
Folien zum Lehrmodul

Repositories und
Software-Wiederverwendung

Lernziele:

- Motive und Randbedingungen für Software-Wiederverwendung
verstehen

- an Wiederverwendung orientierte Entwicklungsprozesse kennen
- Rolle und mögliche Funktionen eines (Wiederverwendungs-)

Repositorys kennen
- Repositories von ähnlichen Systemen unterscheiden können

Inhaltsverzeichnis 3

Inhaltsverzeichnis
1 Wiederverwendung 5

1.1 “Wiederverwendung” vs. Entwurfs- / Struktur-Erfahrung 6
1.2 Wiederverwendung vs. technologische Arbeitsteilung 7
1.3 Wiederverwendung in engeren Sinne 9
1.4 Typen wiederverwendbarer Dokumente 10
1.5 Geplante vs. ungeplante Wiederverwendung 11

2 An Wiederverwendung orientierte Entwicklungsprozesse 13
2.1 Grundform . 13
2.2 Kostenanalyse . 15
2.3 Geplantes Wiederverwenden . 19

3 Repositories 22
3.1 Funktionsbereiche von Repositories 22
3.2 Autarke vs. integrierte Repositories 26
3.3 Abgrenzung zu anderen Systemen 28

Inhaltsverzeichnis 4

3.4 Systemfamilien . 29

Wiederverwendung 5

1 Wiederverwendung

Grundidee: Produkte möglichst weitgehend aus vorhandenen /
vorgefertigten Standard-Komponenten konstruieren
Vorteile:

- Kostensenkung, weniger Neuentwicklung
- Erhöhung der Qualität

– eigentlich keine neue Idee, passiert tausendfach:

- Benutzung von Bibliotheken
- Muster,

Wiederverwendung / “Wiederverwendung” vs. Entwurfs- / Struktur-Erfahrung 6

1.1 “Wiederverwendung” vs. Entwurfs- /
Struktur-Erfahrung

nach Größe der Artefakte sortiert:

1. Programmstrukturen, Konzepte der Programmiersprache
2. Entwurfsmuster, Analysemuster
3. Architekturmuster
4. Standardarchitekturen

sind nur Gestaltungsregeln, die erst “instanziiert” werden müssen,
keine Komponenten, die man i.w. unverändert einbaut
überlappt thematisch mit Wiederverwendung

Wiederverwendung / Wiederverwendung vs. technologische Arbeitsteilung 7

1.2 Wiederverwendung vs. technologische Ar-
beitsteilung

Fremdherstellung von Komponenten ist in klassischen Industrien
üblich:

- ggf. eigenes, umfangreiches Know-How erforderlich, das nicht
zu den Kernkompetenzen des Anbieters gehört

- Ausnutzung von Skaleneffekten bei kleinen Produktionsmengen

Wiederverwendung / Wiederverwendung vs. technologische Arbeitsteilung 8

allgemeines Prinzip der industriellen Arbeitsteilung:

- spezialisierte Marktteilnehmer,
- geringe Fertigungstiefe,
- Konzentration auf Kernkompetenzen

wichtig: nicht zu viele Modelle, Normen / offene Spezifikationen
(“DIN-Schrauben”)
→ technologische Arbeitsteilung auch in der Informatik selbstver-
ständlich
ist auch ohne Wiederverwendung sinnvoll (also wenn zugekaufte
Komponenten werden nur 1* verwendet)

Wiederverwendung / Wiederverwendung in engeren Sinne 9

1.3 Wiederverwendung in engeren Sinne

Fälle, wo mehrere einander ähnliche Systeme in der gleichen Tech-
nologie entwickelt werden

- in verschiedenen Zeiträumen
- insb. bei Systemen, die nicht Varianten voneinander sind, son-

dern unabhängig voneinander entwickelt werden
- gleichzeitig: Entwicklung einer Systemfamilie

Besonderheit: gemeinsame, wiederverwendbare Komponenten
können gezielt bestimmt werden

Wiederverwendung / Typen wiederverwendbarer Dokumente 10

1.4 Typen wiederverwendbarer Dokumente

im Prinzip beliebige Dokumenttypen, in beliebigen Entwicklungs-
stufen:
- Anforderungen, Testfälle
- Quelltexte von Programmen
- Modul-/API-Spezifikationen
- Architekturen bzw. Architekturfragmente
- Datenbankschemata
- Gestaltungselemente von GUIs
- Dokumentation: Bedien-, Installationshandbücher, Glossare etc.

ggf. zusammenhängende Gruppen, z.B. GUI-Komponente beste-
hend aus Code, Gestaltung, Hilfesystem, Manual

Schwerpunkt in der Praxis: Quelltexte, Architekturen, API-
Spezifikationen, Datenbankschemata

Wiederverwendung / Geplante vs. ungeplante Wiederverwendung 11

1.5 Geplante vs. ungeplante Wiederverwen-
dung

Wiederverwendung hier im Sinne von Wiederverwendbarkeit

ungeplante Wiederverwendung:

- Komponente wird nach ihrer Entwicklung für Wiederverwen-
dung entdeckt

- muß i.d.R. abgeändert / verbessert / nachdokumentiert werden

Wiederverwendung / Geplante vs. ungeplante Wiederverwendung 12

geplante Wiederverwendung / Wiederverwendbarkeit:

- Komponente von vorneherein zwecks Wiederverwendung ent-
wickelt und gestaltet

- (a) Bibliotheksfunktionen: nur zur Wiederverwendung gedacht
- (b) Teile eines konkreten Systems, die vermutlich später noch

einmal verwendet werden können

An Wiederverwendung orientierte Entwicklungsprozesse / Grundform 13

2 An Wiederverwendung orientierte
Entwicklungsprozesse

2.1 Grundform
1. Bilden der (Grob-) Architektur des Systems
2. Suche nach geeigneten Komponenten in einem Vorrat wieder-

verwendbarer Komponenten;
ggf. anpassen der Architektur (d.h. zurück zu Schritt 1)

3. gefundene Komponenten in die Entwicklungsversion übertragen
4. Anpassen (abändern) bzw. ggf. Konfigurieren der übernomme-

nen Komponenten

deutlich andere Gewichtung als beim klassischen Phasenmodell

Anmerkung zu Schritt 1: i.d.R. bestimmte architektonische Struk-
turen und Konventionen bei Komponenten vorausgesetzt, z.B.

An Wiederverwendung orientierte Entwicklungsprozesse / Grundform 14

Fehlerbehandlung
bei Frameworks ist das Hauptprogramm komplett vorgegeben
→ individuelle Teile des Systems anpassen

Anmerkung zu Schritt 4:

- black-box-Wiederverwendung: Komponente wird völlig
unverändert wiederverwendet

- white-box-Wiederverwendung: Komponente wird verän-
dert

An Wiederverwendung orientierte Entwicklungsprozesse / Kostenanalyse 15

2.2 Kostenanalyse

Vergleich mit klassischer Neuentwicklung:

Schritt 1: wahrscheinlich kein großer Unterschied
Schritt 2: Suche nach Komponenten ist ohne besondere Vorberei-

tungen problematisch!
Hindernisse:
- finden der entsprechenden Dateien (ggf. auf Archivierungs-

medien)
- schlechte Trefferqualität bei Stichwortsuche
- hoher Aufwand zur Analyse der einzelnen Fundstellen, Ein-

schätzung des erforderlichen Anpassungsaufwands unsicher

An Wiederverwendung orientierte Entwicklungsprozesse / Kostenanalyse 16

Schritt 3: Übernahme der Komponente in die Entwicklungsversion
arbeitsaufwendig, falls es sich z.B. um verstreute Codefrag-
mente handelt

Schritt 4: ggf. umfangreiche Anpassungsarbeiten;
anschließend kompletter Test der Komponente erforderlich
(Aufwand!)
→ reduziert Kosteneinsparung durch die Wiederverwendung

An Wiederverwendung orientierte Entwicklungsprozesse / Kostenanalyse 17

Rechenbeispiele für eine Komponente, deren Neuentwicklung 15
Stunden dauert:

- black-box-Wiederverwendung 0.5 Stunden, kein Suchaufwand
→ Aufwand um den Faktor 30 reduziert!

- langwierige Suche: 2 Stunden
Änderungen an der Komponente: 6 Stunden incl. Test
im Durchschnitt 2 vergebliche Suchvorgänge auf einen erfolg-
reichen
→ Aufwand um 20 % reduziert,
ungünstige Risikostruktur: möglicher Gewinn 8 Stunden, mög-
licher Verlust 2 Stunden

An Wiederverwendung orientierte Entwicklungsprozesse / Kostenanalyse 18

Schlußfolgerungen:

- sehr kleine Komponenten (Aufwand ca. eine Stunde): Wieder-
verwendung lohnt i.a. nicht

- umfangreiche Komponenten: lohnt im Prinzip, aber reduzier-
te Wahrscheinlichkeit, daß die Komponente unverändert zum
aktuellen Bedarf paßt
→ erhöhte Wahrscheinlichkeit von Änderungen

An Wiederverwendung orientierte Entwicklungsprozesse / Geplantes Wiederverwenden 19

2.3 Geplantes Wiederverwenden

Voraussetzungen / positive Einflußfaktoren für Wiederverwendung:

- gute Suchfunktionen
- leichte Beurteilung gefundener Komponenten
- möglichst unveränderte Übernahme der Komponenten

... können gezielt verbessert werden → geplante Wiederverwendung

An Wiederverwendung orientierte Entwicklungsprozesse / Geplantes Wiederverwenden 20

Denkbare vorbereitende Maßnahmen

- Sammlung aller potentiell wiederverwendbaren Komponenten
in einem (logisch) zentralen Repository

- zusätzliche Beschreibung der Komponenten anhand eines Klas-
sifikationsschemas und durch Schlagworte
Möglichkeit, Klassifikation / Schlagworte bei der Suche auzu-
nutzen

- erhöhte Qualität der technischen Dokumentation der Kompo-
nenten, der Strukturierung und Lesbarkeit des Programmcodes
usw.

- andere (allgemeinere) Gestaltung der Funktionalität und/oder
Schnittstellen der Komponenten

An Wiederverwendung orientierte Entwicklungsprozesse / Geplantes Wiederverwenden 21

- besonders sorgfältiger Test der Komponenten (Vertrauen der
Entwickler und Akzeptanz erhöhen)

Mehraufwand im Bereich von 30 - 60 % des normalen Entwick-
lungsaufwands

Faustregel: amortisiert sich erst nach nach 3 Wiederverwendungen

Repositories / Funktionsbereiche von Repositories 22

3 Repositories

3.1 Funktionsbereiche von Repositories

(Komponenten- bzw. Wiederverwendungs-) Repository: System,
das wiederverwendbare Komponenten verwalten kann und das die
Suche nach Komponenten unterstützt; Funktionen eines Reposito-
rys:

Verwaltung deskriptiver Daten zu den Komponenten:
abhängig
vom Typ der Komponenten
Bsp: Programmiersprache, Compilerversion, Autor, Erstel-
lungsdatum, Stichworte zum Inhalt, Klassifizierung, usw.
→ Metadaten

Pflege der Klassifikationsschemata: Funktionen für Aufbau

Repositories / Funktionsbereiche von Repositories 23

und Weiterentwicklung; zugehörige Statistikfunktionen
Suche nach Komponenten: i.d.R. auf Basis der deskriptiven

Daten, nicht die Komponenten selbst
vage Suche (Information Retrieval), iterative Verfeinerung /
Anpassung der Suchkriterien

Import von Komponenten aus Dateien oder Projektdatenban-
ken

Export von Komponenten (sofern die Komponenten über-
haupt im Repository verwaltet werden)

Repositories / Funktionsbereiche von Repositories 24

Nachweis von Wiederverwendungen: Erfassung von erfolg-
losen Analysen und erfolgreichen Wiederverwendungen. Rel-
vante Informationen:
- Wie oft ist diese Komponente schon bei einer Suche

gefunden worden?
- Wer hat sich diese Komponente schon einmal angesehen

und analysiert (wovon man profitieren könnte)?
→ Entwickler sollten Komponenten bewerten können

- In welchen Systemen ist diese Komponente wiederver-
wendet worden? Welche anderen Komponenten wurden
dort ebenfalls wiederverwendet?

Repositories / Funktionsbereiche von Repositories 25

Nutzer- und Rechteverwaltung, d.h. Kontrolle, wer das Re-
pository wie nutzen darf

Abrechnungsfunktionen abhängig von den rechtlichen Rah-
menbedingungen

Rolle Administrator: kontrolliert Import, Wartung der Klassifi-
kationsschemata, Rechteverwaltung
Auffassung: Sammlung wiederverwendbarer Komponenten ist ein
wertvolles Gut, das dem Unternehmen gehört und betreut werden
muß

alternative Auffassung: Wiederverwendungsrepository als eine Aus-
tauschplattform

Repositories / Autarke vs. integrierte Repositories 26

3.2 Autarke vs. integrierte Repositories

autarkes Repository:
Beispiel: Sammlung von Quellprogrammen, über eine WWW-
Schnittstelle nutzbar
klare Trennung zwischen Anbieter und Käufer / Nutzer von
Komponenten
Repository technisch getrennt von der Entwicklungsumgebung
der Nutzer der Komponenten; nur gelegentlicher Zugriff

Repositories / Autarke vs. integrierte Repositories 27

in eine SEU integriertes Repository : wird von Entwicklern inten-
siv bei täglichen Arbeit genutzt
verfolgt über die Wiederverwendung hinausgehende Ziele:
- Anwendungen zu dokumentieren
- Anwendungen inhaltlich zu integrieren
- Doppelentwicklungen zu vermeiden
- Auswirkungen von Änderungen einzuschätzen

Repositories / Abgrenzung zu anderen Systemen 28

3.3 Abgrenzung zu anderen Systemen

Versionsarchive von VM/KM-Systemen: enthalten über-
wiegend nicht wiederverwendbare Komponenten
Suche nach Komponenten wird nicht unterstützt
keine geeignete Dokumentation von Komponenten

Data-Dictionary-Systeme: dokumentieren primär Datenele-
menttypen in Datenbanken,
Bereitstellung dieser Metadaten zur Laufzeit der Programme
auf dem Produktionsrechner.

Repositories / Systemfamilien 29

3.4 Systemfamilien

Systemfamilie: eine Gruppe ähnlicher Software-Systeme, denen
eine gemeinsame Architektur sowie gemeinsam genutzte Kompo-
nenten zugrundeliegen
hoher Grad an Wiederverwendung der

- Modelle
- Implementierungen
- Dokumentation

Repositories / Systemfamilien 30

Merkmale:

- Systemfamilie als also solche vorgegeben und bekannt
- Systeme sind meist Varianten voneiander
- Wiederverwendung nu eine von mehreren Möglichkeiten, die

Redundanzen auszunutzen: alle Techniken des Variantenmana-
gements prinzipiell geeignet

- dedizierter Entwicklungsprozeß: Product Line Engineering

Repositories / Systemfamilien 31

Product Line Engineering:

- Gemeinsamkeiten und Unterschiede der Mitglieder der System-
familie bestimmen, z.B. mit Feature-Modellen

- bedingt sehr gutes Domänenwissen
- Haupttätigkeiten:

1. Domänenanalyse – Verstehen der Anforderungen
2. Domänendesign – Entwerfen der Architektur
3. Domänenimplementierung – Umsetzen der Architektur

Repositories / Systemfamilien 32

Domänenanalyse:

- Abgrenzung, Ausgrenzung, was nicht mehr enthalten
- bestimmung der Variabilitäten von Software-Systemfamilien

(technische, fachliche)
- Entwicklungsprognosen
- Entscheidung über prinzipielle Herangehensweise: Domänen-

spezifische Sprachen / MDD oder bedingte Compilierung oder
Framework oder

- “Konfigurationsraumfür Mitglieder der Systemfamilie bestim-
men

Repositories / Systemfamilien 33

Domänendesign:

- Implementierung der Plattform
- Wahl von Bindungszeiten, Übersetzungszeit, Linkzeit, Installa-

tionszeit

	Wiederverwendung
	``Wiederverwendung'' vs. Entwurfs- / Struktur-Erfahrung
	Wiederverwendung vs. technologische Arbeitsteilung
	Wiederverwendung in engeren Sinne
	Typen wiederverwendbarer Dokumente
	Geplante vs. ungeplante Wiederverwendung

	An Wiederverwendung orientierte Entwicklungsprozesse
	Grundform
	Kostenanalyse
	Geplantes Wiederverwenden

	Repositories
	Funktionsbereiche von Repositories
	Autarke vs. integrierte Repositories
	Abgrenzung zu anderen Systemen
	Systemfamilien

