Folien zum Lehrmodul

Repositories und
Software-Wiederverwendung



Lernziele:

— Motive und Randbedingungen fiir Software-Wiederverwendung
verstehen

- an Wiederverwendung orientierte Entwicklungsprozesse kennen

- Rolle und mogliche Funktionen eines (Wiederverwendungs-)
Repositorys kennen

— Repositories von dhnlichen Systemen unterscheiden kénnen
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l Wiederverwendung

1 Wiederverwendung

Grundidee: Produkte moglichst weitgehend aus vorhandenen /
vorgefertigten Standard-Komponenten konstruieren
Vorteile:

- Kostensenkung, weniger Neuentwicklung
— Erhohung der Qualitét

— eigentlich keine neue Idee, passiert tausendfach:

— Benutzung von Bibliotheken
- Muster, ....
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1.1 “Wiederverwendung” vs. Entwurfs- /
Struktur-Erfahrung

nach Grofle der Artefakte sortiert:

1. Programmstrukturen, Konzepte der Programmiersprache
2. Entwurfsmuster, Analysemuster

3. Architekturmuster

4. Standardarchitekturen

sind nur Gestaltungsregeln, die erst “instanziiert” werden miissen,
keine Komponenten, die man i.w. unverandert einbaut

iberlappt thematisch mit Wiederverwendung
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1.2 Wiederverwendung vs. technologische Ar-
beitsteilung

Fremdherstellung von Komponenten ist in klassischen Industrien
iiblich:

— ggf. eigenes, umfangreiches Know-How erforderlich, das nicht
zu den Kernkompetenzen des Anbieters gehort

— Ausnutzung von Skaleneffekten bei kleinen Produktionsmengen
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allgemeines Prinzip der industriellen Arbeitsteilung:

- spezialisierte Marktteilnehmer,
— geringe Fertigungstiefe,

— Konzentration auf Kernkompetenzen

wichtig: nicht zu viele Modelle, Normen / offene Spezifikationen
(“DIN-Schrauben”)

— technologische Arbeitsteilung auch in der Informatik selbstver-
stdndlich

ist auch ohne Wiederverwendung sinnvoll (also wenn zugekaufte
Komponenten werden nur 1* verwendet)



l Wiederverwendung / Wiederverwendung in engeren Sinne 9 ‘

1.3 Wiederverwendung in engeren Sinne

Falle, wo mehrere einander dhnliche Systeme in der gleichen Tech-
nologie entwickelt werden

— in verschiedenen Zeitrdumen

— insb. bei Systemen, die nicht Varianten voneinander sind, son-
dern unabhéngig voneinander entwickelt werden

— gleichzeitig: Entwicklung einer Systemfamilie

Besonderheit: gemeinsame, wiederverwendbare Komponenten
kénnen gezielt bestimmt werden



l Wiederverwendung / Typen wiederverwendbarer Dokumente 10 ‘

1.4 Typen wiederverwendbarer Dokumente

im Prinzip beliebige Dokumenttypen, in beliebigen Entwicklungs-
stufen:

Anforderungen, Testfalle

Quelltexte von Programmen

Modul—{{API—S ezifikationen

Architekturen %zw. Architekturfragmente
Datenbankschemata

Gestaltungselemente von GUIs

Dokumentation: Bedien-, Installationshandbiicher, Glossare etc.

ggf. zusammenhingende Gruppen, z.B. GUI-Komponente beste-
hend aus Code, Gestaltung, Hilfesystem, Manual

Schwerpunkt in der Praxis: Quelltexte, Architekturen, API-
Spezifikationen, Datenbankschemata
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1.5 Geplante vs. ungeplante Wiederverwen-
dung

Wiederverwendung hier im Sinne von Wiederverwendbarkeit

ungeplante Wiederverwendung:

— Komponente wird nach ihrer Entwicklung fiir Wiederverwen-
dung entdeckt

- muf i.d.R. abgedndert / verbessert / nachdokumentiert werden



l Wiederverwendung / Geplante vs. ungeplante Wiederverwendung 12 ‘

geplante Wiederverwendung / Wiederverwendbarkeit:
- Komponente von vorneherein zwecks Wiederverwendung ent-

wickelt und gestaltet

- (a) Bibliotheksfunktionen: nur zur Wiederverwendung gedacht

- (b) Teile eines konkreten Systems, die vermutlich spéter noch
einmal verwendet werden konnen
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2 An Wiederverwendung orientierte

Entwicklungsprozesse

2.1 Grundform

1.
2.

Bilden der (Grob-) Architektur des Systems
Suche nach geeigneten Komponenten in einem Vorrat wieder-

verwendbarer Komponenten;

ggf. anpassen der Architektur (d.h. zuriick zu Schritt 1)
gefundene Komponenten in die Entwicklungsversion iibertragen
Anpassen (abdndern) bzw. ggf. Konfigurieren der {ibernomme-

nen Komponenten

deutlich andere Gewichtung als beim klassischen Phasenmodell

Anmerkung zu Schritt 1: i.d.R. bestimmte architektonische Struk-
turen und Konventionen bei Komponenten vorausgesetzt, z.B.
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Fehlerbehandlung

bei Frameworks ist das Hauptprogramm komplett vorgegeben

— individuelle Teile des Systems anpassen

Anmerkung zu Schritt 4:

- black-box-Wiederverwendung: Komponente wird vollig
unverdndert wiederverwendet

- white-box-Wiederverwendung: Komponente wird veran-
dert
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2.2 Kostenanalyse

Vergleich mit klassischer Neuentwicklung:

Schritt 1: wahrscheinlich kein grofser Unterschied
Schritt 2: Suche nach Komponenten ist ohne besondere Vorberei-
tungen problematisch!
Hindernisse:
- finden der entsprechenden Dateien (ggf. auf Archivierungs-
medien)
— schlechte Trefferqualitat bei Stichwortsuche
— hoher Aufwand zur Analyse der einzelnen Fundstellen, Ein-
schitzung des erforderlichen Anpassungsaufwands unsicher



l An Wiederverwendung orientierte Entwicklungsprozesse / Kostenanalyse 16 ‘

Schritt 3: Ubernahme der Komponente in die Entwicklungsversion
arbeitsaufwendig, falls es sich z.B. um verstreute Codefrag-
mente handelt

Schritt 4: ggf. umfangreiche Anpassungsarbeiten;

anschlieffend kompletter Test der Komponente erforderlich
(Aufwand!)

— reduziert Kosteneinsparung durch die Wiederverwendung
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Rechenbeispiele fiir eine Komponente, deren Neuentwicklung 15
Stunden dauert:

- black-box-Wiederverwendung 0.5 Stunden, kein Suchaufwand
— Aufwand um den Faktor 30 reduziert!

- langwierige Suche: 2 Stunden
Anderungen an der Komponente: 6 Stunden incl. Test

im Durchschnitt 2 vergebliche Suchvorgénge auf einen erfolg-
reichen

— Aufwand um 20 % reduziert,

ungiinstige Risikostruktur: moéglicher Gewinn 8 Stunden, mog-
licher Verlust 2 Stunden
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Schlufsfolgerungen:

- sehr kleine Komponenten (Aufwand ca. eine Stunde): Wieder-
verwendung lohnt i.a. nicht

- umfangreiche Komponenten: lohnt im Prinzip, aber reduzier-
te Wahrscheinlichkeit, daft die Komponente unverédndert zum
aktuellen Bedarf pafit
— erhohte Wahrscheinlichkeit von Anderungen
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2.3 Geplantes Wiederverwenden

Voraussetzungen / positive Einfluifaktoren fiir Wiederverwendung;:
— gute Suchfunktionen

- leichte Beurteilung gefundener Komponenten

— moglichst unverdnderte Ubernahme der Komponenten

... konnen gezielt verbessert werden — geplante Wiederverwendung
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Denkbare vorbereitende Maftnahmen

— Sammlung aller potentiell wiederverwendbaren Komponenten
in einem (logisch) zentralen Repository

— zusétzliche Beschreibung der Komponenten anhand eines Klas-
sifikationsschemas und durch Schlagworte
Moglichkeit, Klassifikation / Schlagworte bei der Suche auzu-
nutzen

— erhohte Qualitat der technischen Dokumentation der Kompo-
nenten, der Strukturierung und Lesbarkeit des Programmcodes
Usw.

- andere (allgemeinere) Gestaltung der Funktionalitdt und/oder
Schnittstellen der Komponenten
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- besonders sorgfiltiger Test der Komponenten (Vertrauen der
Entwickler und Akzeptanz erhdhen)

Mehraufwand im Bereich von 30 - 60 % des normalen Entwick-
lungsaufwands

Faustregel: amortisiert sich erst nach nach 3 Wiederverwendungen
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3 Repositories

3.1 Funktionsbereiche von Repositories

(Komponenten- bzw. Wiederverwendungs-) Repository: System,
das wiederverwendbare Komponenten verwalten kann und das die
Suche nach Komponenten unterstiitzt; Funktionen eines Reposito-
rys:

Verwaltung deskriptiver Daten zu den Komponenten:
abhéngig
vom Typ der Komponenten
Bsp: Programmiersprache, Compilerversion, Autor, Erstel-
lungsdatum, Stichworte zum Inhalt, Klassifizierung, usw.
— Metadaten

Pflege der Klassifikationsschemata: Funktionen fiir Aufbau
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und Weiterentwicklung; zugehérige Statistikfunktionen
Suche nach Komponenten: i.d.R. auf Basis der deskriptiven
Daten, nicht die Komponenten selbst
vage Suche (Information Retrieval), iterative Verfeinerung /
Anpassung der Suchkriterien
Import von Komponenten aus Dateien oder Projektdatenban-
ken

Export von Komponenten (sofern die Komponenten iiber-
haupt im Repository verwaltet werden)
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Nachweis von Wiederverwendungen: Erfassung von erfolg-
losen Analysen und erfolgreichen Wiederverwendungen. Rel-
vante Informationen:

- Wie oft ist diese Komponente schon bei einer Suche
gefunden worden?

— Wer hat sich diese Komponente schon einmal angesehen
und analysiert (wovon man profitieren konnte)?
— Entwickler sollten Komponenten bewerten kénnen

— In welchen Systemen ist diese Komponente wiederver-
wendet worden? Welche anderen Komponenten wurden
dort ebenfalls wiederverwendet?
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Nutzer- und Rechteverwaltung, d.h. Kontrolle, wer das Re-
pository wie nutzen darf

Abrechnungsfunktionen abhingig von den rechtlichen Rah-
menbedingungen

Rolle Administrator: kontrolliert Import, Wartung der Klassifi-
kationsschemata, Rechteverwaltung

Auffassung: Sammlung wiederverwendbarer Komponenten ist ein
wertvolles Gut, das dem Unternehmen gehort und betreut werden
muf

alternative Auffassung: Wiederverwendungsrepository als eine Aus-
tauschplattform
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3.2 Autarke vs. integrierte Repositories

autarkes Repository:
Beispiel: Sammlung von Quellprogrammen, {iber eine WWW-
Schnittstelle nutzbar
klare Trennung zwischen Anbieter und Kaufer / Nutzer von
Komponenten
Repository technisch getrennt von der Entwicklungsumgebung
der Nutzer der Komponenten; nur gelegentlicher Zugrift
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in eine SEU integriertes Repository : wird von Entwicklern inten-
siv bei taglichen Arbeit genutzt

verfolgt {iber die Wiederverwendung hinausgehende Ziele:
- Anwendungen zu dokumentieren

— Anwendungen inhaltlich zu integrieren

— Doppelentwicklungen zu vermeiden

- Auswirkungen von Anderungen einzuschétzen
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3.3 Abgrenzung zu anderen Systemen

Versionsarchive von VM /KM-Systemen: enthalten {iber-
wiegend nicht wiederverwendbare Komponenten
Suche nach Komponenten wird nicht unterstiitzt
keine geeignete Dokumentation von Komponenten

Data-Dictionary-Systeme: dokumentieren priméar Datenele-
menttypen in Datenbanken,
Bereitstellung dieser Metadaten zur Laufzeit der Programme
auf dem Produktionsrechner.
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3.4 Systemfamilien

Systemfamilie: eine Gruppe &hnlicher Software-Systeme, denen
eine gemeinsame Architektur sowie gemeinsam genutzte Kompo-
nenten zugrundeliegen

hoher Grad an Wiederverwendung der
— Modelle

— Implementierungen

— Dokumentation
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Merkmale:

— Systemfamilie als also solche vorgegeben und bekannt
— Systeme sind meist Varianten voneiander

Wiederverwendung nu eine von mehreren Moglichkeiten, die
Redundanzen auszunutzen: alle Techniken des Variantenmana-
gements prinzipiell geeignet

- dedizierter Entwicklungsprozefs: Product Line Engineering



Repositories / Systemfamilien 31 ‘

Product Line Engineering:

- Gemeinsamkeiten und Unterschiede der Mitglieder der System-
familie bestimmen, z.B. mit Feature-Modellen

- bedingt sehr gutes Doméanenwissen

- Haupttatigkeiten:

1. Doménenanalyse — Verstehen der Anforderungen
2. Doménendesign — Entwerfen der Architektur
3. Doménenimplementierung — Umsetzen der Architektur
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Domaéinenanalyse:

— Abgrenzung, Ausgrenzung, was nicht mehr enthalten

— bestimmung der Variabilitdten von Software-Systemfamilien
(technische, fachliche)

- Entwicklungsprognosen

— Entscheidung iiber prinzipielle Herangehensweise: Doménen-
spezifische Sprachen / MDD oder bedingte Compilierung oder
Framework oder ....

- “Konfigurationsraumfiir Mitglieder der Systemfamilie bestim-
men
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Doméinendesign:

— Implementierung der Plattform

- Wahl von Bindungszeiten, Ubersetzungszeit, Linkzeit, Installa-
tionszeit
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