Grundlegende Konzepte des
Datenbankmodells von PCTE

Udo Kelter

23.4.2002

Zusammenfassung dieses Lehrmoduls

Dieses Lehrmodul stellt die wichtigsten Merkmale des Datenbank-
modells von PCTE vor. Nach Durcharbeiten dieses Moduls soll man in
der Lage sein, mit dem Standardbrowser in einer PCTE-Objektbank zu
navigieren und im Browser einfache Datenmanipulationen auszufiihren.
Beschrieben werden die Konzepte Objekt, Attribut, Link, Typna-
me und Schema Definition Set. Das Sichtenkonzept von PCTE wird
ausfiihrlich vorgestellt und mit dem relationalen verglichen.

Vorausgesetzte Lehrmodule:
empfohlen: - Datenmodellierung mit ER-Modellen
- Einordnung und Historie von PCTE

Stoffumfang in Vorlesungsdoppelstunden: 1.6

Grundlegende Konzepte des Datenbankmodells von PCTE 2

Inhaltsverzeichnis
11 Einordnung von PCTE| 3
12 Objekte, Beziehungen und Attribute) 4
I Objektd 4
2.2 eziehungen, Links und Linktypen| 6
B3 AGDULe 8
2.4 Ein Beispiell oo 12
13 ldentifizierung von Objekten| 12
B.1 Tanknamenl 13
3.2 Referenzobjekte|.o oo oo 17
8.3 Pfadnamen von Objekten| 17
4 Schemaverwaltung| 19
4.1 selbstreferentialitat und die Metadatenbankl 19
21
22
23
25
26
30
30
(©2002 Udo Kelter Stand: 23.4.2002

Dieser Text darf fiir nichtkommerzielle Nutzungen als Ganzes und unverdndert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Verdnderung und Uberfiihrung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist iiber http://kltr.de erreichbar.

Grundlegende Konzepte des Datenbankmodells von PCTE 3

1 Einordnung von PCTE

Dieses Lehrmodul stellt die grundlegenden Konzepte des Datenbank-
modells von PCTE vor.

PCTE ist konzipiert worden als ein Nichtstandard-DBMS, das Soft-
wareentwicklungsdaten verteilt verwalten kann und die Konstruktion
von Software-Entwicklungsumgebungen (SEU) unterstiitzt. Derarti-
ge Systeme werden auch Objektmanagementsystem oder Repo-
sitory (vgl. [IRA]) genannt. Die PCTE-Spezifikationen wurden als
ECMA-Standard 149 [PCTE90] und ISO-Standard 13719 [PCTE94]
verabschiedet. H-PCTE ist eine hochperformante (partielle) Imple-
mentierung von PCTE, die durch die Fachgruppe Praktische Informatik
an der Universitdt Siegen realisiert wurde.

Das Datenbankmodell von PCTE hat folgende Hauptmerkmale:

- Es ist auf die Dokumentverwaltung und nicht auf die Verwaltung
grofser Mengen tabellarischer Daten ausgerichtet.

- Seine Grundkonzepte basieren auf dem FEntity-Relationship-Modell.
Eine Objektbank enthilt also Objekte und Beziehungen.

In einigen Details ist es stark beeinflufst von der Denkwelt von
UNIX-Dateisystemen.

- Es ist navigierend. Die PCTE-Standards definieren keine mengen-
orientierte Abfragesprache. Man kann aber ohne weiteres Abfrage-
sprachen fiir PCTE-Objektbanken definieren; ein Beispiel ist NTT,
das Teil des Systems H-PCTE ist.

- PCTE unterstiitzt ein Verteilungskonzept, bei dem die Objektbank
in mehrere Segmente geteilt ist, die auf mehrere Rechner verteilt wer-
den koénnen, bei dem die Segmentierung und Verteilung von Daten
fiir die Applikationen transparent ist und bei dem einzelne Objekte
transparent von einem Rechner auf einen anderen verlagert werden
konnen. Ferner sind nicht nur die Nutzdaten verteilbar, sondern
auch die Schemadaten.

- PCTE ist strukturell objektorientiert, d.h. es gibt komplexe Objek-
te und Operationen, die komplexe Objekte als Ganze verarbeiten.

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 4

PCTE ist nicht verhaltensméfig objektorientiert, d.h. man kann
Objekte (bzw. Beziehungen) nicht mit Hilfe von benutzerdefinierten
Operationen kapseln.

Das vollstandige Datenbankmodell von PCTE ist relativ komplex.
Diese Komplexitéat resultiert aus einer Vielzahl von Sonderfillen, die
flir die eine oder andere wichtige Anwendungssituation bendtigt wer-
den, die aber fiir ein erstes Verstédndnis von PCTE eher stérend sind.
Wir vernachldssigen daher diese Sonderfille zunéchst. Wir geben hier
nur eine erste, z.T. vergroberte Darstellung der PCTE-Konzepte und
konzentrieren uns auf die wichtigen und héufigen Falle.

2 Objekte, Beziechungen und Attribute

Eine Objektbank besteht aus einer Menge von Objekten und Beziehun-
gen, die ein Netzwerk zwischen diesen Objekten bilden.

2.1 Objekte

Ein Objekt entspricht in gewisser Weise einem Record in einer Pro-
grammiersprache oder einem Tupel in einer relationalen Datenbank.
Jedes Objekt hat einen Objekttyp. Dieser Typ legt fest:

1. einen oder mehrere direkte Elterntypen (multiple inheritance)
2. eine Menge von direkten Attributen
3. eine Menge von zulissigen ausgehenden Linktypen (s.u.)

Wenn OT1 Elterntyp von OT2 ist, dann nennt man OT2 auch
Subtyp von OT1, und es gilt dann folgendes: 1. OT2 erbt alle Attri-
bute und zuléssigen Linktypen von OT1, 2. OT2 ist typkompatibel zu
OT1, d.h. immer da, wo eine Instanz von OT1 erforderlich ist, kann
auch eine Instanz von OT2 verwendet werden. Dies ist das normale
Prinzip objektorientierter Systeme, wonach Instanzen eines bestimmten
Typs immer durch Instanzen eines Subtyps ersetzt werden kénnen.

Die Objekttypen bilden infolge des mehrfachen Erbens zunéchst ei-
ne Halbordnung. Diese wird weiter dahingehend eingeschrankt, daf sie

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 5

genau eine Wurzel hat. Dieser vordefinierte Wurzeltyp heifst object
d.h. alle anderen Objekttypen sind stets Subtyp von object . Hieraus
folgt, daf alle Attribute von object auch bei allen anderen Objekt-
typen vorhanden sind. Diese Attribute werden daher Standardattri-
bute genannt. Beispiele fiir Standardattribute sind diverse Zahler fiir
ankommende oder ausgehende Links und diverse Datumsstempell|

Es gibt eine ganze Reihe von Operationen mit Objekten, die wir
hier nur andeuten, d.h. wir erklaren ihre Parameter und Wirkung erst
spater im Detail:

OBJECT_CREATE (objekttyp, ...)
legt ein Objekt vom angegebenen Typ an.

OBJECT_DELETE (...)
16scht ein angegebenes Objekt.

OBJECT_COPY (...)
erzeugt eine Kopie des angegebenen Objekts.

OBJECT_SET_ATTRIBUTE (...., Attributname, wert)
setzt das Attribut mit dem angegebenen Namen auf den an-
gegebenen Wert. Dies entspricht beim Denken in Records ei-
ner Wertzuweisung der Form: recordvariable.Feldname :=
Wert

OBJECT_GET_ATTRIBUTE (...., Attributname) : wert
liest den Wert des angegebenen Attributes und gibt ihn zuriick.
Dies entspricht beim Denken in Records einer Zuweisung in der
Form x := recordvariable.Feldname

Objekttypen stellen wir in folgender Weise graphisch dar:

YWeitere Hinweise hierzu folgen in Abschnitt

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 6

name_von_al

Objekttyp

name_von_an

\ 4

Subtyp

2.2 Beziehungen, Links und Linktypen

In PCTE gibt es nur bindre Beziehungen.

Diese sind insofern eine Besonderheit von PCTE, als im Gegensatz
zu anderen Datenbankmodellen eine Beziehung zwischen zwei Objekten
als ein Paar von zwei gegenldufigen gerichteten Links realisiert wird.
Das folgende Bild zeigt eine Beziehung zwischen zwei Objekten O1 und
02.

Die Bezeichnung Link kommt aus der POSIX-Denkwelt, wo Links
Verbindungen zwischen Verzeichnissen und Dateien herstellen.

Jeder Link hat eigene Attribute. Dies klingt zundchst etwas seltsam,
da aus einer abstrakten Sicht Attribute normalerweise einer Beziehung
zugeordnet werden und die Zuordnung zu einem der beiden involvier-
ten Links eher willkiirlich erscheint. Die Ursache hierfiir liegt in der
Verteilung und wird spater diskutiert werden.

Links sind ebenso wie Objekte typisiert. Der Linktyp legt folgende
Merkmale der Links fest:

1. eine Folge von Schliisselattributen; ein Linktyp kann kein, ein
oder mehrere Schliisselattribute haben
2. eine Menge von Nicht-Schliisselattributen

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 7

3. eine Menge zuléssiger Zielobjekttypen (dies spielt nur eine Rolle
beim Erzeugen von Links)

4. eine Kategorie; diese driickt bestimmte semantische Eigenschaften
aus; beispielsweise kann ausgedriickt werden, dafs das Zielobjekt als
Komponente des Ausgangsobjekts zu behandeln ist

5. die Duplikationseigenschaft (DUPLICATED / NON-DUPLICATED
; diese Eigenschaft legt fest, ob der Link mitkopiert wird, wenn das
Ausgangsobjekt kopiert wird)

6. diverse andere Eigenschaften, die wir erst spéter kennenlernen wer-
den

7. den Umkehrlinktyp, d.h., wenn man einen Link vom Typ X hat
und Y der Umkehrlinktyp von X ist, dann hat dieser Link vom Typ
X einen Umkehrlink vom Typ Y.

Wenn X den Umkehrlinktyp Y hat, dann hat umgekehrt Y den Um-
kehrlinktyp X. Da der Umkehrlinktyp eindeutig ist, ist der Fall, daf
zwei Linktypen X1 und X2 den gleichen Umkehrlinktyp Y haben, nicht
moglich, denn Y hétte dann ja keinen eindeutigen Umkehrlinktyp.

Auch fiir Links gibt es eine Reihe von Operationen, die wir hier nur
andeuten und spater genauer kennenlernen werden:

LINK_CREATE (....)
erzeugt einen Link und den Umkehrlink

LINK_DELETE (....)
16scht einen Link mitsamt seinem Umkehrlink

LINK_GET_ATTRIBUTE (....)
liest ein Attribut eines Links

LINK_SET_ATTRIBUTE (....)
iberschreibt ein Attribut eines Links

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 8

Auch Linktypen werden graphisch dargestellt. Diese Darstellung
ist im wesentlichen eine der vielen Varianten von Entity-Relationship-
Diagrammen.

OT1 b<>%> OT2

In dieser Darstellung werden der Linktyp und sein Umkehrlink-
typ durch ein einziges Symbol, ndmlich durch eine Raute dargestellt.
Von dieser Raute aus gehen Pfeile zu den beiden beteiligten Objekt-
typen. Die Pfeile werden beschriftet in der Form: Schliisselattribu-
te.Linktypname. Beispiel:

Kunde b<>é> Konto

.gehoert ktnr.besitzt

2.3 Attribute
Ein Attribut ist definiert durch:

1. seinen Namen (Attributname)

2. seinen Wertebereich (Attributtyp)

3. einen Initialwert

4. eine Duplikationseigenschaft, die festlegt, ob der Wert dieses Attribu-
tes beim Kopieren des Objekts mitkopiert wird. Wenn ein Attribut
nicht duplizierbar ist, bekommt es in der Kopie eines Objekts den
Initialwert.

Als Attributtypen sind nur wenige elementare Datentypen vorge-
sehen, und zwar: boolean, integer, natural, float (d.h. reelle Zahlen),

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 9

string (long field), time, und benutzerdefinierte Aufzihlungen. Strings
konnen fast beliebig lang werden und koénnen bereits als eine Reali-
sierung des Konzepts langer Felder angesehen werden. Strukturierte
Attributwerte (Felder, Verbunde, Listen usw.) sind nicht Vorgesehenﬂ

2An dieser Stelle sei die Warnung angebracht, daR wir in diesem Text die Be-
griffe Attribut und Attributtyp wie in der allgemeinen Datenbankliteratur iiblich
benutzt haben. Diese beiden Begriffe werden in ECMA- bzw. ISO-PCTE v6llig an-
ders (und leider nicht sehr sinnvoll) definiert. Das Problem ist, daf8 eine saubere
Unterscheidung von Typ und Instanz beim Attributbegriff nicht ganz einfach ist.
Eine saubere Definition des Begriffs Attribut muf so vorgehen, daf man ein Attri-
but als eine Abbildung auffait, die die Entitéiten, die ein Attribut haben kénnen
(genaugenommen die Menge I der Identifizierer fiir solche Identitaten) abbildet auf
einen Wertebereich W, der dem Attributtyp entspricht, etwa wie folgt:

attribut : I — W

Dieser Wertebereich muf noch durch einen speziellen Wert ‘undefiniert’ ergénzt
werden fiir den Fall, daf ein Attribut an einer solchen Entitéit gar nicht definiert ist.

Betrachtet man nun die in Programmiersprachen iibliche Begriffswelt, und setzt
man Objekte mit Records gleich und Attribute mit Recordkomponenten, so treffen
folgende Beobachtungen zu: Es gibt im allgemeinen eine klare Trennung zwischen
Typen und Instanzen. Ein Typ ist etwas, was instanziiert werden kann bzw. von
dem Instanzen existieren. Ein Attribut (oder eine Recordkomponente) ist hingegen
ein Begriff, der sowohl auf der Typ- wie auch auf der Instanzenebene benutzt wird!
Es kann jeweils nur im Kontext entschieden werden, welche Ebene hier gemeint ist,
d.h. ob hier ein Teil einer Recordtypdefinition gemeint ist oder Teil einer Record-
variablen. Mit einem Ausdruck der Form “Attribut eines Objekttyps”’ meinen wir
daher die Typebene, und ein Attribut auf dieser Ebene ist gegeben durch

— einen Attributnamen und

— einen Attributtyp (also einen Datentyp, der den Wertebereich und die Operatio-
nen auf den Werten festlegt).

Da wir ja bei einem Datenbanksystem nur mit der Speicherung von Werten befafst
sind und da Operationen auf den Werten innerhalb der Applikation stattfinden,
spielen diese Operationen fiir unsere Betrachtungen keine weitere Rolle. Im Gegen-
satz dazu verstehen wir unter einem Ausdruck der Form “Attribut eines Objekts O”
die Instanzenebene. Ein Attribut ist auf dieser Ebene definiert durch

— den Attributnamen und
— den Wert, den dieses Attribut bei dem Objekt O hat.

Unter “Attributtyp” verstehen wir stets einen Datentyp, z.B. integer, string usw.
Diese Doppeldeutigkeit des Attributbegriffs auf der Typ- und Instanzenebene tritt
bei allen Programmiersprachen sowie auch in der normalen Datenbankliteratur auf

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 10

Operationen mit Attributen treten nur im Zusammenhang mit Ob-
jekten oder Links auf. Von daher sind bereits oben Beispiele angegeben
worden. Zusétzlich kann man anstatt mit einem Attribut sofort mit
mehreren Attributen an einem Objekt oder Link arbeiten. Die zugeho-
rigen Operationsnamen sind:

OBJECT_SET/GET_ATTRIBUTE (...)
OBJECT_SET/GET_SEVERAL_ATTRIBUTES (...)
LINK_SET/GET_ATTRIBUTE (...)
LINK_SET/GET_SEVERAL_ATTRIBUTES (...)

und kann dadurch erklart werden, daff Attribute von nicht alleine instanziierbar
sind, sondern nur im Kontext eines Objekts, bei dem sie auftreten.

Die in den diversen PCTE-Spezifikationen benutzten Begriffe sind leider nicht
kompatibel mit der normalen Begriffswelt (und leider noch nicht einmal véllig durch-
géangig innerhalb der PCTE-Spezifikation benutzt): Unter “attribute”’ versteht man
die Instanzenebene, d.h. den Namen und den Wert eines Attributs an einem Objekt
oder Link. Unter “attribute type’ versteht man den Namen und den Typ des Attri-
buts in einer Typdefinition. Bildlich gesprochen entspricht dies einer Zeile innerhalb
einer Recorddefinition, in der der Name und der Typ einer Komponente stehen.
Diese Definition des Begriffs Attributtyp stellt ein absolutes Kuriosum dar und ist
in keiner Weise konsistent mit dem normalen Begriff Typ, denn Typen kénnen im-
mer instanziiert werden. Eine derartige Zeile in einer Recorddefinition ist natiirlich
nicht instanziierbar. Nachdem nun der Begriff Attributtyp bereits verbraucht ist,
muf eine andere Bezeichnung fiir das gefunden werden, was normalerweise als At-
tributtyp bezeichnet wird. Hierfiir wird in den Standard-Dokumenten der Begriff
“attribute value type’ definiert. Hiermit ist ein Datentyp gemeint, und zwar derje-
nige eines Attributes. Der Begriff value type (“Wertetyp”) ist ein volliger Mifgriff,
denn ein Typ impliziert immer bereits die Definition eines Wertebereichs. Von daher
miifste man value type als Wertebereichs-Wertebereich {ibersetzen.

Ein weiteres Beispiel fiir die stellenweise etwas verkorkste Begriffswelt in den
PCTE-Standards stellt der Begriff “enumeral type” dar. Hierbei handelt es sich um
eine Konstante innerhalb einer Aufzidhlung, d.h. um einen konstanten Datenwert.
Der Begriff Typ ist hier eigentlich deplaziert, er wurde verwendet, weil schlicht alle
elementaren Teile von Typdefinitionen als Typen bezeichnet werden.

Im folgenden werden wir weiterhin bei der gidngigen Begriffswelt bleiben, was
leider dazu fiihrt, daf die in diesem Text verwendeten Begriffe manchmal nicht kom-
patibel mit den Begriffen sind, die in den Standard-Dokumenten verwendet werden
und die zum Teil sogar in den Operationsnamen auftreten.

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 11

Standardattribute. Wie schon frither erwdhnt worden ist, erben
alle Objekttypen vom Objekttyp object eine Reihe von Standard-
attributen, von denen wir hier einige erlautern wollen. Angegeben ist
jeweils der Name, der Typ und eine Beschreibung der Bedeutung.

exact_identifier : string

Der in diesem Attribut gespeicherte String identifiziert ein Ob-
jekt eindeutig innerhalb einer Objektbank (bzw. PCTE-Installation);
ein einmal benutzter Wert wird nicht wiederverwendet, d.h. der
exact_identifier hat die Surrogateigenschaft.

last_access_time : time
last_modification_time : time
last_change_time : time

Hierbei handelt es sich um Zeitstempel, die den Zeitpunkt des letzten le-
senden, des letzten verdndernden bzw. des letzten “stark verdndernden”
Zugriffs auf ein Objekt festhalten. Ein Reihe von Administrationsope-
rationen, wie z.B. eine Anderung der Zugriffsrechte, gelten hierbei nur
als eine “leichte” Veranderung und fithren nicht zu einer Verédnderung
des Zeitstempels fiir “starke” Veréinderungenﬁ

num_incoming_links : integer

Dieses Attribut zeigt die Zahl der in einem Objekt endenden Links an.

Die Standardattribute dienen vor allem dazu, den internen Zustand
der Objekte bzw. Objektbank sichtbar und fiir Applikationen lesbar
zu machen. Hieraus folgt, daft diese Attribute zwar wie normale At-
tribute lesbar sind (auch das mit Ausnahmen; es gibt Félle, in denen
diese Attribute noch nicht einmal lesbar sind). Diese Attribute sind
aber nie mit normalen Operationen schreibbar; ihr Wert &ndert sich
nur indirekt als Seiteneffekt von anderen Operationen.

3Diese Zeitstempel sind in H-PCTE nicht realisiert, sind aber in den Typdefini-
tionen aus Kompatibilitédtsgriinden vorhanden!

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 12

2.4 Ein Beispiel

Mit den bisher kennengelernten Konzepten kénnen wir nun bereits
ein Beispiel fiir die Typen einer Applikation betrachten (in einer
pseudocode-artigen Syntax):

Objekttyp Person

Attribute:
Nachname: string, initial: ’°
Vorname: string, initial: ’’

Objekttyp Student
Subtyp von Person
zusaetzliche Attribute:
Matrikelnummer: natural, initial: O
Links:
wird_betreut_von [natural] nach Mitarbeiter

Objekttyp Mitarbeiter
Subtyp von Person
zusaetzliche Attribute:
Personalnummer: string, initial: ’’
Links:
betreut [natural] nach Student

3 Identifizierung von Objekten

Jedes DBMS (bzw. genauer gesagt jedes Datenbankmodell) muf$ ir-
gendwelche Moglichkeiten vorsehen, auf einzelne Objekte zuzugreifen
und sie hierzu zunéchst einmal zu identifizieren. Man unterscheidet
hier zwei grundlegende Vorgehensweisen:

1. Nichtnavigierende Sprachen: Das beste Beispiel hierfiir sind relatio-
nale Abfragesprachen, in denen die Objekte, mit denen man arbeiten

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 13

mochte, deskriptiv spezifiziert werden (siehe auch [DBI]).

2. Navigierende Zugriffsverfahren: Bei diesen wird ausgehend von be-
reits lokalisierten Objekten mit Hilfe von gewissen Operationen zu
anderen Objekten hin navigiert.

PCTE gehort zur zweiten Art von DBMS. PCTE kennt keinen
Direktzugriff zu Mengen von Objekten anhand von deskriptiven Merk-
malen, sondern nur Navigationen iiber Links, wobei die Links anhand
ihrer Linknamen spezifiziert werden.

3.1 Linknamen

Wie schon frither erwéahnt ist das Konzept der Links stark angelehnt an
das Konzept der Links innerhalb von POSIX (oder sonstigen Dateisy-
stemen). Jeder Link hat einen Linknamen, und dieser ist lokal eindeutig
innerhalb der Menge der Links, die vom gleichen Objekt ausgehen. Mit
anderen Worten liegt hier eine lokale Schlisseleigenschaft vor, wéh-
rend im Vergleich dazu in relationalen Systemen Schliisseleigenschaften
stets global sind. Der Unterschied wird einem klar, wenn man die Men-
ge der Links eines Typs betrachtet. Es kann durchaus mehrere Links
des gleichen Typs mit dem gleichen Linknamen in der Objektbank ge-
ben, allerdings miissen diese Links dann von verschiedenen Objekten
ausgehen.

Die Syntax von Linknamen wurde so gewahlt, daf die typischen
Linknamen in Dateisystemen unverdndert iibernommen werden kénnen.
Die Syntax eines Linknamens ist:

Schluessel ’.’ Linktypname

Der Schliissel (key) eines Links besteht aus den Werten der Schliisselat-
tribute, die durch Punkte getrennt werdenﬁ Es sei daran erinnert, daf
ein Linktyp eine Folge (nicht Menge) von Schliisselattributen definiert.
Entsprechend dieser Folge sind die Schliisselattributwerte im Schliissel
enthalten.

1Diese Begriffswahl kann zu Mifiverstandnissen fithren, denn nur der gesam-
te Linkname ist ein Identifizierungsschliissel fiir die Links, die von einem Objekt
ausgehen.

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 14

Beispiele fiir Linknamen mit verschieden vielen Schliisselattributen
sind:
0 Schliisselattribute: .doku .headers
1 Schliisselattribute: einfuehrung.tex einfuehrung.toc main.c
2 Schliisselattribute: einfuehrung.v7.tex main.v5.c ...
3 Schliisselattribute: einfuehrung.v7.5.tex main.v5.2.c ...

Wenn ein Linktyp kein Schliisselattribut hat, dann kann von einem
Objekt maximal ein Link dieses Typs ausgehen, d.h. die Kardinali-
tét dieses Linktyps ist |0,1], was in der PCTE-Terminologie auch als
“one€” bezeichnet wird. Dargestellt werden Links dieses Typs in den
Schema-Diagrammen mit einem einfachen Pfeil —.

Wenn ein Linktyp wenigstens ein Schliisselattribut hat, kénnen be-
liebig viele Links dieses Typs von einem Objekt ausgehen (natiirlich
mit verschiedenen Schliisselattributwerten). Links dieses Typs haben
Kardinalitét [0,00], was in der PCTE-Terminologie auch als “many’ be-
zeichnet wird, und werden mit einem Pfeil mit doppelter Pfeilspitze
dargestellt: —»

Im folgenden geben wir einige Beispiele von Objekten und Links,
die diese Objekte verbinden, an. Wir stellen diese Beispiele graphisch
als ein Netzwerk dar. Késten stellen Objekte dar. Innerhalb der Ké&-
sten steht der Name des Typs dieses Objekts. Links werden als Pfeile
dargestellt, die mit dem Linknamen beschriftet sind. Die Umkehrlinks
werden in den meisten Féllen nicht dargestellt.

Beispiel 1: Verzeichnisse in POSIX-Dateisystemen

Dateistrukturen in POSIX (oder anderen Dateisystemen) lassen sich
fast immer direkt in Netzwerke von PCTE-Objekten und Links um-
setzen. Fiir einen Dateinamen wie main.c muf ein Linktyp namens
¢ definiert werden, der ein Schliisselattribut hat, dessen Wertebereich
Strings sind. Zuldssiger Zielobjekttyp fiir ¢ sollte naheliegenderweise
nur der Objekttyp sein, der C-Programme représentiert. Analog mufs
man fiir main.o , papier.tex , papier.dvi usw. jeweils eigene
Linktypen definieren.

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 15

Beispiel 2: listenartige Strukturen

Kopf

.naechster

A
Fenent —>

.naechster

.naechster

Umkehrlinktyp zu naechster : voriger

Beispiel 3: eindimensionale Felder

Arrays sind in der Programmierung eine sehr hiufige Form der
Datenstrukturierung. PCTE hat kein Konzept, durch das Arrays di-
rekt nachgebildet werden kénnen. Stattdessen muf man ein Array als
Ganzes durch ein Kopfobjekt modellieren, von dem aus Links zu den
Elementen des Arrays gehen.

1.enthaelt n.enthaelt

‘IHHHHHHHII’ ‘I%HHHHHHII"

Die Links werden am einfachsten mit einem numerischen Schliis-
sel, der den Array-Positionen entspricht, durchnumeriert. Im folgenden
Beispiel heifst der Linktyp enthaelt (der Umkehrlinktyp kénnte z.B.
ist_enthalten_in_feld heifsen), und es sind Links mit Schliissel 1
bis n angedeutet. Auf diese Weise kann ein array [1..n] simuliert
werden. Es ist hier allerdings nicht garantiert, daf nicht z.B. ein Link
mit Schliissel n+1 erzeugt wird oder daf Links mit Schliisseln zwischen

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 16

1 und n fehlen. Es ist also nicht garantiert, daft das Array vollstindig
vorhanden ist oder daf die Array-Grenzen nicht iiberschritten werden.

Beispiel 4: rekursive Datenstrukturen

Die direkte Modellierbarkeit rekursiver Datenstrukturen ist eine
der wesentlichen Anforderungen an Objektmanagementsysteme. Als
Beispiel betrachten wir hier einen bindren Baum.

.linker_Teilbaum .rechter_Teilbaum

Von einem Objekt des Typs Baum gehen zwei Links mit Linkna-
men .linker_Teilbaum und .rechter_Teilbaum aus. Die beiden
Links haben kein Schliisselattribut und verschiedene Linktypen, die
Kardinalitdt der Linktypen ist also “eins”. Auf diese Weise kann si-
chergestellt werden, daft maximal genau zwei Teilbdume enthalten sind.
Die Umkehrlinktypen konnten z.B. ist_linker_Teilbaum_von und
ist_rechter_Teilbaum_von heifen. Es ist nicht mdoglich, fiir beide
Links den gleichen Umkehrlinktyp zu nehmen, denn dieser Linktyp
hatte dann keinen eindeutigen Umkehrlinktyp.

Alternativ hdtte man einen einzigen Linktyp Teilbaum definieren
kénnen und fiir den linken und rechten Teilbaum verschiedene Schliissel
verwenden konnen, z.B. 1 und 2. Bei einem numerischen Schliissel al-
lerdings gibt es dann keine Garantie, daf nicht ein Link mit Linknamen
3.Teilbaum erzeugt wird. Dies bedeutet also, dafs das Konsistenz-
kriterium eines Bindrbaums, daf maximal zwei Teilbdume vorhanden
sind, verletzt werden konnte.

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 17

3.2 Referenzobjekte

Die Linknamen, die wir bisher kennengelernt haben, ermdglichen es
uns, von einem Objekt durch Angabe eines Linknamens iiber den so
bezeichneten Link zu einem anderen Objekt zu navigieren. Wir kon-
nen also ausgehend von bereits erreichten Objekten andere Objekte
erreichen. Die Frage bleibt dabei offen, wie wir iiberhaupt zum ersten
Objekt hinkommen, d.h. wo wir mit der Navigation anfangen. Um dies
zu ermoglichen, gibt es eine Reihe von direkt referenzierbaren Objek-
ten, sog. Referenzobjekte, von denen wir hier nur die wichtigsten
tabellarisch angeben:

Kurz- / Langname | Bedeutung

$common_root | allgemeines Wurzelobjekt einer Installati-
on (analog zum Verzeichnis ’/’ in POSIX)
$home_object | Heim-Objekt des Benutzers des laufenden
Prozesses

Von POSIX-Shells ist man daran gewohnt, mit .’ ein aktuelles Ob-
jekt (Verzeichnis) des laufenden Prozesses angeben zu kénnen. Ein
solches Referenzobjekt ist aber nur innerhalb eines Kommandointer-
preters (also nicht fiir andere Prozesse) giiltig und muf daher in der
Applikation realisiert werden.

Der PCTE-Standard definiert noch einige weitere Referenzobjek-
te, die allerdings weniger haufig benutzt werden und in H-PCTE nicht
realisiert sind.

3.3 Pfadnamen von Objekten

Objekte konnen in PCTE mit Hilfe von Pfadnamen bezeichnet wer-
den. Ein Pfadname realisiert die Idee, daf man ausgeht von einem
Referenzobjekt und von dort aus iiber beliebig viele Links zu dem ge-
wiinschten Objekt hinnavigiert. Der Referenzobjektname steht links in
einem (absoluten) Pfadnamen. Thm folgen durch ’/¢ getrennt beliebig
viele Linknamen.

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 18

Anwendungsprozesse konnen auch dynamisch “Zeiger” auf Objekte
(sog. Objektreferenzen; diese lernen wir spéter genauer kennen) an-
legen; auch von so referenzierten Objekten aus kann weiter navigiert
werden, in diesem Fall durch Angabe eines relativen Pfadnamens,
in dem der Referenzobjektname fehlt. Die Syntax von Pfadnamen ist
insgesamt wie folgt:

Pfadname = Referenzobjektname [’/’ relativer Pfadname]
| relativer Pfadname
relativer Pfadname = Linkname { ’/’ Linkname }

Beispiele fiir Pfadnamen (in Klammern ist der naheliegende Typ
des Zielobjekts angegeben):

1) ~/uni_beispiel.x/meier.ist_uni_angehoeriger (person)
2) "/uni_beispiel.x/schmidt.ist_uni_angehoeriger (person)
3) “/uni_beispiel.x/schmidt.ist_uni_angehoeriger/

meier.betreut (student)
4) ~/uni_beispiel.x/schmidt.ist_uni_angehoeriger/
meier.betreut/schmidt.wird_betreut_von (mitarbeiter)

Die Pfadnamen 1 und 3 sind zwar textuell verschieden, konnen aber
ohne weiteres zum gleichen Objekt fithren. Gleiches gilt fiir die Pfad-
namen 2 und 4. Dies ist ein erheblicher Unterschied zur Denkweise, die
man aus Dateisystemen gewohnt is@ In Dateisystemen ist die Struk-
tur der Verzeichnisse fast immer baumartig. Lediglich auf der untersten
Ebene kénnen z.B. in POSIX einzelne Dateien in mehreren Verzeich-
nissen enthalten sein. Derartige Restriktionen bestehen in PCTE nicht,
d.h. die Links zwischen den Objekten bilden ein vollkommen beliebi-
ges Netzwerk, bei dem im allgemeinen viele Pfade zum gleichen Objekt

SWobei wir symbolische Links ausnehmen. Links in PCTE entsprechen “har-
ten” Links in POSIX-Dateisystemen, es gibt in PCTE kein den symbolischen Links
entsprechendes Konzept.

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 19

fiihren kénnen und bei dem innerhalb von Pfaden ohne weiteres Schlei-
fen auftreten konnen. Hieraus folgt als erste Erkenntnis, daf es fiir das
gleiche Objekt im allgemeinen beliebig viele Pfadnamen geben kann.

Umgekehrt ist keineswegs sicher, daf mit dem gleichen Pfadnamen
immer das gleiche Objekt bezeichnet wird. Ein Link, der innerhalb ei-
nes Pfadnamens auftritt, kann ndmlich ohne weiteres geléscht werden
und es kann zu einem spéteren Zeitpunkt ein Link mit dem gleichen
Namen, der zu einem anderen Objekt fiihrt, wieder angelegt werden,
so dak die Bedeutung des gesamten Pfadnamens indirekt mitgedndert
worden ist.

Pfadnamen sind somit kein Konzept oder Mittel, mit dessen Hil-
fe man Objekte ldngerfristig eindeutig bezeichnen kann. Wir werden
spater andere Mittel kennenlernen, mit denen dies moéglich ist. Um Bei-
spiele fiir Pfade und Links kennenzulernen, kann man z.B. mit einem
der Browser von H-PCTE in einer Objektbank navigieren. Eine erste
Ubungsaufgabe ist daher, mit einem dieser Browser in der Beispielda-
tenbank herumzufahren und ein paar Objekte und Links anzusehen?}

Hinweise zur Benutzung von Referenzobjekten. Wenn man
von _ oder ~ zu bestimmten Objekten einer Applikation navigiert, kon-
nen relativ lange Pfade entstehen, die unhandlich sind und auch nur
ineffizient verarbeitbar sind. Im Vorgriff auf Lehrmodul [PRF] sei hier
schon erwéhnt, daf eine Applikation beliebige Objekte zu zusétzlichen
“Stiitzpunkten” machen kann, auf die dann direkt zugegriffen und von
denen aus effizient weiternavigiert werden kann.

4 Schemaverwaltung

4.1 Selbstreferentialitat und die Metadatenbank

Wir haben oben bereits Moglichkeiten kennengelernt, Objekte bzw.
Links eines bestimmten Typs zu erzeugen. In den Operationen mufs
der gewiinschte Typ in Form eines Parameters bzw. als letzter Teil des

SHinweise zur Installation des H-PCTE-Systems sind iiber http://pi.infor-
matik.uni-siegen.de erhiltlich.

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 20

Linknamens angegeben werden. Das OMS muf nun bei Angabe eines
solchen Typs priifen, ob er existiert und welche Eigenschaften er hat.
Mit anderen Worten miissen als Teil jeder Objektbank nicht nur die ei-
gentlichen Instanzen der benutzerdefinierten Typen gespeichert werden,
sondern auch Informationen iiber die Typen selbst. Derartige Daten
nennt man auch Metadaten, also Daten tiber Daten.

Wie wir auch schon gesehen haben, muf es fiir Anwendungen irgend-
wie moglich sein, neue Typen zu erzeugen. Dariiber hinaus wird man
natiirlich auch fordern, dafs man Informationen iiber die vorhandenen
Typen auf irgendeine Weise abfragen kann. Mit anderen Worten muf
jedes OMS intern ein Typverwaltungssystem haben sowie Schnittstel-
len, um Typen anzulegen und Informationen iiber Typen abzufragen.
Fiir die Gestaltung der Schnittstelle zu diesem Typverwaltungssystem
gibt es zwei prinzipielle Ansétze:

1. Man definiert geeignete Operationen, durch die alle Eigenschaften
der Typdefinition abgefragt werden oder soweit zuléssig verdndert
werden kénnen. Beispielsweise konnte es eine Operation geben, die
zu einem Objekttyp die Menge seiner Elterntypen liefert.

2. Alternativ kann man die Metadaten als ganz normale Daten ansehen
und demzufolge durch Objekte und Beziehungen darstellen. Der-
artige OMS nennt man selbstreferentiell. Das bedeutet, dal die
Datenmodellierungseigenschaften des OMS dazu benutzt werden,
Metadaten oder relevante interne Verwaltungsstrukturen als ganz
normale Daten darzustellen.

PCTE bietet beide Ansétze parallel an. Zum einen wird eine Vielzahl
von Operationen zum Abfragen und Modifizieren von Typeigenschaften
angeboten. Gleichzeitig ist PCTE sehr weitgehend selbstreferentiell.
Nicht nur alle Typdefinitionen, sondern auch Datentréger, Benutzer,
Prozesse und viele andere Dinge werden durch Objekte und Beziehungen
reprasentiert. Die Objekte und Beziehungen, die die Typdefinitionen
reprasentieren, bilden die sogenannte Metadatenbank. Die Metada-
tenbank ist iiber den Pfad _/.schemas erreichbar.

Die Metadatenbank enthélt alle in einer PCTE-Installation be-
kannten Typen und entspricht daher dem konzeptuellen Schema in der

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 21

ANSI/SPARC-Schichtenarchitektur. Interne Schemata sind in PCTE
nicht vorgesehen; dies liegt hauptsachlich am Verteilungskonzept von
PCTE (unterstellt werden grofse, heterogene Workstation-Netze, kei-
ne mengenorientierte Abfragesprache). Das Sichtenkonzept besprechen
wir im folgenden Abschnitt.

Die Metadatenbank hat eine recht komplexe Struktur, da sie direkt
und feinkornig die komplette Typwelt von PCTE wiedergibt. Fiir einen
PCTE-Anfanger ist sie zu komplex; sinnvollerweise sollte man zunéchst
mit einfacheren Strukturen iiben. Details der Metadatenbank werden
daher erst in Lehrmodul [PMDBJ erklért.

4.2 Arbeitsschemata

Eine der wesentlichen Leistungen eines DBMS besteht darin, unter-
schiedlichen Anwendungsprogrammen eigene Sichten auf die Daten zu
realisieren. In PCTE entspricht der Begriff Arbeitsschema (working
schema) dem Begriff Sicht (oder externes Schema). Das Arbeitsschema
eines Prozesses definiert eine Menge von Typen, die fiir diesen Prozef
sichtbar sein kénnen, ferner ggf. noch bestimmte Einschriankungen bzgl.
der Zugriffsart zu Instanzen dieser Typen. Ein Prozeft kann also nur
auf denjenigen Typen operieren, die in seinem Arbeitsschema enthalten
sind. Alle anderen Typen sind fiir ihn “unsichtbar”.

Der Sichtenmechanismus von PCTE unterscheidet sich infolge der
Objektorientierung und anderer Griinde erheblich vom Sichtenmecha-
nismus, den man aus relationalen Datenbanken kennt:

- Eine Sicht in einem relationalen System wird definiert als virtuelle
Relation. Diese Relation hat einen eigenen Namen und entspricht
daher einem eigenen neuen Objekttyp. In PCTE entstehen durch
Sichten keine neuen Typen, stattdessen wird fiir den laufenden Pro-
zels die Definition vorhandener Typen modifiziert. Hieraus folgt:

- Die Definition eines Relationentyps ist in relationalen Systemen fiir
alle Applikationen gleich, in PCTE koénnen verschiedene Prozesse
verschiedene Definitionen des gleichen Objekttyps “sehen”. In PCTE
kann ein Prozeft diese Definition sogar zur Laufzeit dndern.

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 22

- In einem relationalen System wird bei jedem DMIL-Kommando die
zu benutzende Sicht durch Angabe der zu benutzenden Relationen
explizit angegeben. In PCTE arbeiten die Operationen nur mit den
“wirklichen” Typen, die zu benutzende Sicht ist eine Eigenschaft des
Prozesses.

- Sichten in PCTE sind identitatserhaltend, Sichten in relationalen
Systemen nicht. Ein Tupel in einer virtuellen Relation wird z.B.
dann, wenn die Sicht als Verbund definiert wird, aus mehreren an-
deren Tupeln aus realen Relationen abgeleitet. Die Identitét der
Ausgangs“objekte” geht dabei verloren. Eine Konsequenz hieraus
ist, dafs in solche virtuellen Relationen nicht ohne weiteres Tupel
eingefiigt oder vorhandene Tupel gedndert werden koénnen.

In PCTE konnen derartige Sichten nicht gebildet werden. In
PCTE entspricht ein Objekt unter einer Sicht immer einem realen
Objekt, es hat unter jeder Sicht immer die gleiche Identitét (Surro-
gat) und den gleichen Typ — letzteres entspricht der objektorientier-
ten Denkweise viel besser als der relationale Ansatz. FErzeugende,
16schende und dndernde Operationen sind in PCTE, sofern sie iiber-
haupt zuléssig sind, auch unter jeder beliebigen Sicht zuléssig. In
PCTE besteht daher gar kein Anlaf, einen Begriff wie virtuelles
Objekt zu bilden.

Dies ist sehr wichtig, denn im Gegensatz zu konventionellen An-
wendungen ist der iiberwiegende Anteil der Applikationen in einer
SEU schreibend. Der Sichtenmechanismus in relationalen Systemen
erlaubt zwar komplexere Sichtendefinitionen, wenn Verbundoperato-
ren oder dhnlich méchtigen Operatoren benutzt werden, dies ist aber
von beschranktem Nutzen, wenn diese Sichten nicht “schreibbar”
sind.

4.3 Globale und schemaspezifische Typeigenschaften

Eine typische Anwendung eines Sichtenmechanismus besteht z.B. darin,
einige Attribute eines Objekttyps auszublenden. Die Menge der Attri-
bute eines Objekttyps kann daher in verschiedenen Arbeitsschemata
verschieden sein. Umgekehrt ware es sehr problematisch, wenn z.B. die

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 23

Folge der Schliisselattribute eines Linktyps in verschiedenen Arbeits-
schemata variieren konnte. Es gibt daher Typeigenschaften, die nicht
variieren kénnen, d.h. die in allen Arbeitsschemata gleich sindﬂ die so-
mit global giiltig sind. Diese Eigenschaften kénnen auch nicht mehr
verdndert werden, nachdem die Typdefinition einmal in der Objektbank
angelegt worden ist. Globale Eigenschaften sind:

— bei Objekttypen: die Menge der Elterntypen

- bei Linktypen: die Folge der Schliisselattribute, die Kategorie, der
Umkehrlinktyp und die Duplikationseigenschaft

- bei Attributen: der Initialwert und die Duplikationseigenschaft.

Alle anderen Typeigenschaften, u.a. die Menge der Attribute eines
Objekttyps, sind abhéngig vom Arbeitsschema. Diese Eigenschaften der
Typdefinitionen sind auch verénderbar; sie konnen sogar noch nachtrég-
lich modifiziert werden, nachdem bereits Instanzen der Typen erzeugt
worden sind. Beispielsweise kann bei einem existierenden Objekttyp
person ein neues Attribut sprachkenntnisse hinzugefiigt werden.
Bei Instanzen von person , die vor dieser Schemaédnderung erzeugt
worden sind, kann das Attribut sprachkenntnisse ohne explizite
Vorbereitungen gelesen werden; man erhélt dann den Initialwert. Wenn
man es liberschreibt, wird die interne Speicherstruktur automatisch
konvertiert, um den neuen Attributwert aufnehmen zu kénnen.

4.4 Schema Definition Sets

In PCTE basiert die Verwaltung aller Typen, die in einer Installation
vorhanden sind, auf dem Konzept des Schema Definition Set (SDS):
Ein SDS gruppiert eine Menge zusammengehériger Typdefinitionen und
hat einen systemweit eindeutigen SDS-Namen. Die Metadatenbank
besteht also aus einer Reihe von SDS. Ein SDS mit Namen XX wird
durch das Objekt mit dem Pfadnamen _/.schemas/XX.known_sds

reprasentiert. SDS ermoglichen es, die Verwaltung von Typen zu mo-
dularisieren. Hierfiir gibt es zwei wichtige Motive:

"Wie dies technisch erreicht wird, ist hier zuniichst belanglos.

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 24

Zum einen soll es moglich sein, die Typen, die zu einem bestimmten
neuen Werkzeug gehoren, separat in ein oder mehrere SDS zu ver-
kapseln, die zu diesem Werkzeug gehoren, und diese SDS einzeln in
der Objektbank zu installieren.

Ein weiterer wichtiger Grund zur Modularisierung der Typdefinitio-
nen ist die Verteilung. Es soll moglich sein, Teile der Typdefinitionen
auf verschiedenen Rechnern zu speichern.

Vordefinierte SDS. Es gibt mehrere vordefinierte SDS, die in jeder
Objektbank initial vorhanden sind und die nicht modifiziert werden
sollten:

1.

Das SDS system enthélt diverse grundlegende Typen, z.B.
object, process wusw., die fiir die Selbstmodellierung des Sy-
stems wichtig sind und als Grundlage fiir weitere Typen benétigt
werden. Die meisten Typen im SDS system sind allerdings fiir
normale Applikationen vollkommen irrelevant, z.B. die meisten Stan-
dardattribute des Objekttyps object . Daher ist es sinnvoll, aus
den haufig gebrauchten Typen aus system ein neues SDS zu bil-
den und nur dieses zu verwenden. Wie dies geht, werden wir spéter
kennenlernen.

. Das SDS metasds enthilt die Typen, die in der Metadatenbank

auftreten. Diese nennt man auch Metatypen, d.h. es sind Typen,
deren Instanzen Typen reprisentieren.

. Das SDS discretionary_security enthélt diverse Typen, die fiir

die Reprisentation und Handhabung der Zugriffskontrollen benétigt
werden, z.B. Typen fiir die Gruppenverwaltung, fiir die Zugriffskon-
trollisten usw.

Das SDS mandatory_security enthélt analog dazu Typen, die fiir
die Informationsflukkontrollen (Typen fiir mandatory access controls,
MAC) benétigt werden.

. Das SDS accounting enthilt Typen, die fiir die Abrechnungs-

funktionen von PCTE benétigt werden.

Von den im Standard enthaltenen SDS sind in H-PCTE nicht alle

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 25

komplett enthalten oder z.T. mit Modifikationen enthalten:

- system , metasds und discretionary_security sind wie im
Standard definiert enthalten.

- mandatory_security und accounting sind nicht enthalten, weil
diese Funktionsbereiche in H-PCTE nicht realisiert sind.

- hpcte ist ein zusitzliches SDS, das fiir Interna von H-PCTE bend-
tigt wird.

Uberschneidungen von SDS. Ein SDS “enthélt” Mengen von Typ-
definitionen. Ein wichtiger Punkt ist nun, daf diese Mengen i.a. nicht
disjunkt sind, d.h. es kann sein, daf der gleiche Typ in mehreren SDS
vorhanden istﬂ Dabei wird sichergestellt, daft die globalen Typeigen-
schaften in allen SDS gleichartig definiert sind; beispielsweise hat ein
Linktyp in allen SDS, in denen er auftritt, die gleiche Kategorie und
den gleichen Umkehrlinktyp.

4.5 Das Setzen des Arbeitsschemas eines Prozesses

Ein Prozef kann sein Arbeitsschema jederzeit verandern. Hierzu gibt
es eine Operation zum Setzen des Arbeitsschemas

process_set_working_schema (..,Folge_von_SDSnamen).

Ein Beispiel eines Aufrufs konnte sein

process_set_working_schema (.., (uni, system))

Die Operation process_set_working_schema erzeugt folgendes Ar-

beitsschema:

1. Es enthélt alle Typen, die in wenigstens einem der aufgefithrten SDS
vorkommen.

8Mittel, wie man einen solchen Zustand herstellt, werden wir erst spéter kennen-
lernen (s. Abschnitt 3.2 in [PDDL]).

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 26

2. Die Eigenschaften dieser Typen werden folgendermafsen bestimmt:
Sofern ein Typ nur in einem SDS definiert ist, ergeben sich seine
Eigenschaften aus dieser Definition. Ist er in mehreren SDS enthal-
ten, so sind nach Voraussetzung die globalen Typeigenschaften in
allen SDS identisch definiert, so dafs auch im Arbeitsschema diese
einheitliche Festlegung gilt.

Fir die schemaspezifischen Typeigenschaften gilt i.w., daft die
Eigenschaften aus den verschiedenen SDS “vereinigt” werden: Bei-
spielsweise hat ein Objekttyp in einem Arbeitsschema die Vereini-
gung aller Attribute, die er in irgendeinem der SDS hat, aus denen
das Arbeitsschema besteht. Ein Objekttyp O kann z.B. in einem
SDS S1 ein Attribut A1 haben und in einem SDS S2 ein Attribut
A2. In dem Arbeitsschema bestehend aus den beiden SDS hat O die
Attribute A1 und A2. Diese Vereinigungsregel gilt analog:

- bei Objekttypen: fiir Attribute und die ausgehenden Linktypen

- bei Linktypen: fir Nichtschliisselattribute und die Zielobjektty-
pen

Attribute haben keine schemaspezifischen Typeigenschaften.

Initiales Arbeitsschema. Das initiale Arbeitsschema eines Prozes-
ses ist anfangs leer, d.h. es enthélt 0 Typen. Mit anderen Worten sieht
der Prozeft zunéchst iiberhaupt nichts. Hieraus folgt, dafs der Prozefs
als erstes immer ein geeignetes Arbeitsschema setzen mufs, um arbeiten
zu konnen. Wenn man in einem Prozef (z.B. einem Browser) nachse-
hen méchte, welche SDS {iberhaupt verfligbar sind, muft man allerdings
die Metadatenbank lesen konnen. Dies ist nur dann moéglich, wenn man
das metasds im Arbeitsschema hat.

4.6 Typnamen

Bei der bisherigen Behandlung der Schemamechanismen haben wir
einen wichtigen (und leider etwas komplizierten) Aspekt ausgeklam-
mert, ndmlich Typnamen. In friiheren Beispielen haben wir bereits

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 27

Typnamen verwendet (insb. die Linktypnamen innerhalb von Linkna-
men).

Die Namen eines Typs hdngen vom Arbeitsschema ab. Ein Typ hat
im Arbeitsschema i.a. mehrere Namen, die unterschiedslos benutzt wer-
den koénnen. Es gibt drei verschiedene Arten von Typnamen, die wir
i.f. erlautern.

Lokale Typnamen in SDS. Innerhalb eines SDS hat ein darin ent-
haltener Typ einen eindeutigen lokalen Typnamenﬂ Das SDS bildet
einen einzigen Namensraum, d.h. ein Objekttyp und ein Attribut mit
gleichem Namen sind nicht erlaubt.

Die Namenseindeutigkeit gilt nur lokal innerhalb eines SDS und
nicht global innerhalb der Menge aller SDS. In zwei verschiedenen SDS
konnen also durchaus unterschiedliche Typen enthalten sein, die den
gleichen lokalen Namen in den beiden SDS haben.

Wir hatten schon friither erwéhnt, dafl ein bestimmter Typ in meh-
reren SDS enthalten sein kann. In jedem SDS kann er einen anderen
Namen haben, d.h. in unserer oben etablierten Begriffswelt wiirde man
den lokalen Namen als eine sichtenspezifische Eigenschaft eines Typs
ansehen.

In einem Arbeitsschema hat ein Typ im einfachsten Fall jeden loka-
len Namen, den er in einem der beteiligten SDS hat. Wenn das gleiche
Attribut beispielsweise im SDS X den lokalen Namen Nachname hat
und im SDS Y den lokalen Namen Familienname und wenn das
Arbeitsschema die beiden SDS enthélt, kann das Attribut mit beiden
lokalen Namen unterschiedslos angesprochen werden.

Eine Ausnahme von der vorstehenden Regel wird bei einem Na-
menskonflikt notwendig. Ein Namenskonflikt liegt vor, wenn der gleiche
lokale Typname in mehreren SDS des Arbeitsschemas auftritt und in
diesen SDS unterschiedliche Typen bezeichnet. In diesem Fall ist die
Reihenfolge der SDS, die beim Setzen des Arbeitsschemas angegeben

9Es kann auch namenlose Typen geben, was an dieser Stelle aber nicht interes-
siert.

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 28

wurde, relevanﬂ der lokale Name bezeichnet dann den Typ geméafs
dem ersten SDS, in dem dieser Name auftritt. Andere Typen, die in ei-
nem der folgenden SDS vorkommen und die dort den gleichen lokalen
Namen haben, haben somit im Arbeitsschema diesen lokalen Namen
nicht, haben also u.U. gar keinen lokalen Namen mehr! Die vorderen
SDS iiberdecken also die lokalen Namen der hinteren SDS.

Volle Typnamen. Weil der lokale Name eines Typs innerhalb ei-
nes SDS ggf. nicht ausreicht, um den Typen eindeutig innerhalb der
Objektbank zu identifizieren, gibt es eine lange Form: diese besteht
aus dem Namen des SDS, gefolgt von ’-” und dem lokalen Namen, und
wird auch als der volle Typname bezeichnet. Da SDS-Namen global
eindeutig sind, sind auch die vollen Typnamen global eindeutig.

In unseren obigen Beispielen fiir Pfadnamen trat unter anderem der
Linktypname betreut auf. Hierbei handelte es sich um einen loka-
len Namen. Wenn das SDS, in dem dieser Linktyp definiert ist, uni
heifit, dann ist der volle Typname dieses Linktyps uni-betreut .

In einem Arbeitsschema hat ein Typ immer alle vollen Namen gemaéfs
den SDS des Arbeitsschemas, in denen er vorkommt.

Typidentifizierer. Es ist bei bestimmten Gelegenheiten notwendig,
auch mit Objekten bzw. Links umgehen zu kénnen, deren Typ nicht
im aktuellen Arbeitsschema enthalten ist, die also eigentlich unsicht-
bar sindEL Fiir diesen Fall sind die sogenannten Typidentifizierer

0Djes ist iibrigens der einzige Punkt, bei dem diese Reihenfolge relevant ist.

"Dies widerspricht natiirlich dem Begriff (Un-) Sichtbarkeit.

Das simpelste Beispiel sind Daten, deren Typ geloscht worden ist. Hierzu ist an-
zumerken, dafs Typdefinitionen in der Metadatenbank geléscht werden kénnen, auch
wenn noch Instanzen dieser Typen in der Objektbank vorhanden sind. Wegen der
Verteilungsannahmen koénnen diese Instanzen i.a. nicht sofort mit der Loschung des
Typ beseitigt werden.

Ein anderes Beispiel fiir eine solche Situation ist das Auflisten der Links, die
von einem Objekt ausgehen. Um ein Objekt 16schen zu konnen, darf es keine “sto-
renden” Links geben. Wenn unsichtbare Links tiberhaupt nicht anzeigbar wéren,
konnte man nicht den geringsten Hinweis herausfinden, warum ein Objekt nicht
geldscht werden kann. Dies ist in der Praxis nicht akzeptabel.

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 29

vorhanden. Ein Typidentifizierer ist eine Zeichenkette, die mit ei-
nem Tiefstrich ¢’ beginnt; der Tiefstrich ist bei benutzerdefinierten
Typnamen nicht als erstes Zeichen zugelassen. Die Syntax dieser Zei-
chenkette ist ansonsten in den Standards undefiniert, kann also von
jeder PCTE-Implementierung selbst festgelegt werden.

Hintergrund dieses Typidentifizierers ist, dafs das System immer
dann, wenn ein neuer Typ angelegt wird, fiir diesen Typ ein Surro-
gat vergibt. Ein Surrogat ist ein Bezeichner, der nur einmal wahrend
der Lebensdauer des gesamten Systems vergeben wird, der also nicht
wiederverwendet wird und der damit den bezeichneten Gegenstand in-
nerhalb der gesamten Lebensdauer des Systems eindeutig identifiziert.
Intern arbeitet das System nur mit diesen Typidentifizierern.

Typidentifizierer sind systemweit eindeutig; jeder in einem Arbeits-
schema enthaltene Typ hat daher genau einen Typidentifizierer.

Bei der Riickgabe von Typnamen an ein Benutzerprogramm — z.B.
bei der Anzeige von Linknamen im Browser — wird

- irgendein lokaler Typname benutzt, sofern wenigstens einer vorhan-
den ist;

- andernfalls, sofern der Typ im Arbeitsschema enthalten ist, irgend-
einer der vollen Typnamen benutzt;

- andernfalls der Typidentifizierer.

Ubungsaufgaben. Die Wirkung von externen Schemata lernt man
am besten kennen, indem man mit verschiedenen externen Schema-
ta iiber die gleichen Datenbesténde navigiert. Machen Sie hierzu am
Rechne folgende Ubungsaufgaben:

- mit einem Arbeitsschema bestehend aus SDS system in der Objekt-
bank herumwandern und aufpassen, was passiert (also normalerweise
nach Starten der Applikation; der Browser setzt initial ein Arbeits-
schema bestehend aus den SDS system , security und hpcte

)

12Ggf. miissen Sie hierzu erst H-PCTE installieren; eine Anleitung befindet sich
in [HINS].

(©2002 Udo Kelter Stand: 23.4.2002

Grundlegende Konzepte des Datenbankmodells von PCTE 30

- dito, mit einem Arbeitsschema bestehend aus den SDS allgemein
und uni

- dito mit einer selbstgewdhlten Kombination von SDS

Literatur

[PCTE90| Portable Common Tool Environment - Abstract Specificati-
on (Standard ECMA-149); European Computer Manufacturers
Association, Geneva; 1990

[PCTE94| Proceedings of the PCTE ’94 Conference, San Francisco,
29.11.-1.12.1994; 1994 /11

[DBI| Kelter, U.: Lehrmodul “Einfiihrung in Datenbanksysteme”;
1999/10

[HINS] Kelter, U.: Lehrmodul “Einfithrung in die Benutzung des H-
PCTE-Systems”; 1999 /12

[IRA] Kelter, U.: Lehrmodul “Integrationsrahmen fiir Software-Ent-
wicklungsumgebungen”; 1999 /11

[PDDL| Kelter, U.: Lehrmodul “Definition und Manipulation von Sche-
mata’; 1999/11

[PHIS] Kelter, U.: Lehrmodul “Einordnung und Historie von PCTE”;
1999,/11

[PMDB| Kelter, U.: Lehrmodul “Die Metadatenbank und das Typ-
verwaltungs-API von PCTE”; 1999/11

[PRF]| Kelter, U.: Lehrmodul “Referenzen”; 1999/12
[PSV] Kelter, U.: Lehrmodul “Segmentierung und Verteilung”; 1999/11

(©2002 Udo Kelter Stand: 23.4.2002

Index

Arbeitsschema, 18
Attribut, 7, 8
direktes, 4
Initialwert, 8
Typ, 7, 8
attribute type, 9
attribute value type, 9

Duplikationseigenschaft, 6, 8

Elterntyp, 4
exact_identifier, 10

H-PCTE, 3
Heim-Objekt, 15

Kardinalitét, 12
Kategorie, 6

Link, 5
Name, 11
Schliissel, 12
LINK_CREATE, 7
LINK_DELETE, 7
LINK_GET_ATTRIBUTE, 7
LINK_SET_ATTRIBUTE, 7
Linkname, 11
Linktyp, 6, 7
ausgehender, 4

mandatory access controls, 21
Metadaten, 17
Metadatenbank, 17, 18
multiple inheritance, 4

OBJECT_COPY, 5
OBJECT_CREATE, 5
OBJECT_DELETE, 5

31

OBJECT_GET_ATTRIBUTE, 5
OBJECT_SET_ATTRIBUTE, 5
Objekt, 4
Objektmanagementsystem, 3
Objekttyp, 4

Pfadname, 15
relativer, 15

Referenzobjekt, 15
Repository, 3

Schema Definition Set, 20
Schliisselattribut, 6, 12
SDS, 20
Name, 20
vordefiniertes
accounting, 21

discretionary_security, 21

hpcte, 21

mandatory_security, 21

metasds, 21

system, 21
Selbstreferentialitét, 17
selbstreferentielles OMS, 18
Sicht, 18
Standardattribute, 4
Subtyp, 4
Surrogat, 10, 25

Typ
Identifizierer, 24
Name, 23
lokaler, 23
voller, 24

Umkehrlink, 5
Umkehrlinktyp, 6

Grundlegende Konzepte des Datenbankmodells von PCTE 32

value type, 9

working schema, 18
Wurzeltyp, 4

Zielobjekttypen, 6

(©2002 Udo Kelter Stand: 23.4.2002

	Einordnung von PCTE
	Objekte, Beziehungen und Attribute
	Objekte
	Beziehungen, Links und Linktypen
	Attribute
	Ein Beispiel

	Identifizierung von Objekten
	Linknamen
	Referenzobjekte
	Pfadnamen von Objekten

	Schemaverwaltung
	Selbstreferentialität und die Metadatenbank
	Arbeitsschemata
	Globale und schemaspezifische Typeigenschaften
	Schema Definition Sets
	Das Setzen des Arbeitsschemas eines Prozesses
	Typnamen
	Literatur
	Index

