Folien zum Lehrmodul

Repositories und
Software-Wiederverwendung

Lernziele:

— Motive und Randbedingungen fiir Software-Wiederverwendung
verstehen

- an Wiederverwendung orientierte Entwicklungsprozesse kennen

- Rolle und mogliche Funktionen eines (Wiederverwendungs-)
Repositorys kennen

— Repositories von dhnlichen Systemen unterscheiden kénnen

[1nhaltsverzeichnis 3

Inhaltsverzeichnis

|1 Wiederverwendung| 5
[L.1 “Wiederverwendung” vs. Entwurfs- / Struktur-Erfahrung| 6
IL.2 Wiederverwendung vs. technologische Arbeitsteilung) 7
11.3 Wiederverwendung in engeren Sinne| 9
|1.4 Typen wiederverwendbarer Dokumente| 10
IL.5 Geplante vs. ungeplante Wiederverwendung|. 11

|2 An Wiederverwendung orientierte Entwicklungsprozesse| 13
Bl _Grundforml. . . - -« o i 13
2.2 Kostenanalyselo 15
12.3 Geplantes Wiederverwenden| 000 19

22
13.1 Funktionsbereiche von Repositories| 22
13.2 Autarke vs. integrierte Repositories| 26
13.3 Abgrenzung zu anderen Systemen| L. 28

| Inhaltsverzeichnis

13.4 Systemtfamilien|

29

l Wiederverwendung

1 Wiederverwendung

Grundidee: Produkte moglichst weitgehend aus vorhandenen /
vorgefertigten Standard-Komponenten konstruieren
Vorteile:

- Kostensenkung, weniger Neuentwicklung
— Erhohung der Qualitét

— eigentlich keine neue Idee, passiert tausendfach:

— Benutzung von Bibliotheken
- Muster,

lWicdcrvcrwcndung / “Wiederverwendung” vs. Entwurfs- / Struktur-Erfahrung 6 ‘

1.1 “Wiederverwendung” vs. Entwurfs- /
Struktur-Erfahrung

nach Grofle der Artefakte sortiert:

1. Programmstrukturen, Konzepte der Programmiersprache
2. Entwurfsmuster, Analysemuster

3. Architekturmuster

4. Standardarchitekturen

sind nur Gestaltungsregeln, die erst “instanziiert” werden miissen,
keine Komponenten, die man i.w. unverandert einbaut

iberlappt thematisch mit Wiederverwendung

l Wiederverwendung / Wiederverwendung vs. technologische Arbeitsteilung 7 ‘

1.2 Wiederverwendung vs. technologische Ar-
beitsteilung

Fremdherstellung von Komponenten ist in klassischen Industrien
iiblich:

— ggf. eigenes, umfangreiches Know-How erforderlich, das nicht
zu den Kernkompetenzen des Anbieters gehort

— Ausnutzung von Skaleneffekten bei kleinen Produktionsmengen

l Wiederverwendung / Wiederverwendung vs. technologische Arbeitsteilung 8

allgemeines Prinzip der industriellen Arbeitsteilung:

- spezialisierte Marktteilnehmer,
— geringe Fertigungstiefe,

— Konzentration auf Kernkompetenzen

wichtig: nicht zu viele Modelle, Normen / offene Spezifikationen
(“DIN-Schrauben”)

— technologische Arbeitsteilung auch in der Informatik selbstver-
stdndlich

ist auch ohne Wiederverwendung sinnvoll (also wenn zugekaufte
Komponenten werden nur 1* verwendet)

l Wiederverwendung / Wiederverwendung in engeren Sinne 9 ‘

1.3 Wiederverwendung in engeren Sinne

Falle, wo mehrere einander dhnliche Systeme in der gleichen Tech-
nologie entwickelt werden

— in verschiedenen Zeitrdumen

— insb. bei Systemen, die nicht Varianten voneinander sind, son-
dern unabhéngig voneinander entwickelt werden

— gleichzeitig: Entwicklung einer Systemfamilie

Besonderheit: gemeinsame, wiederverwendbare Komponenten
kénnen gezielt bestimmt werden

l Wiederverwendung / Typen wiederverwendbarer Dokumente 10 ‘

1.4 Typen wiederverwendbarer Dokumente

im Prinzip beliebige Dokumenttypen, in beliebigen Entwicklungs-
stufen:

Anforderungen, Testfalle

Quelltexte von Programmen

Modul—{{API—S ezifikationen

Architekturen %zw. Architekturfragmente
Datenbankschemata

Gestaltungselemente von GUIs

Dokumentation: Bedien-, Installationshandbiicher, Glossare etc.

ggf. zusammenhingende Gruppen, z.B. GUI-Komponente beste-
hend aus Code, Gestaltung, Hilfesystem, Manual

Schwerpunkt in der Praxis: Quelltexte, Architekturen, API-
Spezifikationen, Datenbankschemata

l Wiederverwendung / Geplante vs. ungeplante Wiederverwendung 11

1.5 Geplante vs. ungeplante Wiederverwen-
dung

Wiederverwendung hier im Sinne von Wiederverwendbarkeit

ungeplante Wiederverwendung:

— Komponente wird nach ihrer Entwicklung fiir Wiederverwen-
dung entdeckt

- muf i.d.R. abgedndert / verbessert / nachdokumentiert werden

l Wiederverwendung / Geplante vs. ungeplante Wiederverwendung 12 ‘

geplante Wiederverwendung / Wiederverwendbarkeit:
- Komponente von vorneherein zwecks Wiederverwendung ent-

wickelt und gestaltet

- (a) Bibliotheksfunktionen: nur zur Wiederverwendung gedacht

- (b) Teile eines konkreten Systems, die vermutlich spéter noch
einmal verwendet werden konnen

l An Wiederverwendung orientierte Entwicklungsprozesse / Grundform 13 ‘

2 An Wiederverwendung orientierte

Entwicklungsprozesse

2.1 Grundform

1.
2.

Bilden der (Grob-) Architektur des Systems
Suche nach geeigneten Komponenten in einem Vorrat wieder-

verwendbarer Komponenten;

ggf. anpassen der Architektur (d.h. zuriick zu Schritt 1)
gefundene Komponenten in die Entwicklungsversion iibertragen
Anpassen (abdndern) bzw. ggf. Konfigurieren der {ibernomme-

nen Komponenten

deutlich andere Gewichtung als beim klassischen Phasenmodell

Anmerkung zu Schritt 1: i.d.R. bestimmte architektonische Struk-
turen und Konventionen bei Komponenten vorausgesetzt, z.B.

l An Wiederverwendung orientierte Entwicklungsprozesse / Grundform 14 ‘

Fehlerbehandlung

bei Frameworks ist das Hauptprogramm komplett vorgegeben

— individuelle Teile des Systems anpassen

Anmerkung zu Schritt 4:

- black-box-Wiederverwendung: Komponente wird vollig
unverdndert wiederverwendet

- white-box-Wiederverwendung: Komponente wird veran-
dert

l An Wiederverwendung orientierte Entwicklungsprozesse / Kostenanalyse 15

2.2 Kostenanalyse

Vergleich mit klassischer Neuentwicklung:

Schritt 1: wahrscheinlich kein grofser Unterschied
Schritt 2: Suche nach Komponenten ist ohne besondere Vorberei-
tungen problematisch!
Hindernisse:
- finden der entsprechenden Dateien (ggf. auf Archivierungs-
medien)
— schlechte Trefferqualitat bei Stichwortsuche
— hoher Aufwand zur Analyse der einzelnen Fundstellen, Ein-
schitzung des erforderlichen Anpassungsaufwands unsicher

l An Wiederverwendung orientierte Entwicklungsprozesse / Kostenanalyse 16 ‘

Schritt 3: Ubernahme der Komponente in die Entwicklungsversion
arbeitsaufwendig, falls es sich z.B. um verstreute Codefrag-
mente handelt

Schritt 4: ggf. umfangreiche Anpassungsarbeiten;

anschlieffend kompletter Test der Komponente erforderlich
(Aufwand!)

— reduziert Kosteneinsparung durch die Wiederverwendung

l An Wiederverwendung orientierte Entwicklungsprozesse / Kostenanalyse 17 ‘

Rechenbeispiele fiir eine Komponente, deren Neuentwicklung 15
Stunden dauert:

- black-box-Wiederverwendung 0.5 Stunden, kein Suchaufwand
— Aufwand um den Faktor 30 reduziert!

- langwierige Suche: 2 Stunden
Anderungen an der Komponente: 6 Stunden incl. Test

im Durchschnitt 2 vergebliche Suchvorgénge auf einen erfolg-
reichen

— Aufwand um 20 % reduziert,

ungiinstige Risikostruktur: moéglicher Gewinn 8 Stunden, mog-
licher Verlust 2 Stunden

l An Wiederverwendung orientierte Entwicklungsprozesse / Kostenanalyse 18 ‘

Schlufsfolgerungen:

- sehr kleine Komponenten (Aufwand ca. eine Stunde): Wieder-
verwendung lohnt i.a. nicht

- umfangreiche Komponenten: lohnt im Prinzip, aber reduzier-
te Wahrscheinlichkeit, daft die Komponente unverédndert zum
aktuellen Bedarf pafit
— erhohte Wahrscheinlichkeit von Anderungen

l An Wiederverwendung orientierte Entwicklungsprozesse / Geplantes Wiederverwenden 19 ‘

2.3 Geplantes Wiederverwenden

Voraussetzungen / positive Einfluifaktoren fiir Wiederverwendung;:
— gute Suchfunktionen

- leichte Beurteilung gefundener Komponenten

— moglichst unverdnderte Ubernahme der Komponenten

... konnen gezielt verbessert werden — geplante Wiederverwendung

l An Wiederverwendung orientierte Entwicklungsprozesse / Geplantes Wiederverwenden 20

Denkbare vorbereitende Maftnahmen

— Sammlung aller potentiell wiederverwendbaren Komponenten
in einem (logisch) zentralen Repository

— zusétzliche Beschreibung der Komponenten anhand eines Klas-
sifikationsschemas und durch Schlagworte
Moglichkeit, Klassifikation / Schlagworte bei der Suche auzu-
nutzen

— erhohte Qualitat der technischen Dokumentation der Kompo-
nenten, der Strukturierung und Lesbarkeit des Programmcodes
Usw.

- andere (allgemeinere) Gestaltung der Funktionalitdt und/oder
Schnittstellen der Komponenten

l An Wiederverwendung orientierte Entwicklungsprozesse / Geplantes Wiederverwenden 21 ‘

- besonders sorgfiltiger Test der Komponenten (Vertrauen der
Entwickler und Akzeptanz erhdhen)

Mehraufwand im Bereich von 30 - 60 % des normalen Entwick-
lungsaufwands

Faustregel: amortisiert sich erst nach nach 3 Wiederverwendungen

Repositories / Funktionsbereiche von Repositories 22

3 Repositories

3.1 Funktionsbereiche von Repositories

(Komponenten- bzw. Wiederverwendungs-) Repository: System,
das wiederverwendbare Komponenten verwalten kann und das die
Suche nach Komponenten unterstiitzt; Funktionen eines Reposito-
rys:

Verwaltung deskriptiver Daten zu den Komponenten:
abhéngig
vom Typ der Komponenten
Bsp: Programmiersprache, Compilerversion, Autor, Erstel-
lungsdatum, Stichworte zum Inhalt, Klassifizierung, usw.
— Metadaten

Pflege der Klassifikationsschemata: Funktionen fiir Aufbau

Repositories / Funktionsbereiche von Repositories 23 ‘

und Weiterentwicklung; zugehérige Statistikfunktionen
Suche nach Komponenten: i.d.R. auf Basis der deskriptiven
Daten, nicht die Komponenten selbst
vage Suche (Information Retrieval), iterative Verfeinerung /
Anpassung der Suchkriterien
Import von Komponenten aus Dateien oder Projektdatenban-
ken

Export von Komponenten (sofern die Komponenten iiber-
haupt im Repository verwaltet werden)

Repositories / Funktionsbereiche von Repositories 24 ‘

Nachweis von Wiederverwendungen: Erfassung von erfolg-
losen Analysen und erfolgreichen Wiederverwendungen. Rel-
vante Informationen:

- Wie oft ist diese Komponente schon bei einer Suche
gefunden worden?

— Wer hat sich diese Komponente schon einmal angesehen
und analysiert (wovon man profitieren konnte)?
— Entwickler sollten Komponenten bewerten kénnen

— In welchen Systemen ist diese Komponente wiederver-
wendet worden? Welche anderen Komponenten wurden
dort ebenfalls wiederverwendet?

Repositories / Funktionsbereiche von Repositories 25 ‘

Nutzer- und Rechteverwaltung, d.h. Kontrolle, wer das Re-
pository wie nutzen darf

Abrechnungsfunktionen abhingig von den rechtlichen Rah-
menbedingungen

Rolle Administrator: kontrolliert Import, Wartung der Klassifi-
kationsschemata, Rechteverwaltung

Auffassung: Sammlung wiederverwendbarer Komponenten ist ein
wertvolles Gut, das dem Unternehmen gehort und betreut werden
muf

alternative Auffassung: Wiederverwendungsrepository als eine Aus-
tauschplattform

Repositories / Autarke vs. integrierte Repositories 26

3.2 Autarke vs. integrierte Repositories

autarkes Repository:
Beispiel: Sammlung von Quellprogrammen, {iber eine WWW-
Schnittstelle nutzbar
klare Trennung zwischen Anbieter und Kaufer / Nutzer von
Komponenten
Repository technisch getrennt von der Entwicklungsumgebung
der Nutzer der Komponenten; nur gelegentlicher Zugrift

Repositories / Autarke vs. integrierte Repositories 27

in eine SEU integriertes Repository : wird von Entwicklern inten-
siv bei taglichen Arbeit genutzt

verfolgt {iber die Wiederverwendung hinausgehende Ziele:
- Anwendungen zu dokumentieren

— Anwendungen inhaltlich zu integrieren

— Doppelentwicklungen zu vermeiden

- Auswirkungen von Anderungen einzuschétzen

Repositories / Abgrenzung zu anderen Systemen 28 ‘

3.3 Abgrenzung zu anderen Systemen

Versionsarchive von VM /KM-Systemen: enthalten {iber-
wiegend nicht wiederverwendbare Komponenten
Suche nach Komponenten wird nicht unterstiitzt
keine geeignete Dokumentation von Komponenten

Data-Dictionary-Systeme: dokumentieren priméar Datenele-
menttypen in Datenbanken,
Bereitstellung dieser Metadaten zur Laufzeit der Programme
auf dem Produktionsrechner.

Repositories / Systemfamilien 29‘

3.4 Systemfamilien

Systemfamilie: eine Gruppe &hnlicher Software-Systeme, denen
eine gemeinsame Architektur sowie gemeinsam genutzte Kompo-
nenten zugrundeliegen

hoher Grad an Wiederverwendung der
— Modelle

— Implementierungen

— Dokumentation

Repositories / Systemfamilien 30

Merkmale:

— Systemfamilie als also solche vorgegeben und bekannt
— Systeme sind meist Varianten voneiander

Wiederverwendung nu eine von mehreren Moglichkeiten, die
Redundanzen auszunutzen: alle Techniken des Variantenmana-
gements prinzipiell geeignet

- dedizierter Entwicklungsprozefs: Product Line Engineering

Repositories / Systemfamilien 31 ‘

Product Line Engineering:

- Gemeinsamkeiten und Unterschiede der Mitglieder der System-
familie bestimmen, z.B. mit Feature-Modellen

- bedingt sehr gutes Doméanenwissen

- Haupttatigkeiten:

1. Doménenanalyse — Verstehen der Anforderungen
2. Doménendesign — Entwerfen der Architektur
3. Doménenimplementierung — Umsetzen der Architektur

Repositories / Systemfamilien 32

Domaéinenanalyse:

— Abgrenzung, Ausgrenzung, was nicht mehr enthalten

— bestimmung der Variabilitdten von Software-Systemfamilien
(technische, fachliche)

- Entwicklungsprognosen

— Entscheidung iiber prinzipielle Herangehensweise: Doménen-
spezifische Sprachen / MDD oder bedingte Compilierung oder
Framework oder

- “Konfigurationsraumfiir Mitglieder der Systemfamilie bestim-
men

Repositories / Systemfamilien

33

Doméinendesign:

— Implementierung der Plattform

- Wahl von Bindungszeiten, Ubersetzungszeit, Linkzeit, Installa-
tionszeit

	Wiederverwendung
	``Wiederverwendung'' vs. Entwurfs- / Struktur-Erfahrung
	Wiederverwendung vs. technologische Arbeitsteilung
	Wiederverwendung in engeren Sinne
	Typen wiederverwendbarer Dokumente
	Geplante vs. ungeplante Wiederverwendung

	An Wiederverwendung orientierte Entwicklungsprozesse
	Grundform
	Kostenanalyse
	Geplantes Wiederverwenden

	Repositories
	Funktionsbereiche von Repositories
	Autarke vs. integrierte Repositories
	Abgrenzung zu anderen Systemen
	Systemfamilien

