorkste Begriffswelt in den

PCTE-Standards stellt der Begriff “enumeral type” dar. Hierbei handelt es sich um
eine Konstante innerhalb einer Aufzählung, d.h. um einen konstanten Datenwert.
Der Begriff Typ ist hier eigentlich deplaziert, er wurde verwendet, weil schlicht alle
elementaren Teile von Typdefinitionen als Typen bezeichnet werden.

Im folgenden werden wir weiterhin bei der gängigen Begriffswelt bleiben, was
leider dazu führt, daß die in diesem Text verwendeten Begriffe manchmal nicht kom-
patibel mit den Begriffen sind, die in den Standard-Dokumenten verwendet werden
und die zum Teil sogar in den Operationsnamen auftreten.

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 11

Standardattribute. Wie schon früher erwähnt worden ist, erben
alle Objekttypen vom Objekttyp object eine Reihe von Standard-
attributen, von denen wir hier einige erläutern wollen. Angegeben ist
jeweils der Name, der Typ und eine Beschreibung der Bedeutung.

exact_identifier : string

Der in diesem Attribut gespeicherte String identifiziert ein Ob-
jekt eindeutig innerhalb einer Objektbank (bzw. PCTE-Installation);
ein einmal benutzter Wert wird nicht wiederverwendet, d.h. der
exact_identifier hat die Surrogateigenschaft.

last_access_time : time
last_modification_time : time
last_change_time : time

Hierbei handelt es sich um Zeitstempel, die den Zeitpunkt des letzten le-
senden, des letzten verändernden bzw. des letzten “stark verändernden”
Zugriffs auf ein Objekt festhalten. Ein Reihe von Administrationsope-
rationen, wie z.B. eine Änderung der Zugriffsrechte, gelten hierbei nur
als eine “leichte” Veränderung und führen nicht zu einer Veränderung
des Zeitstempels für “starke” Veränderungen3.

num_incoming_links : integer

Dieses Attribut zeigt die Zahl der in einem Objekt endenden Links an.

Die Standardattribute dienen vor allem dazu, den internen Zustand
der Objekte bzw. Objektbank sichtbar und für Applikationen lesbar
zu machen. Hieraus folgt, daß diese Attribute zwar wie normale At-
tribute lesbar sind (auch das mit Ausnahmen; es gibt Fälle, in denen
diese Attribute noch nicht einmal lesbar sind). Diese Attribute sind
aber nie mit normalen Operationen schreibbar; ihr Wert ändert sich
nur indirekt als Seiteneffekt von anderen Operationen.

3Diese Zeitstempel sind in H-PCTE nicht realisiert, sind aber in den Typdefini-
tionen aus Kompatibilitätsgründen vorhanden!

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 12

2.4 Ein Beispiel

Mit den bisher kennengelernten Konzepten können wir nun bereits
ein Beispiel für die Typen einer Applikation betrachten (in einer
pseudocode-artigen Syntax):

Objekttyp Person
Attribute:

Nachname: string, initial: ’’
Vorname: string, initial: ’’

Objekttyp Student
Subtyp von Person
zusaetzliche Attribute:

Matrikelnummer: natural, initial: 0
Links:

wird_betreut_von [natural] nach Mitarbeiter

Objekttyp Mitarbeiter
Subtyp von Person
zusaetzliche Attribute:

Personalnummer: string, initial: ’’
Links:

betreut [natural] nach Student

3 Identifizierung von Objekten

Jedes DBMS (bzw. genauer gesagt jedes Datenbankmodell) muß ir-
gendwelche Möglichkeiten vorsehen, auf einzelne Objekte zuzugreifen
und sie hierzu zunächst einmal zu identifizieren. Man unterscheidet
hier zwei grundlegende Vorgehensweisen:

1. Nichtnavigierende Sprachen: Das beste Beispiel hierfür sind relatio-
nale Abfragesprachen, in denen die Objekte, mit denen man arbeiten

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 13

möchte, deskriptiv spezifiziert werden (siehe auch [DBI]).
2. Navigierende Zugriffsverfahren: Bei diesen wird ausgehend von be-

reits lokalisierten Objekten mit Hilfe von gewissen Operationen zu
anderen Objekten hin navigiert.

PCTE gehört zur zweiten Art von DBMS. PCTE kennt keinen
Direktzugriff zu Mengen von Objekten anhand von deskriptiven Merk-
malen, sondern nur Navigationen über Links, wobei die Links anhand
ihrer Linknamen spezifiziert werden.

3.1 Linknamen

Wie schon früher erwähnt ist das Konzept der Links stark angelehnt an
das Konzept der Links innerhalb von POSIX (oder sonstigen Dateisy-
stemen). Jeder Link hat einen Linknamen, und dieser ist lokal eindeutig
innerhalb der Menge der Links, die vom gleichen Objekt ausgehen. Mit
anderen Worten liegt hier eine lokale Schlüsseleigenschaft vor, wäh-
rend im Vergleich dazu in relationalen Systemen Schlüsseleigenschaften
stets global sind. Der Unterschied wird einem klar, wenn man die Men-
ge der Links eines Typs betrachtet. Es kann durchaus mehrere Links
des gleichen Typs mit dem gleichen Linknamen in der Objektbank ge-
ben, allerdings müssen diese Links dann von verschiedenen Objekten
ausgehen.

Die Syntax von Linknamen wurde so gewählt, daß die typischen
Linknamen in Dateisystemen unverändert übernommen werden können.
Die Syntax eines Linknamens ist:

Schluessel ’.’ Linktypname

Der Schlüssel (key) eines Links besteht aus den Werten der Schlüsselat-
tribute, die durch Punkte getrennt werden4. Es sei daran erinnert, daß
ein Linktyp eine Folge (nicht Menge) von Schlüsselattributen definiert.
Entsprechend dieser Folge sind die Schlüsselattributwerte im Schlüssel
enthalten.

4Diese Begriffswahl kann zu Mißverständnissen führen, denn nur der gesam-
te Linkname ist ein Identifizierungsschlüssel für die Links, die von einem Objekt
ausgehen.

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 14

Beispiele für Linknamen mit verschieden vielen Schlüsselattributen
sind:
0 Schlüsselattribute: .doku .headers
1 Schlüsselattribute: einfuehrung.tex einfuehrung.toc main.c ..
2 Schlüsselattribute: einfuehrung.v7.tex main.v5.c ...
3 Schlüsselattribute: einfuehrung.v7.5.tex main.v5.2.c ...

Wenn ein Linktyp kein Schlüsselattribut hat, dann kann von einem
Objekt maximal ein Link dieses Typs ausgehen, d.h. die Kardinali-
tät dieses Linktyps ist [0,1], was in der PCTE-Terminologie auch als
“one” bezeichnet wird. Dargestellt werden Links dieses Typs in den
Schema-Diagrammen mit einem einfachen Pfeil →.

Wenn ein Linktyp wenigstens ein Schlüsselattribut hat, können be-
liebig viele Links dieses Typs von einem Objekt ausgehen (natürlich
mit verschiedenen Schlüsselattributwerten). Links dieses Typs haben
Kardinalität [0,∞], was in der PCTE-Terminologie auch als “many” be-
zeichnet wird, und werden mit einem Pfeil mit doppelter Pfeilspitze
dargestellt: →→

Im folgenden geben wir einige Beispiele von Objekten und Links,
die diese Objekte verbinden, an. Wir stellen diese Beispiele graphisch
als ein Netzwerk dar. Kästen stellen Objekte dar. Innerhalb der Kä-
sten steht der Name des Typs dieses Objekts. Links werden als Pfeile
dargestellt, die mit dem Linknamen beschriftet sind. Die Umkehrlinks
werden in den meisten Fällen nicht dargestellt.

Beispiel 1: Verzeichnisse in POSIX-Dateisystemen
Dateistrukturen in POSIX (oder anderen Dateisystemen) lassen sich

fast immer direkt in Netzwerke von PCTE-Objekten und Links um-
setzen. Für einen Dateinamen wie main.c muß ein Linktyp namens
c definiert werden, der ein Schlüsselattribut hat, dessen Wertebereich
Strings sind. Zulässiger Zielobjekttyp für c sollte naheliegenderweise
nur der Objekttyp sein, der C-Programme repräsentiert. Analog muß
man für main.o , papier.tex , papier.dvi usw. jeweils eigene
Linktypen definieren.

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 15

Beispiel 2: listenartige Strukturen

�� �
Element

�� �
Element

�� �
Element

�� �

?

- -

.naechster

.naechster .naechster

Kopf

Umkehrlinktyp zu naechster : voriger

Beispiel 3: eindimensionale Felder
Arrays sind in der Programmierung eine sehr häufige Form der

Datenstrukturierung. PCTE hat kein Konzept, durch das Arrays di-
rekt nachgebildet werden können. Stattdessen muß man ein Array als
Ganzes durch ein Kopfobjekt modellieren, von dem aus Links zu den
Elementen des Arrays gehen.

�
�

�
�

�
�

�
�

�
�

�
�

�

J
J
J
J
JĴ

.
1.enthaelt n.enthaelt

Element

Kopf

Element

Die Links werden am einfachsten mit einem numerischen Schlüs-
sel, der den Array-Positionen entspricht, durchnumeriert. Im folgenden
Beispiel heißt der Linktyp enthaelt (der Umkehrlinktyp könnte z.B.
ist_enthalten_in_feld heißen), und es sind Links mit Schlüssel 1
bis n angedeutet. Auf diese Weise kann ein array [1..n] simuliert
werden. Es ist hier allerdings nicht garantiert, daß nicht z.B. ein Link
mit Schlüssel n+1 erzeugt wird oder daß Links mit Schlüsseln zwischen

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 16

1 und n fehlen. Es ist also nicht garantiert, daß das Array vollständig
vorhanden ist oder daß die Array-Grenzen nicht überschritten werden.

Beispiel 4: rekursive Datenstrukturen
Die direkte Modellierbarkeit rekursiver Datenstrukturen ist eine

der wesentlichen Anforderungen an Objektmanagementsysteme. Als
Beispiel betrachten wir hier einen binären Baum.

�
�

�
�

�
�

�
�

�
�

�
�

�

J
J
J
J
JĴ

.
.linker_Teilbaum

Baum

BaumBaum

.rechter_Teilbaum

Von einem Objekt des Typs Baum gehen zwei Links mit Linkna-
men .linker_Teilbaum und .rechter_Teilbaum aus. Die beiden
Links haben kein Schlüsselattribut und verschiedene Linktypen, die
Kardinalität der Linktypen ist also “eins”. Auf diese Weise kann si-
chergestellt werden, daß maximal genau zwei Teilbäume enthalten sind.
Die Umkehrlinktypen könnten z.B. ist_linker_Teilbaum_von und
ist_rechter_Teilbaum_von heißen. Es ist nicht möglich, für beide
Links den gleichen Umkehrlinktyp zu nehmen, denn dieser Linktyp
hätte dann keinen eindeutigen Umkehrlinktyp.

Alternativ hätte man einen einzigen Linktyp Teilbaum definieren
können und für den linken und rechten Teilbaum verschiedene Schlüssel
verwenden können, z.B. 1 und 2. Bei einem numerischen Schlüssel al-
lerdings gibt es dann keine Garantie, daß nicht ein Link mit Linknamen
3.Teilbaum erzeugt wird. Dies bedeutet also, daß das Konsistenz-
kriterium eines Binärbaums, daß maximal zwei Teilbäume vorhanden
sind, verletzt werden könnte.

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 17

3.2 Referenzobjekte

Die Linknamen, die wir bisher kennengelernt haben, ermöglichen es
uns, von einem Objekt durch Angabe eines Linknamens über den so
bezeichneten Link zu einem anderen Objekt zu navigieren. Wir kön-
nen also ausgehend von bereits erreichten Objekten andere Objekte
erreichen. Die Frage bleibt dabei offen, wie wir überhaupt zum ersten
Objekt hinkommen, d.h. wo wir mit der Navigation anfangen. Um dies
zu ermöglichen, gibt es eine Reihe von direkt referenzierbaren Objek-
ten, sog. Referenzobjekte, von denen wir hier nur die wichtigsten
tabellarisch angeben:

Kurz- / Langname Bedeutung
_ $common_root allgemeines Wurzelobjekt einer Installati-

on (analog zum Verzeichnis ’/’ in POSIX)
~ $home_object Heim-Objekt des Benutzers des laufenden

Prozesses

Von POSIX-Shells ist man daran gewöhnt, mit ’.’ ein aktuelles Ob-
jekt (Verzeichnis) des laufenden Prozesses angeben zu können. Ein
solches Referenzobjekt ist aber nur innerhalb eines Kommandointer-
preters (also nicht für andere Prozesse) gültig und muß daher in der
Applikation realisiert werden.

Der PCTE-Standard definiert noch einige weitere Referenzobjek-
te, die allerdings weniger häufig benutzt werden und in H-PCTE nicht
realisiert sind.

3.3 Pfadnamen von Objekten

Objekte können in PCTE mit Hilfe von Pfadnamen bezeichnet wer-
den. Ein Pfadname realisiert die Idee, daß man ausgeht von einem
Referenzobjekt und von dort aus über beliebig viele Links zu dem ge-
wünschten Objekt hinnavigiert. Der Referenzobjektname steht links in
einem (absoluten) Pfadnamen. Ihm folgen durch ’/‘ getrennt beliebig
viele Linknamen.

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 18

Anwendungsprozesse können auch dynamisch “Zeiger” auf Objekte
(sog. Objektreferenzen; diese lernen wir später genauer kennen) an-
legen; auch von so referenzierten Objekten aus kann weiter navigiert
werden, in diesem Fall durch Angabe eines relativen Pfadnamens,
in dem der Referenzobjektname fehlt. Die Syntax von Pfadnamen ist
insgesamt wie folgt:

Pfadname = Referenzobjektname [’/’ relativer Pfadname]
| relativer Pfadname

relativer Pfadname = Linkname { ’/’ Linkname }

Beispiele für Pfadnamen (in Klammern ist der naheliegende Typ
des Zielobjekts angegeben):

1) ~/uni_beispiel.x/meier.ist_uni_angehoeriger (person)
2) ~/uni_beispiel.x/schmidt.ist_uni_angehoeriger (person)
3) ~/uni_beispiel.x/schmidt.ist_uni_angehoeriger/

meier.betreut (student)
4) ~/uni_beispiel.x/schmidt.ist_uni_angehoeriger/

meier.betreut/schmidt.wird_betreut_von (mitarbeiter)

Die Pfadnamen 1 und 3 sind zwar textuell verschieden, können aber
ohne weiteres zum gleichen Objekt führen. Gleiches gilt für die Pfad-
namen 2 und 4. Dies ist ein erheblicher Unterschied zur Denkweise, die
man aus Dateisystemen gewohnt ist5. In Dateisystemen ist die Struk-
tur der Verzeichnisse fast immer baumartig. Lediglich auf der untersten
Ebene können z.B. in POSIX einzelne Dateien in mehreren Verzeich-
nissen enthalten sein. Derartige Restriktionen bestehen in PCTE nicht,
d.h. die Links zwischen den Objekten bilden ein vollkommen beliebi-
ges Netzwerk, bei dem im allgemeinen viele Pfade zum gleichen Objekt

5Wobei wir symbolische Links ausnehmen. Links in PCTE entsprechen “har-
ten” Links in POSIX-Dateisystemen, es gibt in PCTE kein den symbolischen Links
entsprechendes Konzept.

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 19

führen können und bei dem innerhalb von Pfaden ohne weiteres Schlei-
fen auftreten können. Hieraus folgt als erste Erkenntnis, daß es für das
gleiche Objekt im allgemeinen beliebig viele Pfadnamen geben kann.

Umgekehrt ist keineswegs sicher, daß mit dem gleichen Pfadnamen
immer das gleiche Objekt bezeichnet wird. Ein Link, der innerhalb ei-
nes Pfadnamens auftritt, kann nämlich ohne weiteres gelöscht werden
und es kann zu einem späteren Zeitpunkt ein Link mit dem gleichen
Namen, der zu einem anderen Objekt führt, wieder angelegt werden,
so daß die Bedeutung des gesamten Pfadnamens indirekt mitgeändert
worden ist.

Pfadnamen sind somit kein Konzept oder Mittel, mit dessen Hil-
fe man Objekte längerfristig eindeutig bezeichnen kann. Wir werden
später andere Mittel kennenlernen, mit denen dies möglich ist. Um Bei-
spiele für Pfade und Links kennenzulernen, kann man z.B. mit einem
der Browser von H-PCTE in einer Objektbank navigieren. Eine erste
Übungsaufgabe ist daher, mit einem dieser Browser in der Beispielda-
tenbank herumzufahren und ein paar Objekte und Links anzusehen6.

Hinweise zur Benutzung von Referenzobjekten. Wenn man
von _ oder ~ zu bestimmten Objekten einer Applikation navigiert, kön-
nen relativ lange Pfade entstehen, die unhandlich sind und auch nur
ineffizient verarbeitbar sind. Im Vorgriff auf Lehrmodul [PRF] sei hier
schon erwähnt, daß eine Applikation beliebige Objekte zu zusätzlichen
“Stützpunkten” machen kann, auf die dann direkt zugegriffen und von
denen aus effizient weiternavigiert werden kann.

4 Schemaverwaltung

4.1 Selbstreferentialität und die Metadatenbank

Wir haben oben bereits Möglichkeiten kennengelernt, Objekte bzw.
Links eines bestimmten Typs zu erzeugen. In den Operationen muß
der gewünschte Typ in Form eines Parameters bzw. als letzter Teil des

6Hinweise zur Installation des H-PCTE-Systems sind über http://pi.infor-
matik.uni-siegen.de erhältlich.

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 20

Linknamens angegeben werden. Das OMS muß nun bei Angabe eines
solchen Typs prüfen, ob er existiert und welche Eigenschaften er hat.
Mit anderen Worten müssen als Teil jeder Objektbank nicht nur die ei-
gentlichen Instanzen der benutzerdefinierten Typen gespeichert werden,
sondern auch Informationen über die Typen selbst. Derartige Daten
nennt man auch Metadaten, also Daten über Daten.

Wie wir auch schon gesehen haben, muß es für Anwendungen irgend-
wie möglich sein, neue Typen zu erzeugen. Darüber hinaus wird man
natürlich auch fordern, daß man Informationen über die vorhandenen
Typen auf irgendeine Weise abfragen kann. Mit anderen Worten muß
jedes OMS intern ein Typverwaltungssystem haben sowie Schnittstel-
len, um Typen anzulegen und Informationen über Typen abzufragen.
Für die Gestaltung der Schnittstelle zu diesem Typverwaltungssystem
gibt es zwei prinzipielle Ansätze:

1. Man definiert geeignete Operationen, durch die alle Eigenschaften
der Typdefinition abgefragt werden oder soweit zulässig verändert
werden können. Beispielsweise könnte es eine Operation geben, die
zu einem Objekttyp die Menge seiner Elterntypen liefert.

2. Alternativ kann man die Metadaten als ganz normale Daten ansehen
und demzufolge durch Objekte und Beziehungen darstellen. Der-
artige OMS nennt man selbstreferentiell. Das bedeutet, daß die
Datenmodellierungseigenschaften des OMS dazu benutzt werden,
Metadaten oder relevante interne Verwaltungsstrukturen als ganz
normale Daten darzustellen.

PCTE bietet beide Ansätze parallel an. Zum einen wird eine Vielzahl
von Operationen zum Abfragen und Modifizieren von Typeigenschaften
angeboten. Gleichzeitig ist PCTE sehr weitgehend selbstreferentiell.
Nicht nur alle Typdefinitionen, sondern auch Datenträger, Benutzer,
Prozesse und viele andere Dinge werden durch Objekte und Beziehungen
repräsentiert. Die Objekte und Beziehungen, die die Typdefinitionen
repräsentieren, bilden die sogenannte Metadatenbank. Die Metada-
tenbank ist über den Pfad _/.schemas erreichbar.

Die Metadatenbank enthält alle in einer PCTE-Installation be-
kannten Typen und entspricht daher dem konzeptuellen Schema in der

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 21

ANSI/SPARC-Schichtenarchitektur. Interne Schemata sind in PCTE
nicht vorgesehen; dies liegt hauptsächlich am Verteilungskonzept von
PCTE (unterstellt werden große, heterogene Workstation-Netze, kei-
ne mengenorientierte Abfragesprache). Das Sichtenkonzept besprechen
wir im folgenden Abschnitt.

Die Metadatenbank hat eine recht komplexe Struktur, da sie direkt
und feinkörnig die komplette Typwelt von PCTE wiedergibt. Für einen
PCTE-Anfänger ist sie zu komplex; sinnvollerweise sollte man zunächst
mit einfacheren Strukturen üben. Details der Metadatenbank werden
daher erst in Lehrmodul [PMDB] erklärt.

4.2 Arbeitsschemata

Eine der wesentlichen Leistungen eines DBMS besteht darin, unter-
schiedlichen Anwendungsprogrammen eigene Sichten auf die Daten zu
realisieren. In PCTE entspricht der Begriff Arbeitsschema (working
schema) dem Begriff Sicht (oder externes Schema). Das Arbeitsschema
eines Prozesses definiert eine Menge von Typen, die für diesen Prozeß
sichtbar sein können, ferner ggf. noch bestimmte Einschränkungen bzgl.
der Zugriffsart zu Instanzen dieser Typen. Ein Prozeß kann also nur
auf denjenigen Typen operieren, die in seinem Arbeitsschema enthalten
sind. Alle anderen Typen sind für ihn “unsichtbar”.

Der Sichtenmechanismus von PCTE unterscheidet sich infolge der
Objektorientierung und anderer Gründe erheblich vom Sichtenmecha-
nismus, den man aus relationalen Datenbanken kennt:

- Eine Sicht in einem relationalen System wird definiert als virtuelle
Relation. Diese Relation hat einen eigenen Namen und entspricht
daher einem eigenen neuen Objekttyp. In PCTE entstehen durch
Sichten keine neuen Typen, stattdessen wird für den laufenden Pro-
zeß die Definition vorhandener Typen modifiziert. Hieraus folgt:

- Die Definition eines Relationentyps ist in relationalen Systemen für
alle Applikationen gleich, in PCTE können verschiedene Prozesse
verschiedene Definitionen des gleichen Objekttyps “sehen”. In PCTE
kann ein Prozeß diese Definition sogar zur Laufzeit ändern.

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 22

- In einem relationalen System wird bei jedem DML-Kommando die
zu benutzende Sicht durch Angabe der zu benutzenden Relationen
explizit angegeben. In PCTE arbeiten die Operationen nur mit den
“wirklichen” Typen, die zu benutzende Sicht ist eine Eigenschaft des
Prozesses.

- Sichten in PCTE sind identitätserhaltend, Sichten in relationalen
Systemen nicht. Ein Tupel in einer virtuellen Relation wird z.B.
dann, wenn die Sicht als Verbund definiert wird, aus mehreren an-
deren Tupeln aus realen Relationen abgeleitet. Die Identität der
Ausgangs“objekte” geht dabei verloren. Eine Konsequenz hieraus
ist, daß in solche virtuellen Relationen nicht ohne weiteres Tupel
eingefügt oder vorhandene Tupel geändert werden können.

In PCTE können derartige Sichten nicht gebildet werden. In
PCTE entspricht ein Objekt unter einer Sicht immer einem realen
Objekt, es hat unter jeder Sicht immer die gleiche Identität (Surro-
gat) und den gleichen Typ – letzteres entspricht der objektorientier-
ten Denkweise viel besser als der relationale Ansatz. Erzeugende,
löschende und ändernde Operationen sind in PCTE, sofern sie über-
haupt zulässig sind, auch unter jeder beliebigen Sicht zulässig. In
PCTE besteht daher gar kein Anlaß, einen Begriff wie virtuelles
Objekt zu bilden.

Dies ist sehr wichtig, denn im Gegensatz zu konventionellen An-
wendungen ist der überwiegende Anteil der Applikationen in einer
SEU schreibend. Der Sichtenmechanismus in relationalen Systemen
erlaubt zwar komplexere Sichtendefinitionen, wenn Verbundoperato-
ren oder ähnlich mächtigen Operatoren benutzt werden, dies ist aber
von beschränktem Nutzen, wenn diese Sichten nicht “schreibbar”
sind.

4.3 Globale und schemaspezifische Typeigenschaften

Eine typische Anwendung eines Sichtenmechanismus besteht z.B. darin,
einige Attribute eines Objekttyps auszublenden. Die Menge der Attri-
bute eines Objekttyps kann daher in verschiedenen Arbeitsschemata
verschieden sein. Umgekehrt wäre es sehr problematisch, wenn z.B. die

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 23

Folge der Schlüsselattribute eines Linktyps in verschiedenen Arbeits-
schemata variieren könnte. Es gibt daher Typeigenschaften, die nicht
variieren können, d.h. die in allen Arbeitsschemata gleich sind7, die so-
mit global gültig sind. Diese Eigenschaften können auch nicht mehr
verändert werden, nachdem die Typdefinition einmal in der Objektbank
angelegt worden ist. Globale Eigenschaften sind:

- bei Objekttypen: die Menge der Elterntypen

- bei Linktypen: die Folge der Schlüsselattribute, die Kategorie, der
Umkehrlinktyp und die Duplikationseigenschaft

- bei Attributen: der Initialwert und die Duplikationseigenschaft.

Alle anderen Typeigenschaften, u.a. die Menge der Attribute eines
Objekttyps, sind abhängig vom Arbeitsschema. Diese Eigenschaften der
Typdefinitionen sind auch veränderbar; sie können sogar noch nachträg-
lich modifiziert werden, nachdem bereits Instanzen der Typen erzeugt
worden sind. Beispielsweise kann bei einem existierenden Objekttyp
person ein neues Attribut sprachkenntnisse hinzugefügt werden.
Bei Instanzen von person , die vor dieser Schemaänderung erzeugt
worden sind, kann das Attribut sprachkenntnisse ohne explizite
Vorbereitungen gelesen werden; man erhält dann den Initialwert. Wenn
man es überschreibt, wird die interne Speicherstruktur automatisch
konvertiert, um den neuen Attributwert aufnehmen zu können.

4.4 Schema Definition Sets

In PCTE basiert die Verwaltung aller Typen, die in einer Installation
vorhanden sind, auf dem Konzept des Schema Definition Set (SDS):
Ein SDS gruppiert eine Menge zusammengehöriger Typdefinitionen und
hat einen systemweit eindeutigen SDS-Namen. Die Metadatenbank
besteht also aus einer Reihe von SDS. Ein SDS mit Namen XX wird
durch das Objekt mit dem Pfadnamen _/.schemas/XX.known_sds
repräsentiert. SDS ermöglichen es, die Verwaltung von Typen zu mo-
dularisieren. Hierfür gibt es zwei wichtige Motive:

7Wie dies technisch erreicht wird, ist hier zunächst belanglos.

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 24

- Zum einen soll es möglich sein, die Typen, die zu einem bestimmten
neuen Werkzeug gehören, separat in ein oder mehrere SDS zu ver-
kapseln, die zu diesem Werkzeug gehören, und diese SDS einzeln in
der Objektbank zu installieren.

- Ein weiterer wichtiger Grund zur Modularisierung der Typdefinitio-
nen ist die Verteilung. Es soll möglich sein, Teile der Typdefinitionen
auf verschiedenen Rechnern zu speichern.

Vordefinierte SDS. Es gibt mehrere vordefinierte SDS, die in jeder
Objektbank initial vorhanden sind und die nicht modifiziert werden
sollten:

1. Das SDS system enthält diverse grundlegende Typen, z.B.
object, process usw., die für die Selbstmodellierung des Sy-
stems wichtig sind und als Grundlage für weitere Typen benötigt
werden. Die meisten Typen im SDS system sind allerdings für
normale Applikationen vollkommen irrelevant, z.B. die meisten Stan-
dardattribute des Objekttyps object . Daher ist es sinnvoll, aus
den häufig gebrauchten Typen aus system ein neues SDS zu bil-
den und nur dieses zu verwenden. Wie dies geht, werden wir später
kennenlernen.

2. Das SDS metasds enthält die Typen, die in der Metadatenbank
auftreten. Diese nennt man auch Metatypen, d.h. es sind Typen,
deren Instanzen Typen repräsentieren.

3. Das SDS discretionary_security enthält diverse Typen, die für
die Repräsentation und Handhabung der Zugriffskontrollen benötigt
werden, z.B. Typen für die Gruppenverwaltung, für die Zugriffskon-
trollisten usw.

4. Das SDS mandatory_security enthält analog dazu Typen, die für
die Informationsflußkontrollen (Typen für mandatory access controls,
MAC) benötigt werden.

5. Das SDS accounting enthält Typen, die für die Abrechnungs-
funktionen von PCTE benötigt werden.

Von den im Standard enthaltenen SDS sind in H-PCTE nicht alle

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 25

komplett enthalten oder z.T. mit Modifikationen enthalten:

- system , metasds und discretionary_security sind wie im
Standard definiert enthalten.

- mandatory_security und accounting sind nicht enthalten, weil
diese Funktionsbereiche in H-PCTE nicht realisiert sind.

- hpcte ist ein zusätzliches SDS, das für Interna von H-PCTE benö-
tigt wird.

Überschneidungen von SDS. Ein SDS “enthält” Mengen von Typ-
definitionen. Ein wichtiger Punkt ist nun, daß diese Mengen i.a. nicht
disjunkt sind, d.h. es kann sein, daß der gleiche Typ in mehreren SDS
vorhanden ist8. Dabei wird sichergestellt, daß die globalen Typeigen-
schaften in allen SDS gleichartig definiert sind; beispielsweise hat ein
Linktyp in allen SDS, in denen er auftritt, die gleiche Kategorie und
den gleichen Umkehrlinktyp.

4.5 Das Setzen des Arbeitsschemas eines Prozesses

Ein Prozeß kann sein Arbeitsschema jederzeit verändern. Hierzu gibt
es eine Operation zum Setzen des Arbeitsschemas

process_set_working_schema (..,Folge_von_SDSnamen).

Ein Beispiel eines Aufrufs könnte sein

process_set_working_schema (..,(uni, system))

Die Operation process_set_working_schema erzeugt folgendes Ar-
beitsschema:

1. Es enthält alle Typen, die in wenigstens einem der aufgeführten SDS
vorkommen.
8Mittel, wie man einen solchen Zustand herstellt, werden wir erst später kennen-

lernen (s. Abschnitt 3.2 in [PDDL]).

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 26

2. Die Eigenschaften dieser Typen werden folgendermaßen bestimmt:
Sofern ein Typ nur in einem SDS definiert ist, ergeben sich seine

Eigenschaften aus dieser Definition. Ist er in mehreren SDS enthal-
ten, so sind nach Voraussetzung die globalen Typeigenschaften in
allen SDS identisch definiert, so daß auch im Arbeitsschema diese
einheitliche Festlegung gilt.

Für die schemaspezifischen Typeigenschaften gilt i.w., daß die
Eigenschaften aus den verschiedenen SDS “vereinigt” werden: Bei-
spielsweise hat ein Objekttyp in einem Arbeitsschema die Vereini-
gung aller Attribute, die er in irgendeinem der SDS hat, aus denen
das Arbeitsschema besteht. Ein Objekttyp O kann z.B. in einem
SDS S1 ein Attribut A1 haben und in einem SDS S2 ein Attribut
A2. In dem Arbeitsschema bestehend aus den beiden SDS hat O die
Attribute A1 und A2. Diese Vereinigungsregel gilt analog:

- bei Objekttypen: für Attribute und die ausgehenden Linktypen

- bei Linktypen: für Nichtschlüsselattribute und die Zielobjektty-
pen

Attribute haben keine schemaspezifischen Typeigenschaften.

Initiales Arbeitsschema. Das initiale Arbeitsschema eines Prozes-
ses ist anfangs leer, d.h. es enthält 0 Typen. Mit anderen Worten sieht
der Prozeß zunächst überhaupt nichts. Hieraus folgt, daß der Prozeß
als erstes immer ein geeignetes Arbeitsschema setzen muß, um arbeiten
zu können. Wenn man in einem Prozeß (z.B. einem Browser) nachse-
hen möchte, welche SDS überhaupt verfügbar sind, muß man allerdings
die Metadatenbank lesen können. Dies ist nur dann möglich, wenn man
das metasds im Arbeitsschema hat.

4.6 Typnamen

Bei der bisherigen Behandlung der Schemamechanismen haben wir
einen wichtigen (und leider etwas komplizierten) Aspekt ausgeklam-
mert, nämlich Typnamen. In früheren Beispielen haben wir bereits

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 27

Typnamen verwendet (insb. die Linktypnamen innerhalb von Linkna-
men).

Die Namen eines Typs hängen vom Arbeitsschema ab. Ein Typ hat
im Arbeitsschema i.a. mehrere Namen, die unterschiedslos benutzt wer-
den können. Es gibt drei verschiedene Arten von Typnamen, die wir
i.f. erläutern.

Lokale Typnamen in SDS. Innerhalb eines SDS hat ein darin ent-
haltener Typ einen eindeutigen lokalen Typnamen9. Das SDS bildet
einen einzigen Namensraum, d.h. ein Objekttyp und ein Attribut mit
gleichem Namen sind nicht erlaubt.

Die Namenseindeutigkeit gilt nur lokal innerhalb eines SDS und
nicht global innerhalb der Menge aller SDS. In zwei verschiedenen SDS
können also durchaus unterschiedliche Typen enthalten sein, die den
gleichen lokalen Namen in den beiden SDS haben.

Wir hatten schon früher erwähnt, daß ein bestimmter Typ in meh-
reren SDS enthalten sein kann. In jedem SDS kann er einen anderen
Namen haben, d.h. in unserer oben etablierten Begriffswelt würde man
den lokalen Namen als eine sichtenspezifische Eigenschaft eines Typs
ansehen.

In einem Arbeitsschema hat ein Typ im einfachsten Fall jeden loka-
len Namen, den er in einem der beteiligten SDS hat. Wenn das gleiche
Attribut beispielsweise im SDS X den lokalen Namen Nachname hat
und im SDS Y den lokalen Namen Familienname und wenn das
Arbeitsschema die beiden SDS enthält, kann das Attribut mit beiden
lokalen Namen unterschiedslos angesprochen werden.

Eine Ausnahme von der vorstehenden Regel wird bei einem Na-
menskonflikt notwendig. Ein Namenskonflikt liegt vor, wenn der gleiche
lokale Typname in mehreren SDS des Arbeitsschemas auftritt und in
diesen SDS unterschiedliche Typen bezeichnet. In diesem Fall ist die
Reihenfolge der SDS, die beim Setzen des Arbeitsschemas angegeben

9Es kann auch namenlose Typen geben, was an dieser Stelle aber nicht interes-
siert.

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 28

wurde, relevant10: der lokale Name bezeichnet dann den Typ gemäß
dem ersten SDS, in dem dieser Name auftritt. Andere Typen, die in ei-
nem der folgenden SDS vorkommen und die dort den gleichen lokalen
Namen haben, haben somit im Arbeitsschema diesen lokalen Namen
nicht, haben also u.U. gar keinen lokalen Namen mehr! Die vorderen
SDS überdecken also die lokalen Namen der hinteren SDS.

Volle Typnamen. Weil der lokale Name eines Typs innerhalb ei-
nes SDS ggf. nicht ausreicht, um den Typen eindeutig innerhalb der
Objektbank zu identifizieren, gibt es eine lange Form: diese besteht
aus dem Namen des SDS, gefolgt von ’-’ und dem lokalen Namen, und
wird auch als der volle Typname bezeichnet. Da SDS-Namen global
eindeutig sind, sind auch die vollen Typnamen global eindeutig.

In unseren obigen Beispielen für Pfadnamen trat unter anderem der
Linktypname betreut auf. Hierbei handelte es sich um einen loka-
len Namen. Wenn das SDS, in dem dieser Linktyp definiert ist, uni
heißt, dann ist der volle Typname dieses Linktyps uni-betreut .

In einem Arbeitsschema hat ein Typ immer alle vollen Namen gemäß
den SDS des Arbeitsschemas, in denen er vorkommt.

Typidentifizierer. Es ist bei bestimmten Gelegenheiten notwendig,
auch mit Objekten bzw. Links umgehen zu können, deren Typ nicht
im aktuellen Arbeitsschema enthalten ist, die also eigentlich unsicht-
bar sind11. Für diesen Fall sind die sogenannten Typidentifizierer

10Dies ist übrigens der einzige Punkt, bei dem diese Reihenfolge relevant ist.
11Dies widerspricht natürlich dem Begriff (Un-) Sichtbarkeit.
Das simpelste Beispiel sind Daten, deren Typ gelöscht worden ist. Hierzu ist an-

zumerken, daß Typdefinitionen in der Metadatenbank gelöscht werden können, auch
wenn noch Instanzen dieser Typen in der Objektbank vorhanden sind. Wegen der
Verteilungsannahmen können diese Instanzen i.a. nicht sofort mit der Löschung des
Typ beseitigt werden.
Ein anderes Beispiel für eine solche Situation ist das Auflisten der Links, die

von einem Objekt ausgehen. Um ein Objekt löschen zu können, darf es keine “stö-
renden” Links geben. Wenn unsichtbare Links überhaupt nicht anzeigbar wären,
könnte man nicht den geringsten Hinweis herausfinden, warum ein Objekt nicht
gelöscht werden kann. Dies ist in der Praxis nicht akzeptabel.

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 29

vorhanden. Ein Typidentifizierer ist eine Zeichenkette, die mit ei-
nem Tiefstrich ‘_’ beginnt; der Tiefstrich ist bei benutzerdefinierten
Typnamen nicht als erstes Zeichen zugelassen. Die Syntax dieser Zei-
chenkette ist ansonsten in den Standards undefiniert, kann also von
jeder PCTE-Implementierung selbst festgelegt werden.

Hintergrund dieses Typidentifizierers ist, daß das System immer
dann, wenn ein neuer Typ angelegt wird, für diesen Typ ein Surro-
gat vergibt. Ein Surrogat ist ein Bezeichner, der nur einmal während
der Lebensdauer des gesamten Systems vergeben wird, der also nicht
wiederverwendet wird und der damit den bezeichneten Gegenstand in-
nerhalb der gesamten Lebensdauer des Systems eindeutig identifiziert.
Intern arbeitet das System nur mit diesen Typidentifizierern.

Typidentifizierer sind systemweit eindeutig; jeder in einem Arbeits-
schema enthaltene Typ hat daher genau einen Typidentifizierer.

Bei der Rückgabe von Typnamen an ein Benutzerprogramm – z.B.
bei der Anzeige von Linknamen im Browser – wird

- irgendein lokaler Typname benutzt, sofern wenigstens einer vorhan-
den ist;

- andernfalls, sofern der Typ im Arbeitsschema enthalten ist, irgend-
einer der vollen Typnamen benutzt;

- andernfalls der Typidentifizierer.

Übungsaufgaben. Die Wirkung von externen Schemata lernt man
am besten kennen, indem man mit verschiedenen externen Schema-
ta über die gleichen Datenbestände navigiert. Machen Sie hierzu am
Rechner12 folgende Übungsaufgaben:

- mit einem Arbeitsschema bestehend aus SDS system in der Objekt-
bank herumwandern und aufpassen, was passiert (also normalerweise
nach Starten der Applikation; der Browser setzt initial ein Arbeits-
schema bestehend aus den SDS system , security und hpcte
)

12Ggf. müssen Sie hierzu erst H-PCTE installieren; eine Anleitung befindet sich
in [HINS].

c©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 30

- dito, mit einem Arbeitsschema bestehend aus den SDS allgemein
und uni

- dito mit einer selbstgewählten Kombination von SDS

Literatur

[PCTE90] Portable Common Tool Environment - Abstract Specificati-
on (Standard ECMA-149); European Computer Manufacturers
Association, Geneva; 1990

[PCTE94] Proceedings of the PCTE ’94 Conference, San Francisco,
29.11.-1.12.1994; 1994/11

[DBI] Kelter, U.: Lehrmodul “Einführung in Datenbanksysteme”;
1999/10

[HINS] Kelter, U.: Lehrmodul “Einführung in die Benutzung des H-
PCTE-Systems”; 1999/12

[IRA] Kelter, U.: Lehrmodul “Integrationsrahmen für Software-Ent-
wicklungsumgebungen”; 1999/11

[PDDL] Kelter, U.: Lehrmodul “Definition und Manipulation von Sche-
mata”; 1999/11

[PHIS] Kelter, U.: Lehrmodul “Einordnung und Historie von PCTE”;
1999/11

[PMDB] Kelter, U.: Lehrmodul “Die Metadatenbank und das Typ-
verwaltungs-API von PCTE”; 1999/11

[PRF] Kelter, U.: Lehrmodul “Referenzen”; 1999/12
[PSV] Kelter, U.: Lehrmodul “Segmentierung und Verteilung”; 1999/11

c©2002 Udo Kelter Stand: 23.4.2002

Index
Arbeitsschema, 18
Attribut, 7, 8

direktes, 4
Initialwert, 8
Typ, 7, 8

attribute type, 9
attribute value type, 9

Duplikationseigenschaft, 6, 8

Elterntyp, 4
exact_identifier, 10

H-PCTE, 3
Heim-Objekt, 15

Kardinalität, 12
Kategorie, 6

Link, 5
Name, 11
Schlüssel, 12

LINK_CREATE, 7
LINK_DELETE, 7
LINK_GET_ATTRIBUTE, 7
LINK_SET_ATTRIBUTE, 7
Linkname, 11
Linktyp, 6, 7

ausgehender, 4

mandatory access controls, 21
Metadaten, 17
Metadatenbank, 17, 18
multiple inheritance, 4

OBJECT_COPY, 5
OBJECT_CREATE, 5
OBJECT_DELETE, 5

OBJECT_GET_ATTRIBUTE, 5
OBJECT_SET_ATTRIBUTE, 5
Objekt, 4
Objektmanagementsystem, 3
Objekttyp, 4

Pfadname, 15
relativer, 15

Referenzobjekt, 15
Repository, 3

Schema Definition Set, 20
Schlüsselattribut, 6, 12
SDS, 20

Name, 20
vordefiniertes
accounting, 21
discretionary_security, 21
hpcte, 21
mandatory_security, 21
metasds, 21
system, 21

Selbstreferentialität, 17
selbstreferentielles OMS, 18
Sicht, 18
Standardattribute, 4
Subtyp, 4
Surrogat, 10, 25

Typ
Identifizierer, 24
Name, 23

lokaler, 23
voller, 24

Umkehrlink, 5
Umkehrlinktyp, 6

31

Grundlegende Konzepte des Datenbankmodells von PCTE 32

value type, 9

working schema, 18
Wurzeltyp, 4

Zielobjekttypen, 6

c©2002 Udo Kelter Stand: 23.4.2002

	Einordnung von PCTE
	Objekte, Beziehungen und Attribute
	Objekte
	Beziehungen, Links und Linktypen
	Attribute
	Ein Beispiel

	Identifizierung von Objekten
	Linknamen
	Referenzobjekte
	Pfadnamen von Objekten

	Schemaverwaltung
	Selbstreferentialität und die Metadatenbank
	Arbeitsschemata
	Globale und schemaspezifische Typeigenschaften
	Schema Definition Sets
	Das Setzen des Arbeitsschemas eines Prozesses
	Typnamen
	Literatur
	Index

