
Folien zum Lehrmodul

Repositories und
Software-Wiederverwendung



Lernziele:

- Motive und Randbedingungen für Software-Wiederverwendung
verstehen

- an Wiederverwendung orientierte Entwicklungsprozesse kennen
- Rolle und mögliche Funktionen eines (Wiederverwendungs-)

Repositorys kennen
- Repositories von ähnlichen Systemen unterscheiden können
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1 Wiederverwendung

Grundidee: Produkte möglichst weitgehend aus vorhandenen /
vorgefertigten Standard-Komponenten konstruieren
Vorteile:

- Kostensenkung, weniger Neuentwicklung
- Erhöhung der Qualität

– eigentlich keine neue Idee, passiert tausendfach:

- Benutzung von Bibliotheken
- Muster, ....
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1.1 “Wiederverwendung” vs. Entwurfs- /
Struktur-Erfahrung

nach Größe der Artefakte sortiert:

1. Programmstrukturen, Konzepte der Programmiersprache
2. Entwurfsmuster, Analysemuster
3. Architekturmuster
4. Standardarchitekturen

sind nur Gestaltungsregeln, die erst “instanziiert” werden müssen,
keine Komponenten, die man i.w. unverändert einbaut
überlappt thematisch mit Wiederverwendung
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1.2 Wiederverwendung vs. technologische Ar-
beitsteilung

Fremdherstellung von Komponenten ist in klassischen Industrien
üblich:

- ggf. eigenes, umfangreiches Know-How erforderlich, das nicht
zu den Kernkompetenzen des Anbieters gehört

- Ausnutzung von Skaleneffekten bei kleinen Produktionsmengen
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allgemeines Prinzip der industriellen Arbeitsteilung:

- spezialisierte Marktteilnehmer,
- geringe Fertigungstiefe,
- Konzentration auf Kernkompetenzen

wichtig: nicht zu viele Modelle, Normen / offene Spezifikationen
(“DIN-Schrauben”)
→ technologische Arbeitsteilung auch in der Informatik selbstver-
ständlich
ist auch ohne Wiederverwendung sinnvoll (also wenn zugekaufte
Komponenten werden nur 1* verwendet)
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1.3 Wiederverwendung in engeren Sinne

Fälle, wo mehrere einander ähnliche Systeme in der gleichen Tech-
nologie entwickelt werden

- in verschiedenen Zeiträumen
- insb. bei Systemen, die nicht Varianten voneinander sind, son-

dern unabhängig voneinander entwickelt werden
- gleichzeitig: Entwicklung einer Systemfamilie

Besonderheit: gemeinsame, wiederverwendbare Komponenten
können gezielt bestimmt werden
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1.4 Typen wiederverwendbarer Dokumente

im Prinzip beliebige Dokumenttypen, in beliebigen Entwicklungs-
stufen:
- Anforderungen, Testfälle
- Quelltexte von Programmen
- Modul-/API-Spezifikationen
- Architekturen bzw. Architekturfragmente
- Datenbankschemata
- Gestaltungselemente von GUIs
- Dokumentation: Bedien-, Installationshandbücher, Glossare etc.

ggf. zusammenhängende Gruppen, z.B. GUI-Komponente beste-
hend aus Code, Gestaltung, Hilfesystem, Manual

Schwerpunkt in der Praxis: Quelltexte, Architekturen, API-
Spezifikationen, Datenbankschemata
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1.5 Geplante vs. ungeplante Wiederverwen-
dung

Wiederverwendung hier im Sinne von Wiederverwendbarkeit

ungeplante Wiederverwendung:

- Komponente wird nach ihrer Entwicklung für Wiederverwen-
dung entdeckt

- muß i.d.R. abgeändert / verbessert / nachdokumentiert werden
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geplante Wiederverwendung / Wiederverwendbarkeit:

- Komponente von vorneherein zwecks Wiederverwendung ent-
wickelt und gestaltet

- (a) Bibliotheksfunktionen: nur zur Wiederverwendung gedacht
- (b) Teile eines konkreten Systems, die vermutlich später noch

einmal verwendet werden können
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2 An Wiederverwendung orientierte
Entwicklungsprozesse

2.1 Grundform
1. Bilden der (Grob-) Architektur des Systems
2. Suche nach geeigneten Komponenten in einem Vorrat wieder-

verwendbarer Komponenten;
ggf. anpassen der Architektur (d.h. zurück zu Schritt 1)

3. gefundene Komponenten in die Entwicklungsversion übertragen
4. Anpassen (abändern) bzw. ggf. Konfigurieren der übernomme-

nen Komponenten

deutlich andere Gewichtung als beim klassischen Phasenmodell

Anmerkung zu Schritt 1: i.d.R. bestimmte architektonische Struk-
turen und Konventionen bei Komponenten vorausgesetzt, z.B.
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Fehlerbehandlung
bei Frameworks ist das Hauptprogramm komplett vorgegeben
→ individuelle Teile des Systems anpassen

Anmerkung zu Schritt 4:

- black-box-Wiederverwendung: Komponente wird völlig
unverändert wiederverwendet

- white-box-Wiederverwendung: Komponente wird verän-
dert
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2.2 Kostenanalyse

Vergleich mit klassischer Neuentwicklung:

Schritt 1: wahrscheinlich kein großer Unterschied
Schritt 2: Suche nach Komponenten ist ohne besondere Vorberei-

tungen problematisch!
Hindernisse:
- finden der entsprechenden Dateien (ggf. auf Archivierungs-

medien)
- schlechte Trefferqualität bei Stichwortsuche
- hoher Aufwand zur Analyse der einzelnen Fundstellen, Ein-

schätzung des erforderlichen Anpassungsaufwands unsicher
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Schritt 3: Übernahme der Komponente in die Entwicklungsversion
arbeitsaufwendig, falls es sich z.B. um verstreute Codefrag-
mente handelt

Schritt 4: ggf. umfangreiche Anpassungsarbeiten;
anschließend kompletter Test der Komponente erforderlich
(Aufwand!)
→ reduziert Kosteneinsparung durch die Wiederverwendung
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Rechenbeispiele für eine Komponente, deren Neuentwicklung 15
Stunden dauert:

- black-box-Wiederverwendung 0.5 Stunden, kein Suchaufwand
→ Aufwand um den Faktor 30 reduziert!

- langwierige Suche: 2 Stunden
Änderungen an der Komponente: 6 Stunden incl. Test
im Durchschnitt 2 vergebliche Suchvorgänge auf einen erfolg-
reichen
→ Aufwand um 20 % reduziert,
ungünstige Risikostruktur: möglicher Gewinn 8 Stunden, mög-
licher Verlust 2 Stunden
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Schlußfolgerungen:

- sehr kleine Komponenten (Aufwand ca. eine Stunde): Wieder-
verwendung lohnt i.a. nicht

- umfangreiche Komponenten: lohnt im Prinzip, aber reduzier-
te Wahrscheinlichkeit, daß die Komponente unverändert zum
aktuellen Bedarf paßt
→ erhöhte Wahrscheinlichkeit von Änderungen
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2.3 Geplantes Wiederverwenden

Voraussetzungen / positive Einflußfaktoren für Wiederverwendung:

- gute Suchfunktionen
- leichte Beurteilung gefundener Komponenten
- möglichst unveränderte Übernahme der Komponenten

... können gezielt verbessert werden → geplante Wiederverwendung
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Denkbare vorbereitende Maßnahmen

- Sammlung aller potentiell wiederverwendbaren Komponenten
in einem (logisch) zentralen Repository

- zusätzliche Beschreibung der Komponenten anhand eines Klas-
sifikationsschemas und durch Schlagworte
Möglichkeit, Klassifikation / Schlagworte bei der Suche auzu-
nutzen

- erhöhte Qualität der technischen Dokumentation der Kompo-
nenten, der Strukturierung und Lesbarkeit des Programmcodes
usw.

- andere (allgemeinere) Gestaltung der Funktionalität und/oder
Schnittstellen der Komponenten
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- besonders sorgfältiger Test der Komponenten (Vertrauen der
Entwickler und Akzeptanz erhöhen)

Mehraufwand im Bereich von 30 - 60 % des normalen Entwick-
lungsaufwands

Faustregel: amortisiert sich erst nach nach 3 Wiederverwendungen
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3 Repositories

3.1 Funktionsbereiche von Repositories

(Komponenten- bzw. Wiederverwendungs-) Repository: System,
das wiederverwendbare Komponenten verwalten kann und das die
Suche nach Komponenten unterstützt; Funktionen eines Reposito-
rys:

Verwaltung deskriptiver Daten zu den Komponenten:
abhängig
vom Typ der Komponenten
Bsp: Programmiersprache, Compilerversion, Autor, Erstel-
lungsdatum, Stichworte zum Inhalt, Klassifizierung, usw.
→ Metadaten

Pflege der Klassifikationsschemata: Funktionen für Aufbau
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und Weiterentwicklung; zugehörige Statistikfunktionen
Suche nach Komponenten: i.d.R. auf Basis der deskriptiven

Daten, nicht die Komponenten selbst
vage Suche (Information Retrieval), iterative Verfeinerung /
Anpassung der Suchkriterien

Import von Komponenten aus Dateien oder Projektdatenban-
ken

Export von Komponenten (sofern die Komponenten über-
haupt im Repository verwaltet werden)
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Nachweis von Wiederverwendungen: Erfassung von erfolg-
losen Analysen und erfolgreichen Wiederverwendungen. Rel-
vante Informationen:
- Wie oft ist diese Komponente schon bei einer Suche

gefunden worden?
- Wer hat sich diese Komponente schon einmal angesehen

und analysiert (wovon man profitieren könnte)?
→ Entwickler sollten Komponenten bewerten können

- In welchen Systemen ist diese Komponente wiederver-
wendet worden? Welche anderen Komponenten wurden
dort ebenfalls wiederverwendet?
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Nutzer- und Rechteverwaltung, d.h. Kontrolle, wer das Re-
pository wie nutzen darf

Abrechnungsfunktionen abhängig von den rechtlichen Rah-
menbedingungen

Rolle Administrator: kontrolliert Import, Wartung der Klassifi-
kationsschemata, Rechteverwaltung
Auffassung: Sammlung wiederverwendbarer Komponenten ist ein
wertvolles Gut, das dem Unternehmen gehört und betreut werden
muß

alternative Auffassung: Wiederverwendungsrepository als eine Aus-
tauschplattform
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3.2 Autarke vs. integrierte Repositories

autarkes Repository:
Beispiel: Sammlung von Quellprogrammen, über eine WWW-
Schnittstelle nutzbar
klare Trennung zwischen Anbieter und Käufer / Nutzer von
Komponenten
Repository technisch getrennt von der Entwicklungsumgebung
der Nutzer der Komponenten; nur gelegentlicher Zugriff
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in eine SEU integriertes Repository : wird von Entwicklern inten-
siv bei täglichen Arbeit genutzt
verfolgt über die Wiederverwendung hinausgehende Ziele:
- Anwendungen zu dokumentieren
- Anwendungen inhaltlich zu integrieren
- Doppelentwicklungen zu vermeiden
- Auswirkungen von Änderungen einzuschätzen
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3.3 Abgrenzung zu anderen Systemen

Versionsarchive von VM/KM-Systemen: enthalten über-
wiegend nicht wiederverwendbare Komponenten
Suche nach Komponenten wird nicht unterstützt
keine geeignete Dokumentation von Komponenten

Data-Dictionary-Systeme: dokumentieren primär Datenele-
menttypen in Datenbanken,
Bereitstellung dieser Metadaten zur Laufzeit der Programme
auf dem Produktionsrechner.
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3.4 Systemfamilien

Systemfamilie: eine Gruppe ähnlicher Software-Systeme, denen
eine gemeinsame Architektur sowie gemeinsam genutzte Kompo-
nenten zugrundeliegen
hoher Grad an Wiederverwendung der

- Modelle
- Implementierungen
- Dokumentation
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Merkmale:

- Systemfamilie als also solche vorgegeben und bekannt
- Systeme sind meist Varianten voneiander
- Wiederverwendung nu eine von mehreren Möglichkeiten, die

Redundanzen auszunutzen: alle Techniken des Variantenmana-
gements prinzipiell geeignet

- dedizierter Entwicklungsprozeß: Product Line Engineering
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Product Line Engineering:

- Gemeinsamkeiten und Unterschiede der Mitglieder der System-
familie bestimmen, z.B. mit Feature-Modellen

- bedingt sehr gutes Domänenwissen
- Haupttätigkeiten:

1. Domänenanalyse – Verstehen der Anforderungen
2. Domänendesign – Entwerfen der Architektur
3. Domänenimplementierung – Umsetzen der Architektur
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Domänenanalyse:

- Abgrenzung, Ausgrenzung, was nicht mehr enthalten
- bestimmung der Variabilitäten von Software-Systemfamilien

(technische, fachliche)
- Entwicklungsprognosen
- Entscheidung über prinzipielle Herangehensweise: Domänen-

spezifische Sprachen / MDD oder bedingte Compilierung oder
Framework oder ....

- “Konfigurationsraumfür Mitglieder der Systemfamilie bestim-
men
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Domänendesign:

- Implementierung der Plattform
- Wahl von Bindungszeiten, Übersetzungszeit, Linkzeit, Installa-

tionszeit
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