
Repositories und Software-Wiederverwendung

Udo Kelter

01.07.2001

Zusammenfassung dieses Lehrmoduls

Software-Wiederverwendung wird als ein entscheidendes Mittel an-
gesehen, die Entwicklungszeit und -Kosten von Software zu senken
und die Qualität zu erhöhen. Dieses Lehrmodul analysiert zunächst
verschiedene Arten von Wiederverwendung, die möglichen Kostenein-
sparungen und an der Wiederverwendung orientierte Vorgehensmodelle.
Ein wesentlicher Aspekt der Wiederverwendung ist die Suche nach ge-
eigneten Komponenten; diese sollte durch (Komponenten-) Repositories
unterstützt werden.

Vorausgesetzte Lehrmodule:
obligatorisch: - Integrationsrahmen für Software-Entwicklungsum-

gebungen
- Software-Entwicklungsumgebung

empfohlen: - Transportdateien und die XML

Stoffumfang in Vorlesungsdoppelstunden: 1.0

1

Repositories und Software-Wiederverwendung 2

Inhaltsverzeichnis
1 Wiederverwendung 3

1.1 Motivation . 3
1.2 Wiederverwendung vs. technologische Arbeitsteilung 3
1.3 Typen wiederverwendbarer Dokumente 6

2 An Wiederverwendung orientierte Entwicklungsprozesse 7
2.1 Grundform . 7
2.2 Kostenanalyse . 8
2.3 Geplante Wiederverwendung 10

3 Repositories 11
3.1 Funktionsbereiche von Repositories 11
3.2 Autarke vs. integrierte Repositories 14
3.3 Weitere adressierte Problembereiche 14

3.3.1 Versions- und Konfigurationsmanagement 15
3.3.2 Reverse Engineering 15
3.3.3 Datenaustausch zwischen Werkzeugen 16

3.4 Abgrenzung zu anderen Systemen 17

Literatur . 18
Index . 18

c©2001 Udo Kelter Stand: 01.07.2001
Dieser Text darf für nichtkommerzielle Nutzungen als Ganzes und unverändert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Veränderung und Überführung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist über http://kltr.de erreichbar.

Repositories und Software-Wiederverwendung 3

1 Wiederverwendung

1.1 Motivation

Wiederverwendung ist eines der Dauerthemen der Softwaretechnik. Die
grundlegende Idee besteht darin, Produkte möglichst weitgehend aus
vorgefertigten Standard-Komponenten zu konstruieren und so die in-
dividuelle Neuentwicklung von Komponenten zu vermeiden. Hiervon
verspricht man sich folgende Vorteile:

- Kostensenkung, primär infolge einer signifikanten Erhöhung der
Produktivität der Entwickler

- Erhöhung der Qualität des Produkts, da die Komponenten infolge
des wiederholten Einsatzes ausgereifter sind als neue Software

- kürzere Entwicklungszeit

Die Verwendung von vorgefertigten Standard-Komponenten ist auch
in anderen Industrien üblich. So wird bspw. ein Automobilhersteller
nicht selbst Reifen, Autoradios, Lichtmaschinen, Benzinpumpen, Sitze,
Scheinwerfer, Schrauben, Autolacke usw. herstellen, sondern zukaufen,
eventuell sogar ganze Motorblöcke. Der Hersteller des Autoradios wird
wiederum die elektrischen Bauteile (Transistoren, ICs, Kondensato-
ren usw.) oder Bleche für das Gehäuse nicht selbst herstellen, sondern
zukaufen.

1.2 Wiederverwendung vs. technologische Arbeitstei-
lung

Eine genauere Betrachtung dieser Beispiele zeigt allerdings, daß es
sich oft nicht wirklich um Wiederverwendung handelt. Es kann durch-
aus sein, daß z.B. für einen neuen PKW-Typ auch völlig neue Sitze,
Scheinwerfer, Benzinpumpen und Lacke benötigt werden und daß die-
se Komponenten in keinem anderen PKW-Typ eingesetzt werden. Die
Fremdherstellung dieser Komponenten ist trotz fehlender Wiederver-
wendung sinnvoll:

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 4

- Für die Entwicklung dieser Komponenten kann ein eigenes, umfang-
reiches Know-How erforderlich sein, das nicht zu den Kernkompeten-
zen des Anbieters gehört. Eine eigene Entwicklungsabteilung wäre
aber wegen der geringen Zahl der Entwicklungen nicht ausgelastet.

- Die Herstellung der Produkte kann bei kleinen Mengen infolge von
Skaleneffekten unwirtschaftlich sein, wenn z.B. teure Produktions-
anlagen installiert werden müßten, die ansonsten nicht ausgelastet
werden, oder nur geringe Materialmengen zu relativ hohen Preisen
gekauft werden müßten.

Die Fremdherstellung von Komponenten entspringt hier dem gene-
rellen Prinzip der industriellen Arbeitsteilung, wonach einzelne Markt-
teilnehmer sich auf Produkte oder Dienstleistungen spezialisieren, für
die spezielle, vertiefte Kompetenzen erforderlich sind; letztlich wird ei-
ne geringe Fertigungstiefe angestrebt. Das Prinzip der Arbeitsteilung
kann auch auf einzelne Schritte eines Produktionsprozesses angewandt
werden (Halbfabrikate).

Komponenten wie Lichtmaschinen, Autoradios, Schrauben oder
Reifen werden zwar in dem Sinne wiederverwendet, daß die gleichen
Komponenten (im Sinne von Typen) in verschiedenen Wagentypen
eingesetzt werden, aber auch hier dürfte das allgemeine Prinzip der
industriellen Arbeitsteilung das entscheidende Argument für die Fremd-
herstellung sein. Eine Wiederverwendung derartiger Komponenten ist
vor allem dann wahrscheinlich, wenn durch einen überschaubaren Ka-
talog an Standard-Modellen (“DIN-Schrauben”), für die idealerweise
sogar eine Norm vorliegt, der überwiegende Teil der Nachfrage abge-
deckt werden kann. Wiederverwendung im eigentlichen Sinne tritt hier
eher beim Anbieter der Standard-Komponenten auf: dieser verwen-
det die gleichen Technologien und Kompetenzen zur Entwicklung aller
Standard-Komponenten.

Vielfach wird beklagt, die Informatik hinke, was das Angebot an
wiederverwendbaren Komponenten und das Ausmaß von deren Einsatz
betrifft, weit hinter anderen Industrien her. Derartige Aussagen sind
aber so pauschal aber nicht haltbar:

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 5

- Skaleneffekte durch große Produktionsmengen und Losgrößen tre-
ten bei der “Herstellung” von Softwareprodukten nicht auf, diese
Motivation für den Zukauf von Komponenten entfällt völlig.

- Technologische Arbeitsteilung und dadurch induzierter “Zukauf”
von Komponenten ist auch in der Informatik gang und gäbe. Kein
normaler Entwickler käme auf die Idee,

- Netzwerkprotokolle,
- Treiber für Graphik- oder Soundkarten,
- ein Fenstersystem oder elementare Graphikfunktionen,
- ein Datenbankmanagementsystem,
- komplexe mathematische Funktionen,
- einen Transaktionsmonitor,
- Verschlüsselungsverfahren

usw. selbst zu entwickeln, obwohl diese letztlich einen Teil des ent-
wickelten Systems ausmachen. Der Hauptgrund für den “Zukauf”
dieser Komponenten liegt darin, daß der Entwickler fachlich nicht in
der Lage ist, sie selbst zu entwickeln, es liegt hier also eine technolo-
gische Arbeitsteilung vor.
Derartige Komponenten werden oft nicht als solche wahrgenom-
men, weil sie auf dem Zielrechner schon als Teil des Betriebssystems
und anderer vorausgesetzter Basissoftware vorhanden sind und kei-
ne expliziten Kopien gemacht oder Lizenzgebühren bezahlt werden
müssen. Wahrgenommen werden diese Komponenten nur dann,
wenn sie in Form von Bibliotheken oder Frameworks als Teil der
Entwicklungsumgebung sichtbar sind.

Auf Wiederverwendung, die in erster Linie durch technologische Ar-
beitsteilung motiviert ist, gehen wir i.f. nicht näher ein, weil sie ohnehin
selbstverständlich ist.

Wir konzentrieren uns stattdessen auf solche Formen der Wieder-
verwendung, wo mehrere einander ähnliche Systeme in der gleichen
Technologie entwickelt werden müssen. Dies beinhaltet den Fall, daß
ein Katalog von Standard-Komponenten entwickelt bzw. benutzt wird.

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 6

Die Systeme, in denen Komponenten wiederverwendet werden, kön-
nen durchaus in verschiedenen Zeiträumen entwickelt werden. Hierbei
ist weniger an das Erstellen mehrerer Revisionen des “gleichen” Systems
gedacht, sondern an unabhängig voneinander existierende Systeme (al-
lerdings ist diese Unterscheidung unscharf).

Einen Sonderfall stellt die Entwicklung einer Systemfamilie dar,
weil hier alle Systeme gemeinsam entwickelt werden und gemeinsame
- also wiederverwendbare - Komponenten von vorneherein gezielt be-
stimmt werden können, während normalerweise bei der Realisierung
einer Komponente nur darüber spekuliert werden kann, ob sie später
noch einmal wiederverwendet werden wird.

1.3 Typen wiederverwendbarer Dokumente

Wiederverwendung ist im Prinzip bei beliebigen Software-Artefakten
bzw. Dokumenttypen und in beliebigen Entwicklungsstufen denkbar:

- Anforderungen
- Quelltexte oder ausführbarer Code (Bindemodule) von Programmen
- Modul-/API-Spezifikationen
- Architekturen bzw. Architekturfragmente
- Datenbankschemata
- Gestaltungselemente von GUIs
- Testfälle
- Dokumentation: Bedien-, Installationshandbücher, Glossare etc.

Artefakte verschiedenen Typs können zusammenhängen (z.B. bei
einer GUI-Komponente: Code, Gestaltung, Hilfesystem, Manual) und
dann sinnvollerweise nur gemeinsam wiederverwendet werden.

In der Praxis liegt der Schwerpunkt heute nach wie vor bei Quell-
texten, Architekturen, API-Spezifikationen und Datenbankschemata.

Eine besondere Art der Wiederverwendung von Architekturen bzw.
Architekturfragmenten stellen Entwurfsmuster dar: hier wird eher die
Erfahrung beim Architekturentwurf wiederverwendet, da die Muster
i.d.R. nicht unverändert in das letztliche Produkt übernommen werden.

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 7

2 An Wiederverwendung orientierte Entwick-
lungsprozesse

2.1 Grundform

Wiederverwendung ist wie schon erwähnt bei beliebigen Dokumentty-
pen denkbar, am häufigsten aber bei Architekturen und Programmen1.
Wir erläutern die Entwicklungsprozesse daher an diesem Beispiel. Der
grundlegende Entwicklungsprozeß hat folgende Form:

1. Bilden der (Grob-) Architektur des Systems
2. Suche nach geeigneten Komponenten in einem Vorrat wiederverwend-

barer Komponenten; ggf. anpassen der Architektur (d.h. zurückgehen
zu Schritt 1)

3. Gefundene Komponenten in die Entwicklungsversion übertragen
4. Anpassen (abändern) bzw. ggf. Konfigurieren der übernommenen

Komponenten

Dieser Ablauf ersetzt entsprechende Arbeitsschritte zur Gewinnung
von Architektur und/oder Quelltexten im klassischen Phasenmodell.

Anmerkungen zu Schritt 1: Wiederverwendbare Komponenten set-
zen i.d.R. bestimmte architektonische Strukturen und Konventionen
voraus, z.B. die konkreten Typen von Parametern oder Konventionen
bei der Fehlerbehandlung. Im Extremfall wird durch ein Framework
das Hauptprogramm komplett vorgegeben, d.h. hier werden die Grobar-
chitektur, Teile der Detailarchitektur und die Implementierung diverser
Framework-Komponenten wiederverwendet.

Die Architektur des zu entwickelnden Systems muß an derarti-
ge architektonische Vorgaben angepaßt werden, im Falle von reinen
Bibliotheken z.B. durch eine Adaptionsschicht.

Anmerkungen zu Schritt 2: Wie der Vorrat wiederverwendbarer
Komponenten bestimmt und technisch verwaltet wird, werden wir im
Abschnitt über Repositories ausführlicher behandeln.

1Bei datenbankgestützten Informationssystemen sind die Programme immer im
Zusammenhang mit den Datenbankschemata zu sehen.

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 8

Anmerkungen zu Schritt 4: Sofern eine Komponente völlig unverän-
dert wiederverwendet wird, entfällt dieser Schritt, und man spricht von
einer black-box-Wiederverwendung, andernfalls von einer white-
box-Wiederverwendung.

2.2 Kostenanalyse

Wir erinnern uns jetzt daran, daß wir durch Wiederverwendung ei-
gentlich Kosten sparen wollen. Welche Kosten entstehen nun beim
vorstehenden Entwicklungsprozeß im Vergleich zu einer klassischen
Neuentwicklung?

Schritt 1: wahrscheinlich kein großer Unterschied

Schritt 2: Ohne besondere Vorbereitungen kann die Suche nach einer
Komponente problematisch sein.

Als Beispiel nehmen wir an, ein Entwickler erinnere sich, daß in
einem früheren Projekt einmal eine bestimmte Funktion realisiert
worden ist. Sofern nun keine ausreichende Dokumentation vorhan-
den ist, kann es sehr schwierig sein, die entsprechenden Operationen
oder ggf. sogar nur Abschnitte im Quellcode zu finden.

Zunächst einmal sind überhaupt die entsprechenden Dateien
zu finden; sie können sich off-line auf einem Archivierungsmedium
befinden, z.B. einer CD, oder in einem Versionsarchiv.

Sodann ist eine einfache Stichwortsuche, wie sie mit allgemein
verfügbaren Textprozessoren möglich ist, problematisch, da vermut-
lich viele unzutreffende Stellen, die alle manuell aussortiert werden
müssen, gefunden werden.

Selbst dann, wenn die meisten unzutreffenden Fundstellen rasch
aussortiert werden können, kann es sein, daß ein oder mehrere von
ihnen genauer dahingehend untersucht werden müssen, ob sie tat-
sächlich für den Einsatzzweck geeignet sind. Dies beinhaltet das
Lesen von Spezifikationen oder ggf. sogar Analysieren von Quell-
code. Neben der Analyse der Fundstelle ist noch einzuschätzen,
welchen Aufwand eventuelle Änderungen und Anpassungen erfor-
derlich machen.

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 9

Schritt 3: Die Übernahme der Komponente in die Entwicklungsversi-
on kann aufwendig sein, wenn es sich nicht um ein abgeschlossenes
Stück Code handelt, sondern um verstreute Codefragmente.

Schritt 4: Selbst nachdem die richtige Datei oder der richtige Abschnitt
darin gefunden worden sind, kann es notwendig sein, den Code an
vielen Stellen manuell an den neuen Kontext anzupassen (white-box-
Wiederverwendung), wobei das Risiko besteht, Fehler einzuführen.
Es ist also ein anschließender Test der Komponente erforderlich.
Das Testen macht i.a. einen signifikanten Anteil an den gesamten
Entwicklungsaufwänden aus, dementsprechend verringert sich die
Kosteneinsparung durch die Wiederverwendung.

Wenn man eine Komponente, deren Neuentwicklung 15 Stunden
dauern würde, nach einer halben Stunde findet und unverändert über-
nehmen kann, hat man den Aufwand um den Faktor 30 reduziert. Zu
Beginn der Suche weiß man aber nicht, ob man fündig wird. Wenn nur
jede dritte Suche erfolgreich ist, reduziert man den Aufwand immerhin
noch um den Faktor 10.

Wesentlich ungünstiger stellt sich die Situation dar, wenn in unse-
rem Beispiel die Suche länger dauert, weil Fundstellen analysiert werden
müssen (z.B. 2 Stunden) und Änderungen an der Komponente erforder-
lich sind (6 Stunden incl. Test). Wenn im Durchschnitt 2 vergebliche
Suchvorgänge auf einen erfolgreichen kommen, würde der Aufwand
nur noch (aber immerhin) um 20 % reduziert. Zugleich ist die Risi-
kostruktur deutlich ungünstiger geworden: einer eventuell verlorenen
Zeitinvestition von 2 Stunden steht ein möglicher Gewinn von 8 Stun-
den bei der Realisierung gegenüber. Bei einem Mißerfolg verlängert
sich die Bearbeitungszeit von 15 auf 17 Stunden.

Aus dieser groben Kostenanalyse können wir bereits zwei Schlußfol-
gerungen zur Pragmatik der Wiederverwendung ziehen:

- Die Wiederverwendung sehr kleiner Komponenten (z.B. kurze Ope-
rationen mit ca. 10 - 30 Zeilen Code) lohnt i.a. nicht, wenn diese
mit wenig Aufwand (ca. eine Stunde) neu erstellt werden können.

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 10

- Je umfangreicher Komponenten sind, desto mehr Entwurfsentschei-
dungen und Funktionen beinhalten sie und umso geringer wird die
Wahrscheinlichkeit, daß die Komponente unverändert zum aktuel-
len Bedarf paßt. Umfang und Wahrscheinlichkeit von Änderungen
steigen stark an, sofern nicht die zu konstruierenden Systeme sehr
ähnlich sind.

2.3 Geplante Wiederverwendung

Das vorstehende Kostenanalyse zeigt, daß Wiederverwendung vor allem
dann erfolgreich ist, wenn

- die Suche nach Komponenten rasch vonstatten geht,

- die einzelnen Komponenten leicht dahingehend beurteilt werden
können, ob sie für den angedachten Zweck geeignet sind,

- die gefundenen bzw. ausgewählten Komponenten unverändert wie-
derverwendet werden können.

Es liegt nahe, durch gezielte Vorbereitungen diese Voraussetzungen
zu verbessern; in diesem Fall spricht man von geplanter Wiederver-
wendung. Denkbare vorbereitende Maßnahmen sind:

- Sammlung aller potentiell wiederverwendbaren Komponenten in
einem (logisch) zentralen Repository

- die zusätzliche (also nicht zur normalen Entwicklungsdokumentati-
on gehörige) Beschreibung potentieller Komponenten anhand eines
Klassifikationsschemas und durch Schlagworte. Ein Klassifikations-
schema muß i.d.R. speziell für den jeweiligen Anwendungskontext
und Komponentenfundus entwickelt werden.

Ferner sollte die Suche durch ein geeignetes Retrieval-System
unterstützt werden.

- erhöhte Qualität der technischen Dokumentation der Komponenten,
der Strukturierung und Lesbarkeit des Programmcodes usw.

- andere Gestaltung der Funktionalität und/oder Schnittstellen der
Komponenten, z.B. Verallgemeinerung der Funktionalität, obwohl

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 11

diese im ursprünglichen Anwendungskontext nicht so allgemein be-
nötigt wurde.

- besonders sorgfältiger Test der Komponenten, um das Vertrauen der
Entwickler und die Akzeptanz zu erhöhen.

Diese Vorbereitungen kosten ihrerseits Aufwand; dieser Vorberei-
tungsaufwand hängt natürlich von diversen Umständen ab, liegt aber
nach Aussagen diverser Quellen im Bereich von 30 - 60 % des normalen
Entwicklungsaufwands2.

Einer Faustregel zufolge amortisieren sich die Mehraufwände erst
nach nach 3 Wiederverwendungen, d.h. erst bei noch häufigerer Wie-
derverwendung kommt es zu Kosteneinsparungen.

3 Repositories

3.1 Funktionsbereiche von Repositories

Unter einem (Komponenten- bzw. Wiederverwendungs-) Repository
verstehen wir hier ein System, das wiederverwendbare Komponenten
verwalten kann und das die Suche nach geeigneten Komponenten unter-
stützt. Ein Repository muß hierzu Funktionen in folgenden Bereichen
anbieten:

Verwaltung deskriptiver Daten zu den Komponenten: Die de-
skriptiven Daten können vom Typ der Komponenten abhängen.
Bei einem Programm könnten sie beinhalten: die Programmier-
sprache, Compilerversion, importierte Bibliotheken, Autor, Er-
stellungsdatum, Stichworte zum Inhalt, Klassifizierung usw.; bei
einem Datenbankschema: DDL-Version, zug. Datenbank(en),
Autor, Stichworte usw.

2Bei einer Aufwandsschätzung nach der Function-Point-Methode wird dagegen
von einer Erhöhung des Gesamtaufwands eines Projekts von nur ca. 5 % infolge
geplanter Wiederverwendung ausgegangen. Hierbei ist allerdings der spezielle An-
wendungskontext zu berücksichtigen und von der Annahme auszugehen, daß nur
derjenige Teil der entwickelten Software für eine Wiederverwendung präpariert wird,
bei dem dies besonders aussichtsreich erscheint.

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 12

Statt von deskriptiven Daten redet man hier oft von Meta-
daten (“Daten über Daten”). Bei Datenbankschemata stimmt
diese Begriffsbildung sogar mit der üblichen überein3.

Pflege der Klassifikationsschemata: Funktionen für Aufbau und
Weiterentwicklung; zugehörige Statistikfunktionen

Suche nach Komponenten: Basis hierfür sind i.d.R. alleine die de-
skriptiven Daten, nicht die Komponenten selbst. Sinnvoll sind
oft dokumenttypspezifische Vergleichsoperatoren (z.B. “ist zum
Interface XYZ aufwärtskompatibel” für Programmodule).

Es handelt sich hier um eine vage Suche, wie sie für Informa-
tion-Retrieval-Systeme typisch ist, d.h. es wird nicht nach einem
exakt bestimmten, sondern nach einem möglichst brauchbaren
Element gesucht, und die Suchkriterien werden iterativ verfeinert
und modifiziert.

Import von Komponenten aus Dateien in bestimmten Formaten
bzw. Projektdatenbanken: Edierfunktionen zur direkten Eingabe
von Komponenten sind i.a. nicht erforderlich, man kann davon
ausgehen, daß die Komponenten bereits fertig entwickelt vorlie-
gen, die Unterstützung der Entwicklung von Komponenten ist
kein direktes Ziel eines Wiederverwendungsrepositorys.

Export von Komponenten. Manche Repository-Systeme verwalten
die Komponenten nicht selbst, sondern nur Verweise auf Be-
zugsquellen. In diesem Fall entfallen die Import- und Export-
Funktionen.

Nachweis von Wiederverwendungen: Erfassung von erfolglosen
Analysen und erfolgreichen Wiederverwendungen. Für einen
Entwickler, der im Repository gesucht hat, können für jeden
angezeigten Treffer folgende Informationen wertvoll sein:

- Wie oft ist diese Komponente schon bei einer Suche gefunden
worden?

- Wer hat sich diese Komponente schon einmal angesehen und
3Bei Programmen und anderen Arten von Komponenten paßt die Begriffsbil-

dung nicht ganz exakt; hier hilft einem die Vorstellung, daß auch diese Artefakte
irgendwie elektronisch gespeichert und dadurch zu Daten werden.

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 13

analysiert (wovon man profitieren könnte)?
In diesem Zusammenhang sollten Entwickler Komponenten

bewerten können, d.h. jedesmal, wenn eine Komponente ge-
funden und von einem Entwickler analysiert wird, kann (und
sollte) der Entwickler seine Meinung über die Komponente im
System hinterlegen, so daß diese Arbeitsleistung später für an-
dere Interessenten ohne weitere Rückfragen ausgenutzt werden
kann.

- In welchen Systemen ist diese Komponente wiederverwendet
worden? Welche anderen Komponenten wurden dort ebenfalls
wiederverwendet?

Nutzer- und Rechteverwaltung, d.h. Kontrolle, wer das Reposito-
ry wie nutzen darf. Bei offenen, im WWW frei zugänglichen
Repositories fallen hierunter ggf. vorhandene Registrierungspro-
zeduren.

Abrechnungsfunktionen abhängig von den rechtlichen Rahmenbe-
dingungen: hierunter fallen die Erfassung von kostenpflichtigen
Nutzungen und ggf. zusätzlichen abrechnungsrelevanten Daten
sowie ggf. Funktionen zur rechtsverbindlichen Bestellung und
Zahlungsabwicklung.

Einige dieser Funktionen (z.B. Import, Wartung der Klassifikati-
onsschemata, Rechteverwaltung) kann man einem Administrator vor-
behalten; dies entspricht der Auffassung, daß die Sammlung wiederver-
wendbarer Komponenten ein wertvolles Gut ist, das dem Unternehmen
gehört und dementsprechend betreut werden muß. Eine alternative Auf-
fassung besteht darin, das Wiederverwendungsrepository als eine offene
Austauschplattform anzusehen, in der jeder Entwicklung nach eigenem
Ermessen Komponenten der Allgemeinheit anbieten kann. Wie restrik-
tiv die Verwaltung eines Repositorys gehandhabt wird, muß abhängig
vom konkreten Kontext entschieden werden.

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 14

3.2 Autarke vs. integrierte Repositories

Die im vorigen Abschnitt genannten Funktionsbereiche können recht
verschieden ausgeprägt sein, ferner kommen bei vielen Repository-
Systemen weitere wesentliche Funktionsbereiche hinzu. In diesem Zu-
sammenhang ist es sinnvoll, zwei Arten von Repositories nach ihrem
Verwendungszweck und Anwendungskontext zu unterscheiden:

autarkes Repository: Ein Beispiel hierfür wäre eine Sammlung von
Quellprogrammen in einer bestimmten Sprache zu verschiedenen
Problembereichen, die z.B. über eine WWW-Schnittstelle durchsucht
und abgerufen werden können. Es besteht hier eine klare Trennung
zwischen Anbieter und Käufer / Nutzer von Komponenten, ferner ist
das Repository technisch getrennt von der Entwicklungsumgebung
der Nutzer der Komponenten.

in eine SEU integriertes Repository bei einem Unternehmen mit wie-
derverwendungsorientierten Entwicklungsprozessen: Hier spielt das
Repository eine zentrale Rolle bei der Anwendungsentwicklung und
wird von den Entwicklern intensiv bei täglichen Arbeit genutzt. Ne-
ben der Wiederverwendung sollen hier mit einem Repository weitere
strategische Ziele erreicht werden:

- Anwendungen zu dokumentieren
- Anwendungen inhaltlich zu integrieren
- Doppelentwicklungen zu vermeiden
- Auswirkungen von Änderungen einzuschätzen

3.3 Weitere adressierte Problembereiche

Wir haben Repositories bisher motiviert durch den Problembereich
Wiederverwendung. Dieser Problembereich ist aber je nach Einsatz-
bedingungen nicht zu trennen von anderen Problembereichen; daher
bieten manche Repository-Systeme, speziell bei in eine SEU integrierten
Repositories, auch Funktionen für andere Bereiche an.

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 15

3.3.1 Versions- und Konfigurationsmanagement

Von wiederverwendbaren Komponenten können genau wie von beliebi-
gen anderen Komponenten Versionen (im Sinne von Revisionen) existie-
ren, ferner können wiederverwendbare Komponenten Konfigurationen
bilden. Derartige Versions- und Konfigurationsbeziehungen zwischen
Komponenten sollten durchaus im Repository repräsentiert werden.
Selbst dann stellen Repositories keinen Ersatz für die Versionsarchive
von VM/KM-Systemen dar:

er

- Versionsarchive enthalten i.d.R. sehr viele vorläufige, ggf. sogar
inkonsistente Zwischenversionen. Diese Versionen sind nicht zur
Wiederverwendung gedacht und geeignet. Der für die Eintragung
in das Repository erforderliche zusätzliche Dokumentationsaufwand
ist hier nicht gerechtfertigt. Schließlich würde die Vielzahl ähnlicher
Treffer in den Suchergebnissen eher stören.

- Wiederverwendungsrepositories sind ihrer Natur nach eher eine zen-
trale Ressource für eine größere Entwicklergruppe. Versionsarchive
können dagegen für jeden Entwickler oder einzelne Entwicklergrup-
pen dezentral eingerichtet werden und bieten daher eine bessere
Ausfallsicherheit und ggf. Performance.

3.3.2 Reverse Engineering

Unter Reverse Engineering versteht man die Gewinnung von Mo-
dellen bzw. Abstraktionen der frühen Entwicklungsphasen und ggf.
technischer Dokumentation für ein Programm, für das diese Dokumente
nicht vorhanden sind. Insb. soll also die architektonische Struktur und
ggf. das vom Programm gelöste Problem erkannt werden. Es gibt eine
Vielzahl von Reverse-Engineering-Werkzeugen, die automatisch oder
teilweise interaktiv entsprechende Modelle bzw. Strukturdarstellungen
erzeugen können. Manche Reverse-Engineering-Werkzeuge können aus-
gehend von Datenbank-Schemata oder Typdeklarationen in Program-
men Datenmodelle rekonstruieren und Nachweise ertellen, in welchen
Applikationen ein bestimmtes Datenfeld benutzt wird.

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 16

Im Vergleich zum lehrbuchmäßigen Vorgehen, das hier auch als For-
ward Engineering bezeichnet wird, wird beim Reverse Engineering die
Entwicklungsrichtung umgekehrt. Typische Ursachen für das Fehlen
der Dokumente aus den frühen Phasen sind: Sie wurden nie erstellt
oder gingen verloren; sie wurden erstellt, sind aber nicht mehr gültig,
weil die Programme später ohne korrespondierende Korrekturen in den
Modellen abgeändert wurden.

Unter Reengineering versteht man die Renovierung bzw. Struk-
turverbesserung von Programmen, ggf. auf Basis eines vorhergehenden
Reverse Engineering.

Anlaß für das Reverse Engineering eines Programms ist meist, daß
es geändert werden muß oder ein Reengineering erfolgen soll und daß
man hierzu seine Struktur, Funktionen und Zwecke verstehen muß. Das
Verstehen und Beurteilen von Programmen ist aber, wie wir oben gese-
hen habe, ein ganz entscheidendes Problem bei der Wiederverwendung.
Insofern sind die Leistungen von Reverse-Engineering-Werkzeugen auch
für die Wiederverwendung nützlich. Unterschiede bestehen, wenn über-
haupt, darin, daß im Kontext der Wiederverwendung vor allem solche
Daten gesucht sind, die bei der Suche als Selektionskriterien verwendbar
sind.

Durch Reverse-Engineering-Werkzeuge kann u.U. ein erheblicher
Teil der zusätzlichen Dokumentation wiederverwendbarer Komponen-
ten, die sonst manuell zu erstellen wäre, automatisch gewonnen werden.
Auf diese Weise kann die globale Kosten-Nutzen-Relation deutlich ver-
bessert werden.

3.3.3 Datenaustausch zwischen Werkzeugen

Sofern bei einem größeren Anwender mehrere Werkzeuge unterschiedli-
cher Herkunft eingesetzt werden, entsteht das Problem der Datenin-
tegration dieser Werkzeuge bzw. des Dokumentaustauschs zwischen
ihnen. Lösungsansätze sind u.a. Transportdateien und zug. Formate
(vgl. [SEU, IRA], ferner [XML]).

Sofern weiter das Repository die Komponenten direkt verwaltet
und über Import- und Export-Funktionen von und zu den jeweiligen

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 17

Werkzeugen verfügt, kann es für die Datenintegration der Werkzeuge
eingesetzt werden. Das Repository spielt hier eine ähnliche Rolle wie
Transportdateien (z.B. im CDIF-Format).

3.4 Abgrenzung zu anderen Systemen

Mit “Repository” (auf Deutsch: “Speicher”) werden vielfach auch signifi-
kant andere Systeme bezeichnet, die nur lose mit dem hier adressierten
Problemkomplex zu tun haben:

Versionsarchive von VM/KM-Systemen: In VM/KM-Systemen
(z.B. CVS) versteht man unter einem Repository bestimmte Da-
teien und Verzeichnisse, die i.w. Versionen von Quellprogrammen
und anderen (primär textuellen) Dokumenten, die im Verlauf
eines Projekts entstanden sind, sowie in geringem Umfang beglei-
tende Dokumentation enthalten. Ein Repository ist hier insofern
eine Projektdatenbank, als es die Komponenten enthält, die für
ein bestimmtes Projekt benötigt werden bzw. darin entwickelt
wurden; diese Komponenten sind normalerweise nicht wiederver-
wendbar (vgl. Abschnitt 3.3.1). Die Suche nach Komponenten
und die dazugehörige Dokumentation werden nicht unterstützt.

dedizierte DBMS: Mit Repository werden diverse dedizierte DBMS
(Beispiele: IRDS, PCTE, MS-Repository) bezeichnet, die aber
analog zu den Repositories von VM/KM-Systemen eher als Pro-
jektdatenbanken bzw. deren Managementsysteme anzusehen sind.
Sofern sie geeignete Suchfunktionen anbieten, eignen sie sich als
reine Datenverwaltungskomponente innerhalb eines Wiederver-
wendungsrepositorys.

Data-Dictionary-Systeme: Diese dokumentieren primär Datenele-
menttypen in Datenbanken. Ein Schwerpunkt ist hier die Bereit-
stellung dieser Metadaten zur Laufzeit der Programme auf dem
Produktionsrechner. Komponenten-Repositories stellen derartige
Daten hingegen während der Entwicklung in einer Entwicklungs-
umgebung zur Verfügung. Fallweise kann es sinnvoll sein, beide
Funktionsbereiche gemeinsam zu behandeln.

c©2001 Udo Kelter Stand: 01.07.2001

Repositories und Software-Wiederverwendung 18

Literatur

[IRA] Kelter, U.: Lehrmodul “Integrationsrahmen für Software-Ent-
wicklungsumgebungen”; 1999/11

[SEU] Kelter, U.: Lehrmodul “Software-Entwicklungsumgebungen”;
2001/02

[XML] Kelter, U.: Lehrmodul “Transportdateien und die SGML”; 2001

c©2001 Udo Kelter Stand: 01.07.2001

Index
Arbeitsteilung, 3
Architektur, 6, 7
Archiv, 14
Aufwandsschätzung, 11

black-box-Wiederverwendung, 8

CDIF, 16

Data-Dictionary-System, 17
Datenaustausch, 16
Dokument, 6
Dokumentation, siehe Komponente

Entwicklungsprozeß, 7
wiederverwendungsorientierter, 14

Export, 12, 16

Forward Engineering, 15

Import, 12, 16

Komponente, 3, 4, 5
Dokumentation, 10, 11, 16
Größe, 9
GUI-∼, 6
Klassifikation, 10, 12
Suche nach ∼n, 7, 8, 17
Test, 9, 11
Version, 14
wiederverwendbare, 7

Konfigurationsmanagement, 14, 16

Metadaten, 11
Muster, 6

Programmverstehen, 15

Qualität, 3

Reengineering, 15
Repository, 10, 11, 16

autarkes, 14
integriertes, 14

Reverse Engineering, 15
Revision, 6

Systemfamilie, 6

Transportdatei, 16

Version, 14

white-box-Wiederverwendung, 8, 9
Wiederverwendung, 3, 4

geplante, 10
Kosten, 8, 9, 11
Kostenabrechnung, 13
Nachweis, 12
Rechte, 13

Wirtschaftlichkeit, 4

19

	Wiederverwendung
	Motivation
	Wiederverwendung vs. technologische Arbeitsteilung
	Typen wiederverwendbarer Dokumente

	An Wiederverwendung orientierte Entwicklungsprozesse
	Grundform
	Kostenanalyse
	Geplante Wiederverwendung

	Repositories
	Funktionsbereiche von Repositories
	Autarke vs. integrierte Repositories
	Weitere adressierte Problembereiche
	Versions- und Konfigurationsmanagement
	Reverse Engineering
	Datenaustausch zwischen Werkzeugen

	Abgrenzung zu anderen Systemen
	Literatur
	Index

