
Semantikgestützte
Concurrency-Control-Verfahren

Udo Kelter

01.12.2001

Zusammenfassung dieses Lehrmoduls

Die gängigen Concurrency-Control-Verfahren basieren auf einem “syn-
taktischen” Konfliktbegriff: Es werden nur lesende und schreibende Ope-
rationen unterschieden. In manchen Fällen liegt es nahe, semantische
Eigenschaften, insb. Kommutativitätseigenschaften der Operationen
auszunutzen und zu einem semantischen Konfliktbegriff überzugehen.
Typischerweise handelt es sich um numerische Datenfelder, auf denen
Beträge addiert und subtrahiert werden. Es zeigt sich allerdings, daß
eine Reihe nicht offensichtlicher Probleme gelöst werden müssen, die
durch Rollback, Bereichsgrenzen und “Ausnahmen” von der Kommuta-
tivität entstehen und die teilweise sehr aufwendige Gegenmaßnahmen
erforderlich machen.

Vorausgesetzte Lehrmodule:
obligatorisch: - Transaktionen und die Integrität von Datenbanken

- Sperrverfahren
empfohlen: - Recovery

- Concurrency-Control-Theorie

Stoffumfang in Vorlesungsdoppelstunden: 1.2

1

Semantikgestützte Concurrency-Control-Verfahren 2

Inhaltsverzeichnis
1 Einführung 3

2 Modifikationen 4
2.1 Definition . 4
2.2 Semantische Konfliktfreiheit von Modifikationen 5
2.3 Sperrmodi für Modifikationen 6
2.4 Undo von Modifikationen . 7
2.5 Atomarität von Modifikationen 9

3 Parametrisierte Modifikationen 10
3.1 Definition . 10
3.2 Vollständige Konfliktfreiheit 10

4 Bereichsgrenzen 12
4.1 Inkonsistente Zwischenzustände 12
4.2 Unsichere Zwischenzustände und inverse Modifikationen . . . 14
4.3 Überwachung von Unsicherheitsbereichen 15

5 Konfliktfreiheit mit Parametereinschränkungen 16

6 Konfliktfreiheit mit Objektzustandseinschränkungen 19

Literatur . 21
Index . 21

c©2001 Udo Kelter Stand: 01.12.2001
Dieser Text darf für nichtkommerzielle Nutzungen als Ganzes und unverändert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Veränderung und Überführung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist über http://kltr.de erreichbar.

Semantikgestützte Concurrency-Control-Verfahren 3

1 Einführung

Die gängigen Concurrency-Control- (CC-) Verfahren basieren auf einem
“syntaktischen” Begriff Konflikt: Es wird nur unterschieden, ob Objek-
te geschrieben oder nur gelesen werden, von weitergehenden Details der
Zugriffsoperationen wird abstrahiert. Bei den Sperrverfahren (s. [SPV])
äußert sich dies darin, daß nur Lese- und Schreibsperren unterschieden
werden. Auch theoretische Analysen des Serialisierbarkeitsproblems
führen zu der Erkenntnis, daß man i.a. Korrektheitsbegriffe auf Basis des
syntaktischen Konfliktbegriffs verwenden muß (s. [CCT]), konkret muß
ein CC-Verfahren wenigstens die cp-Serialisierbarkeit realisieren. Ein
Ablauf ist cp-serialisierbar, wenn beim Serialisieren keine in Konflikt ste-
henden Ereignisse vertauscht werden. Würde man in Konflikt stehende
Ereignisse vertauschen, würde die Sicht der betroffenen Transaktionen
oder der Endzustand der betroffenen Objekte verändert werden.

Manchmal kennt man die Semantik von Aktionen recht genau und
möchte diese Kenntnisse dahingehend ausnutzen, die Parallelität der
Transaktionsausführungen zu erhöhen. Die Anwendungsbeispiele kom-
men nicht nur aus klassischen Datenbankanwendungen, sondern auch
aus verteilten Betriebssystemen bzw. allgemeiner verteilten, parallel be-
nutzbaren Objektsystemen, wo z.B. Datentypen wie Listen oder Mengen
auftreten.

In vielen Fällen scheint die Ausnutzung semantischer Eigenschaf-
ten (zumindest auf den ersten Blick) relativ einfach möglich zu sein.
Ein Beispiel: Wir nehmen an, zwei Umbuchungen seien wie in Bild
1 angegeben verzahnt. Wir benutzen eine tabellenförmige Notation
für Abläufe; X und Y seien lokalisierte Objekte, “X:=X+a” steht als
Abkürzung für “u:=X; u:=u+a; X:=u”, worin u eine lokale Variable sei.

Bei diesem Ablauf liest T2 einen ungesicherten Wert von T1, bei-
de Transaktionen erhalten eine inkonsistente Sicht der Datenbank, und
dennoch wird man ihn als “korrekt” empfinden, denn die Umbuchun-
gen werden korrekt durchgeführt. Im nächsten Abschnitt wollen wir
zunächst klären, in welchem Sinne dieser Ablauf korrekt ist, um dann
im übernächsten Abschnitt konkrete Sperrverfahren zu entwickeln.

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 4

T1 T2 Werte von
X Y

1000 500
X:=X-500 500

Y:=Y-300 200
Y:=Y+500 700

X:=X+300 800

Abbildung 1: Verzahnte Ausführung zweier Umbuchungen

2 Modifikationen

2.1 Definition

Daß man den oben gezeigten Ablauf als “korrekt” empfindet, liegt u.a.
an der Art, wie die Objekte gelesen und zurückgeschrieben werden.
Wesentlich sind folgende Merkmale:

1. Die Veränderungen an den Datenbank-Objekten, also das Lesen
des alten Inhalts, Berechnen und zurückschreiben des neuen Inhalts
(“X:=X+a”) sind atomar, d.h. das veränderte Datenbank-Objekt
wird zwischenzeitlich nicht von anderen Transaktionen gelesen oder
verändert. Wir nennen eine solche Veränderung eine Modifikation.

Wir fassen Modifikationen als eine dritte Art von Aktionen auf
(neben Lese- und Schreibaktionen).

Im Gegensatz zu konventionellen Aktionen sind Modifikationen
ggf. keine Elementaroperation des jeweiligen Datenbankmodells, d.h.
sie sind applikationsspezifisch und oberhalb des APIs der Datenbank
individuell zu programmieren, genauso wie Transaktionen. Man
kann sie daher auch “Subtransaktionen” nennen.

2. Gewisse Integritätstests müssen innerhalb der Modifikationen durch-
geführt werden. In unserem obigen Beispiel könnte es einen unteren
Grenzwert für den Kontostand geben. Da der Wert des Objekts
bei der Rückkehr zur aufrufenden Transaktion schon verändert ist,
kommt ein anschließender Test innerhalb der Transaktion schon zu

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 5

spät. Das Ergebnis von Integritätstests wird durch einen Fehlercode
an die aufrufende Transaktion mitgeteilt.

3. Die innerhalb einer Modifikation gelesenen Werte zählen nicht zur
Sicht einer Transaktion. Typischerweise, so auch im obigen Beispiel,
werden sie nur innerhalb dieser Modifikation benutzt, also nicht
direkt oder in transformierter Form an den Benutzer weitergege-
ben oder in ein anderes Objekt geschrieben. In vielen Fällen liefern
Modifikationen dennoch einen Wert an die aufrufende Transaktion
ab, z.B. einen Fehlercode. Dieser zählt (neben den Werten, die bei
normalen Lese-Aktionen gelesen werden) zur Sicht der Transaktion.

2.2 Semantische Konfliktfreiheit von Modifikationen

Das Modifikationskonzept allein erklärt noch nicht, warum der obige
Ablauf “korrekt” sein soll. Er ist nicht cp-serialisierbar, sogar nicht
einmal Sicht-serialisierbar (vgl. 5.1). Diese Korrektheitsbegriffe sind
hier unnötig streng1, da sie die vollständigen Sichten berücksichtigen,
während tatsächlich nur die reduzierten Sichten relevant sind.

Sofern man die Semantik der Rechenoperationen außer Betracht
läßt, ist der obige Ablauf auch nicht Endzustands-serialisierbar (s. Ab-
schnitt 3.2). Man findet leicht Interpretationen (also Semantiken der
Datentypen und Operationen), bei denen der Endzustand von X und
Y im obigen Beispiel mit keinem der Endzustände übereinstimmt, die
bei den beiden seriellen Abläufen entstehen. Bei der Endzustands-
Serialisierbarkeit werden beliebig “ungünstige” Interpretationen berück-
sichtigt, während wir oben wissen, daß eine “günstige” Interpretation
vorliegt.

Günstig ist hier, daß die Modifikationen in einem gewissen Sinn
kommutieren. Um diesen Begriff zu präzisieren, fassen wir eine Modifi-
kation, die oben als Algorithmus eingeführt wurde, stattdessen als eine
Funktion auf dem Wertebereich des modifizierten Datenbank-Objektes
auf. Der Hintereinanderausführung von Modifikationen entspricht die
Komposition der Funktionen.

1Wobei wir sie in kanonischer Weise auf das n-Schritt-Modell für Transaktionen
erweitern könnten.

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 6

So wird im obigen Beispiel zunächst die Modifikation “Erniedrige
um 500” auf X ausgeführt, danach “Erhöhe um 300“. Die entsprechen-
den Funktionen sind x 7→ x− 500 und x 7→ x+ 300; ihre Komposition
ist x 7→ x− 200. Diese Funktion läßt sich sogar direkt durch eine Mo-
difikation erzeugen, nämlich “Erniedrige um 200”; notwendig ist dies
aber nicht.

Das entscheidende Merkmal des Konfliktbegriffs ist folgendes: Wenn
zwei Ereignisse nicht in Konflikt stehen, darf ihre Reihenfolge vertauscht
werden, ohne daß die Vertauschung Einfluß hat auf

1. den Endzustand der betroffenen Objekte
2. die Sichten der beiden beteiligten Transaktionen.

Zwei derartige Ereignisse nennen wir semantisch konfliktfrei.

Die bisherige Definition des Konfliktbegriffs war insofern syntaktisch,
als sie sich nur auf die Identität von Objekten und die Unterscheidung in
verändernde und nicht verändernde Zugriffe bezog, also Merkmale, die
auf dem syntaktischen Niveau angesiedelt sind. Die syntaktische Kon-
fliktfreiheit ist hinreichend, aber nicht notwendig für die semantische
Konfliktfreiheit.

Offensichtlich stehen Modifikationen i.d.R. in Konflikt mit Lese-
und Schreibereignissen.

2.3 Sperrmodi für Modifikationen

Wir können semantisch konfliktfreie Aktionen genauso behandeln wie
herkömmlich konfliktfreie Aktionen, sowohl bei den Korrektheitsbegrif-
fen für Logs wie auch bei Sperrverfahren.

Wenn eine Transaktion eine Sperre für ein Objekt hält und so-
mit das Recht hat, gewisse Aktionen auszuführen, können wir dies so
interpretieren, daß während der Sperrzeiten nur konfliktfreie Aktio-
nen anderer Transaktionen auf diesem Objekt eintreten dürfen. Für
Modifikationen gilt dies analog. Im einfachsten Fall gehört zu einer
Modifikation M ein eigener Sperrmodus. Dieser ist kompatibel mit sol-
chen Sperrmodi, die nur das Recht zu Ausführung solcher Aktionen
implizieren, die mit M nicht in Konflikt stehen.

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 7

Kompatibilität|seeVerträglichkeit

Allgemeiner definieren wir zwei Sperrmodi als kompatibel, wenn
jede der beim ersten Sperrmodus zulässigen Aktionen mit jeder beim
zweiten Sperrmodus zulässigen Aktionen (auf dem gleichen Objekt) se-
mantisch konfliktfrei ist. Die bisherige Definition der Verträglichkeit
von Lese- und Schreibsperren ist ein Sonderfall dieser allgemeineren
Definition2.

Im obigen Beispiel ergeben sich folgende Verträglichkeiten, wobei
die üblichen Modi S und X hinzugenommen wurden:

vorhandene beantragte Sperre:
Sperre: S X “+300” “-300” “+500” “-500”
S + - - - - -
X - - - - - -
“+300” - - + + + +
“-300” - - + + + +
“+500” - - + + + +
“-500” - - + + + +

2.4 Undo von Modifikationen

Das Undo einer Aktion wird üblicherweise durch Rückschreiben des
vorher vorhandenen Werts realisiert. Da ein Objekt von mehreren
gleichzeitig aktiven Transaktionen verändert werden kann, würden beim
Rückschreiben des alten Werts anläßlich des Rollbacks einer Trans-
aktion auch zwischenzeitliche Änderungen anderer, eventuell bereits
abgeschlossener Transaktionen verloren gehen.

Konventionelle Sperrprotokolle halten die Isolation ein: es werden
keine ungesicherten Werte gelesen. Die Isolation muß bei Modifikationen
aufgegeben werden, wenn man mit ihnen überhaupt einen Paralleli-
tätsgewinn erzielen will. Hierdurch entsteht wieder das Problem der
Rollbackfortpflanzung.

2Die Konstruktion von Update- und Warnsperrmodi kann ebenfalls auf beliebige
Basis-Sperrmodi verallgemeinert werden, s. [Ko83]).

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 8

Zur Lösung dieses Problems benutzt man ein anderes (Rückwärts-)
Recovery-Prinzip, nämlich Kompensation. Zu jeder Modifikation wird
eine inverse Modifikation (kurz: Invertierung) vorgesehen, welche
vom Programmierer der Modifikation zu liefern ist. Hieraus resultiert,
daß für Modifikationen spezielle Einträge im Log vorgesehen werden
müssen und daß die inversen Modifikationen jederzeit dem Recovery-
Manager in einer Bibliothek zur Verfügung stehen müssen.

Sofern ein Objekt innerhalb einer Transaktion mehrfach modifiziert
wurde, müssen die Invertierungen in umgekehrter Reihenfolge durch-
geführt werden, sofern sie nicht semantisch konfliktfrei miteinander
sind.

Eine zurückgesetzte Transaktion wird durch die Invertierungen ge-
danklich fortgesetzt, bis sie am Ende den Effekt Null hat. Hieraus
folgt:

- Sperren für Modifikationen dürfen nicht vor Commit freigegeben
werden3. Damit die entstehenden Logs korrekt sind, müssen die
Invertierungen nämlich konfliktfrei in die Verarbeitungsphase der
Transaktion verschoben werden können.

- Die Invertierung zu einer Modifikation M muß mit allen Modifika-
tionen konfliktfrei sein, mit denen M konfliktfrei ist bzw. die beim
zu M gehörigen Sperrmodus für andere Transaktionen aufgerufen
werden dürfen.

Wir nennen daher zwei Modifikationen nur dann konfliktfrei, wenn
zusätzlich jede Modifikation mit der Invertierung der anderen und die
beiden Invertierungen zueinander konfliktfrei sind.

Die Verwendung des Kompensationsprinzips führt zu weiteren Pro-
blemen beim Neustart nach Systemfehlern, die wir hier nicht näher
diskutieren.

3Bei Sperren für konventionelle Aktionen ist dies im Rahmen des 2-Phasen-
Protokolls im Prinzip erlaubt, wegen der Fortpflanzung von Rollback ist jedoch
generell davon abzuraten.

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 9

2.5 Atomarität von Modifikationen

Wir hatten oben vereinbart, Modifikationen als eine dritte Art von
Aktionen aufzufassen. Aktionen müssen die gleichen Atomaritätseigen-
schaften erfüllen wie Transaktionen, nämlich Fehler-Atomarität und
Serialisierbarkeit (bzw. funktionale Atomarität).

Ein Unterschied von Modifikationen zu Lese- oder Schreibaktio-
nen ist, daß letztere durch das DBMS implementiert sind, während
Modifikationen ggf. vom Anwender zu implementieren sind.

Bei der Realisierung der funktionalen Atomarität ist zu bedenken,
daß Modifikationen typischerweise kurz sind und nur ein einziges Objekt
betreffen. Durch komplizierte Protokolle ist daher nur wenig zu gewin-
nen; wir gehen davon aus, daß das modifizierte Objekt wechselseitig
ausgeschlossen benutzt wird.

Bezüglich der Fehler-Atomarität gelten im Prinzip die gleichen
Überlegungen wie für Transaktionen. Ursachen für den Abbruch einer
Modifikation können sein:

- unbeabsichtigte Laufzeitfehler

- programmiertes Rollback nach einem Integritätstest mit negativem
Ausgang. Dies kann, muß aber nicht bedeuten, daß auch die zuge-
hörige Transaktion abbricht. Dies wird innerhalb der Transaktion
anhand des von der Modifikation zurückgegebenen Fehlercodes ent-
schieden.

- die zugehörige Transaktion wird aus äußeren Gründen zurückgesetzt.

Diese Fehler treten innerhalb der Modifikation auf, d.h. zwischen
dem Lesen des Objekts und dem Zurückschreiben des neuen Inhalts.
Für das Rollback einer Modifikation können im Prinzip die gleichen
Techniken angewandt werden wie für Transaktionen4.

4Für die Invertierung von Modifikationen müssen hingegen spezielle Recovery-
Mechanismen vorgesehen werden.

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 10

3 Parametrisierte Modifikationen

3.1 Definition

Bei den Modifikationen in den obigen Beispielen wurde stets um einen
festen Wert erhöht oder erniedrigt. Programmtechnisch wird man die-
sen Wert natürlich als Parameter übergeben, d.h. es handelt sich um
parametrisierte Modifikationen. Diese entsprechen Funktionalen,
durch Einsetzen eines zulässigen Parameters ergibt sich eine Modifikati-
on bzw. eine Funktion. Es können auch mehrere Parameter vorhanden
sein, so daß man ein zulässiges Tupel von Parametern einsetzen müß-
te. Die Menge aller zulässigen Parameterbelegungen definiert die zu
einer parametrisierten Modifikation gehörige Menge von Mo-
difikationen.

Beispiele von parametrisierten Modifikationen, die oben auftraten,
sind “Erhöhe um ...” und “Erniedrige um ...”, kurz incr() und decr().

Diesen Funktionalen entsprechen numerische Operatoren. Deren
Kommutativität impliziert sofort, daß Modifikationen bei beliebigen
Parameterwerten semantisch konfliktfrei sind (Probleme, die bzgl. Kom-
mutativität durch Bereichsüberlauf verursacht werden, behandeln wir
später), denn für alle Parameterwerte a, b gilt (* steht für Komposition):

incr(a) * incr(b) = x 7→ (x + a) + b
= x 7→ (x + b) + a = incr(b) * incr(a)

“Einfache” Modifikationen fassen wir i.f. als Sonderfall von parame-
trisierten auf. Die “Menge von zugehörigen Modifikationen” besteht nur
aus ihr selbst.

3.2 Vollständige Konfliktfreiheit

Durch eine parametrisierte Modifikation wird i.a. eine so große Menge
von zugehörigen Modifikationen definiert, man man nicht mehr sinnvoll
nach der oben vorgestellten Methode verfahren kann, jeder Modifikation
einen eigenen Sperrmodus zuzuordnen. Wie eben am Beispiel “incr()”

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 11

gezeigt wurde, sind sowieso alle zugehörigen Modifikationen paarweise
semantisch konfliktfrei, so daß man offensichtlich mit einem einzigen
Sperrmodus auskäme. Dies gilt sogar dann noch, wenn man zusätz-
lich alle Modifikationen hinzunimmt, die zu “decr()” gehören. Diese
Gegebenheit läßt sich wie folgt formaler beschreiben:

Sei PM eine Menge von parametrisierten (und “einfachen”) Modi-
fikationen. Wir bilden die Gesamtmenge aller zugehörigen Modifika-
tionen. Wenn in dieser Gesamtmenge alle Modifikationen paarweise
konfliktfrei sind, dann heißt PM vollständig (semantisch) konflikt-
frei.

Offensichtlich reicht für eine Menge vollständig konfliktfreier para-
metrisierter Modifikationen ein einziger Sperrmodus aus. Eine Sperre
in diesem Modus berechtigt dazu, auf dem jeweiligen Objekt beliebige
Modifikationen aus dieser Menge auszuführen. Der Modus ist mit sich
selbst verträglich.

Im obigen Beispiel können wir also für “incr()” und “decr()” einen
einzigen Sperrmodus “incr” vergeben. Wir fügen noch einen weiteren
Sperrmodus “mult” hinzu, der für Multiplikationen oder Divisionen
steht. Die Verträglichkeitsmatrix ist:

vorhandene beantragte Sperre:
Sperre: S X incr mult
S + - - -
X - - - -
incr - - + -
mult - - - +

Eine Sperre im Modus “incr” berechtigt nun dazu, beliebig viele
Beträge zu einem Objekt hinzuzuaddieren.

In dem Fall, daß man innerhalb der gleichen Transaktion dieses Ob-
jekt außerdem mit einem Faktor multiplizieren will, benötigt man einen
Sperrmodus, der die Zugriffsrechte von “incr” und “mult” vereinigt. Ein
Verfahren zur Konstruktion derartiger Kombinations-Sperrmodi ist in

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 12

[Ko83] für die normalen Sperrmodi vorgestellt worden; es kann im Prin-
zip auf beliebige Arten von Sperrmodi verallgemeinert werden. Es stellt
sich allerdings die Frage, unter welchen Randbedingungen so komple-
xe Mengen von Sperrmodi und zugehörigen Kompatibilitätstest sowie
Höherstufungsregeln noch sinnvoll sind.

4 Bereichsgrenzen

Bei der Feststellung, daß die beiden Modifikationen im obigen Beispiel
semantisch konfliktfrei sind, haben wir ein Problem ausgeklammert:
nach der ersten Modifikation könnte ein Bereichsüberlauf eintreten.

Hierzu ein Beispiel: das veränderte Objekt stellt ein Konto, einem
Lagerbestand o.ä. dar, der Stand darf nicht unter 0 fallen, anfangs sei
der Stand 300. Nun wollen zwei Transaktionen jeweils 200 Einheiten
abbuchen. Bei der zweiten Abbuchung wird die Bereichsgrenze unter-
schritten, was durch einen Integritätstest innerhalb der Modifikation
festgestellt wird. Die Modifikation wird abgebrochen und zurückgesetzt.
Die aufrufende Transaktion erhält einen entsprechenden Fehlercode als
Ergebnis. Dieser Fehlercode zählt zur Sicht der Transaktionen; er wird
benutzt, um über das weitere Vorgehen in der Transaktion zu entschei-
den, z.B., ob die Transaktion ebenfalls abgebrochen werden soll. Die
Sicht der Transaktion und der Endzustand des modifizierten Objekts
sind also durch die Reihenfolgevertauschung verändert worden!

In vielen Fällen wird nach einer Bereichsüberschreitung die Trans-
aktion ebenfalls abgebrochen werden; man kann sich dann auf den
Standpunkt stellen, daß die Sicht der Transaktion dann ohnehin eine
Rolle gespielt hat, das Risiko des Abbruchs der Transaktion bestand
auf jeden Fall und der Abbruch war somit ein “korrekter” Ausgang der
Transaktion.

4.1 Inkonsistente Zwischenzustände

Das folgende Beispiel zeigt allerdings, daß die logische Atomarität
dennoch verloren gehen kann: zwei Transaktionen soll zwei Teilbeträ-
ge von zwei Konten abbuchen und die Summe einem dritten Konto

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 13

gutschreiben. Transaktion T1 würde die Sequenz X:=X-200; Y:=Y-
200; Z:=Z+400 ausführen, T2 die Sequenz Y:=Y-200; X:=X-200;
U:=U+400. Innerhalb jeder Modifikation “-200” wird getestet, ob der
Wert negativ werden würde; falls ja, wird die Modifikation abgebrochen.
Die Transaktion löst daraufhin ein Rollback aus.

Nehmen wir an, die Konten X und Y enthalten beide anfangs 300.
Dann würde bei serieller Ausführung genau eine der beiden Transaktio-
nen erfolgreich ausgeführt werden, die andere nicht mehr. Im folgenden
Ablauf wird aber keine Transaktion erfolgreich ausgeführt:

T1 T2 Werte von Fehler
X Y
300 300

X:=X-200 100
Y:=Y-200 100

Y:=Y-200 (-100??) Y < 0
100

X:=X-200 (-100??) X < 0
100

Rollback
(X:=X+200) 300

Rollback
(Y:=Y+200) 300

Die Ursache des Problems im vorigen Beispiel liegt in folgendem:
nach den beiden ersten Rechenschritten haben die Daten einen tem-
porären Zustand erreicht, den man als inkonsistent bezeichnen kann.
Er würde bei einer seriellen Ausführung nicht erreicht und liegt sozu-
sagen “zu nahe” an den Bereichsgrenzen, er manifestiert sich in Form
von überflüssigen Fehlermeldungen bzw. Rollbacks. Man kann auf das
Problem unterschiedlich reagieren:

1. Man kann solche Abläufe verhindern: Dann sind allerdings kompli-
zierte Algorithmen zu deren Erkennung erforderlich (s.u.), die u.U.

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 14

die Absicht, durch Modifikationen die Performance des DBMS zu
verbessern, durchkreuzen.

2. Man kann solche Abläufe dulden: Dann verzichtet man auf die
vollständige Atomarität, man toleriert die (seltenen) Abweichun-
gen, sofern nur geringe Folgeschäden auftreten. Die Vorstellung ist
typischerweise, daß aus Sicht jeder einzelnen Transaktion der erfolg-
lose Ausgang ein im Prinzip denkbares, also korrektes Ergebnis war
und daß der Benutzer eine erfolglose Transaktion später und einmal
wiederholen kann.

4.2 Unsichere Zwischenzustände und inverse Modifika-
tionen

Bereichsgrenzen werfen zusätzliche Probleme bei den inversen Modifi-
kationen auf, die im Rahmen eines Rollbacks fällig werden. Betrachten
wir hierzu folgendes Beispiel: Ein Konto X hat einen Stand von 200
und darf nicht negativ werden; Transaktion T1 erhöht das Konto um
500 Einheiten und führt danach weitere Aktionen auf anderen Objek-
ten aus, die zu einem Rollback führen; Transaktion T2 vermindert das
Konto um 400 Einheiten. Unterstellt sei folgender Ablauf:

T1 T2 Werte von X Fehler
200

X:=X+500 700
X:=X-400 300

Rollback
(X:=X-500) -200?? X<0 !!

Die im Rahmen des Rollbacks von T1 erforderliche inverse Modi-
fikation X:=X-500 würde zu einer Überschreitung der Bereichsgrenze
führen! Verursacht wird das Problem dadurch, daß T2 auf einem
unsicheren Wert gearbeitet hat. T2 hätte an dieser Stelle gar nicht
ausgeführt werden dürfen, denn T2 ist im gegebenen Zustand nicht
semantisch konfliktfrei mit der inversen Modifikation zu X:=X+500.

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 15

Anders gesehen hatte bei der Ausführung von T2 X zwar den Wert 700,
und bei diesem Wert war die Bereichsgrenzen noch weit genug entfernt,
aber es war ein Rollback von T1 möglich, wonach X=200 gewesen wäre,
und in diesem Zustand war T2 nicht mehr erfolgreich ausführbar.

Allgemeiner gesehen stellt sich das Problem folgendermaßen dar: Ein
Wert kann unsicher sein, weil mehrere nicht abgeschlossene Transaktio-
nen Modifikationen auf ihm ausgeführt haben. Jede der Transaktionen
kann unabhängig von den anderen zurückgesetzt werden; bei n Trans-
aktionen bestehen somit 2n Möglichkeiten, daß eine Teilmenge der
Transaktionen zurückgesetzt wird. Jede Teilmenge entspricht einem
bestimmten Wert des Objekts, der bei Rücksetzung dieser Transaktio-
nen entstehen würde. Eine Transaktion darf nur dann ausgeführt (bzw.
die entsprechende beantragte Sperre zugeteilt) werden, wenn sie bei
allen Werten erfolgreich ausgeführt werden kann5.

Wegen der kombinatorischen Explosion der Zahl der Teilmengen ist
es praktisch nahezu ausgeschlossen, ab einem Parallelitätsgrad von ca. 5
alle Werte tatsächlich einzeln zu berechnen. Ein noch halbwegs effizient
realisierbares Verfahren ist die nachfolgend beschriebene Überwachung
von Unsicherheitsbereichen.

4.3 Überwachung von Unsicherheitsbereichen

Das folgende Verfahren ist nur bei linear geordneten Wertebereichen
anwendbar, bei denen sich die Bereichsgrenzen einfach als Intervall (mi-
nimaler und maximaler Wert des Objekts) ausdrücken lassen. In der
Praxis kommen wohl nur numerische Wertebereiche und Modifikationen
wie incr() und decr() infrage, von denen wir i.f. auch ausgehen.

Die Idee des Verfahrens besteht darin, daß man gar nicht alle Teil-
mengen von Rücksetzungen zu berechnen braucht, sondern sich wegen
der linearen Ordnung auf den ungünstigsten Fall beschränken kann.
Dieser ungünstigste Fall sieht wie folgt aus:

- bei einer Inkrementierung:
5Analog kann man dies auch für nicht erfolgreiche Ausführungen definieren,

an diesen ist man i.a. aber nicht interessiert, so daß wir diesen Fall nicht weiter
betrachten.

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 16

für die obere Grenze: kein Rollback
für die untere Grenze: Rollback

- bei einer Dekrementierung:
für die obere Grenze: Rollback
für die untere Grenze: kein Rollback

Zu einem numerischen Objekt X seien deltaMin und deltaMax
die Differenzen zu den Werten von X, die infolge von Rücksetzungen
im ungünstigsten Fall eintreten können. Die beiden Werte stellen den
Unsicherheitsbereichen nach oben bzw. unten dar und werden wie folgt
berechnet:

- bei einer Inkrementierung incr(a) (a≥0):
deltaMax bleibt unverändert
deltaMin := deltaMin + a

- bei einer Dekrementierung decr(a) (a≥0)::
deltaMax := deltaMax + a
deltaMin bleibt unverändert

Sobald eine Transaktion endet (Commit oder Rollback), werden für
alle von dieser Transaktion durchgeführten Modifizierungen die vorste-
henden Änderungen von deltaMax bzw. deltaMin wieder rückgängig
gemacht.

Seien XMin und XMax die minimal bzw. maximal für X zulässigen
Werte. Zugelassen wird incr(a) nur noch dann, wenn

X + deltaMax + a ≤ XMax

ist. Analog dazu wird decr(a) nur noch dann, wenn

X - deltaMin - a ≥ XMin

ist.

5 Konfliktfreiheit mit Parametereinschränkun-
gen

Das folgende Beispiel zeigt zwei parametrisierte Modifikationen, die
nicht für alle Parameterwerte semantisch konfliktfreie Modifikationen

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 17

ergeben: Wertebereich seien Mengen über einer Basismenge (z.B. set
of char), Funktionale sind das Hinzufügen eines Elements (oder einer
Menge) zu einer Menge und das Wegnehmen im Sinne der unsymmetri-
schen Differenz. Unter der Bedingung, daß als Parameter verschiedene
Elemente (bzw. disjunkte Mengen) verwendet werden, sind die beiden
entstehenden Modifikationen semantisch konfliktfrei, sonst nicht.

Für eine genauere Definition dieses Sachverhalts bilden wir wieder
zu einer gegebenen Menge PM von (parametrisierten) Modifikationen
die Gesamtmenge der zugehörigen Modifikationen. Wenn sich eine
Menge von Paaren von konfliktfreier Modifikationen aus dieser Gesamt-
menge durch eine Bedingung an die Parameter, die in den beteiligten
Modifikationen gelten, angeben läßt, dann heißt PM (semantisch)
konfliktfrei mit Parametereinschränkungen.

Im obigen Beispiel bestand PM aus “einfügen(x)” und “ausfügen(y)”,
die Parametereinschränkung war x 6= y.

Die Menge der Paare in der obigen Definition sollte eine sinnvolle
Größe haben, also in der gleichen Größenordnung wie das Quadrat der
Größe der Gesamtmenge der Modifikationen liegen; letztlich ist diese
Bewertung etwas subjektiv und auch von der Häufigkeit des Auftre-
tens einzelner Parameter abhängig. Als Negativbeispiel sei genannt:
incr(x) und mult(y) sind mit der Parametereinschränkung x=0 oder
y=1 konfliktfrei.

Einheitliche Sperrmodi für die Gesamtmenge von Modifikationen
sind nun leider nicht mehr anwendbar. Wir müssen daher zu modifika-
tionsbezogenen Sperrmodi zurückkehren. (In gewissen Fällen kann die
Zahl der Sperrmodi aber verringert werden, indem man gleichwertige
Modi geschickt zusammenfaßt.) In der Kompatibilitätsmatrix notie-
ren wir anstelle von + oder - die Bedingung, die die Parameter der
Modifikationen erfüllen müssen.

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 18

vorhandene beantragte Sperre:
Sperre: S X insert(a) remove(b)
S + - - -
X - - - -
insert(c) - - + b6=c
remove(d) - - a6=d +

Beispielsweise darf eine Sperre in Modus “remove(x)” nicht zuge-
teilt werden, solange eine Sperre im Modus insert(x) für diese Menge
besteht.

Die Realisierung solcher Sperren erfordert flexiblere Sperroperatio-
nen als bisher; genauer müssen neben den bisherigen Sperrmodi (S,
X, IS, ...) Darstellungen für alle Modifikationen incl. Parameterwer-
te verarbeitet werden können. Hierzu müssen die Datenstrukturen in
einer Sperrtabelle erweitert werden. Die Kompatibilität von Sperren
muß durch spezielle Algorithmen festgestellt werden, die vom Benutzer
(bzw. dem Programmierer der Modifikationen) zu liefern sind. Dieser
Algorithmus benötigt als Eingabedaten die Namen der Modifikationen
und ggf. deren Parameter. Daher bietet es sich an, diese Angaben di-
rekt in der Sperrtabelle zu speichern. Die Sperroperation hätte dann
drei Parameter:

1. Objektidentifikation
2. Identifikation der Modifikation
3. ggf. Parameter der Modifikation

Derartige äußere Eingriffe in die Sperrenverwaltung werden in den
meisten Fällen völlig undenkbar sein; selbst wenn sie in einem speziel-
len Fall zulässig sind, bleibt das Effizienzproblem: Die Sperroperation
darf trotz der deutlich höheren Flexibilität nicht wesentlich ineffizien-
ter werden, sonst wird je nach den Umständen insgesamt kein Gewinn
an Performance durch diese Sperrmodi erzielt.

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 19

6 Konfliktfreiheit mit Objektzustandseinschrän-
kungen

Beim letzten Beispiel hing die semantische Konfliktfreiheit zweier pa-
rametrisierter Modifikationen von den Parametern ab; im nächsten
Beispiel wird sie statt dessen vom Zustand des modifizierten Objekts
abhängen. Der Typ des Objekts sei hier eine (Warte-) Schlange über
irgendeinem Basistyp; wir betrachten nur die Operationen:

append(x)
ein Element mit Inhalt x hinten an die Schlange anhängen

remove():x
eine Element vorne entnehmen; x ist Rückgabewert. Ist die
Schlange leer, wird ein Fehlercode zurückgegeben.

Zwei append-Operationen sind nicht konfliktfrei, da die Reihenfolge
der Anfügungen relevant ist. Zwei remove-Operationen sind ebenfalls
nicht konfliktfrei, da i.a. verschiedene Werte in den Elementen der
Schlange enthalten sind und der gelesene Wert bei remove zur Sicht
dieser Operation zählt!

Je eine append- und remove-Operation sind offensichtlich genau
dann konfliktfrei, wenn die Schlange nicht leer ist. Hierbei handelt es
sich um eine neue Bedingung an die semantische Konfliktfreiheit, die
unabhängig von Bedingungen an die Parameter von parametrisierten
Modifikationen auftreten kann und die auch für nichtparametrisierte
Modifikationen sinnvoll ist. Wir definieren daher:

- Zwei (nichtparametrisierte) Modifikationen heißen (semantisch)
konfliktfrei mit Objektzustandseinschränkung P, wenn ihre
beiden seriellen Ausführungen dieselbe Funktion ergeben, vorausge-
setzt der Zustand des modifizierten Objekts erfüllt zu Beginn ein
Prädikat P.

- Zwei parametrisierte Modifikationen heißen (semantisch) kon-
fliktfrei mit Objektzustandseinschränkung P, wenn alle zuge-
hörigen Paare von Modifikationen konfliktfrei mit Objektzustand-
seinschränkung P sind.

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 20

- Zwei parametrisierte Modifikationen heißen (semantisch) konflikt-
frei mit Parametereinschränkung P1 und Objektzustand-
seinschränkung P2, wenn für alle Paare von Modifikationen, die
unter Einhaltung der Bedingung P1 an die Parameter abgeleitet
werden können, gilt, daß deren beide Hintereinanderausführungen
dieselbe Funktion ergeben, vorausgesetzt der Zustand des modifi-
zierten Objekts erfüllt zu Beginn ein Prädikat P2.

Man kann nun analog zum letzten Beispiel eine Verträglichkeits-
matrix, z.B. für append und remove, konstruieren, in der Bedingungen
auftreten, die sich auf den Zustand des Objekts beziehen. Die obigen
Bemerkungen zu solchen Einträgen gelten hier verstärkt. Hinzu kom-
men allerdings weitere Probleme mit derartigen Modifikationen und
ihren Invertierungen, die es zweifelhaft erscheinen lassen, ob sie wirklich
praktisch verwertbar sind:

1. Die erforderlichen inversen Modifikationen, z.B. das Zurückstellen
eines Eintrags “vorne” in eine Schlange, können i.d.R. nicht durch
schon vorhandene Modifikationen realisiert werden; stattdessen sind
zusätzliche Operationen zu realisieren, die ggf. eine völlige Neuspe-
zifikation und Neuimplementierung des Typs erforderlich machen.

2. Es können unsichere Teilobjekte entstehen. So kann eine Trans-
aktion T1 ein Element in die Schlange einfügen, Transaktion T2
will dieses Element entnehmen, bevor T1 beendet ist. Wenn nun
T1 zurückgesetzt wird, muß auch T2 zurückgesetzt werden. Wie
schon in [TID] erwähnt ist die Fortpflanzung von Rollback äußerst
problematisch.

Anders gesagt ist bei unsicheren Teilobjekten das Ausfügen nicht
mit der Invertierung des Einfügens konfliktfrei6.
6Hierbei handelt es sich übrigens um ein allgemeineres Bereichsüberwachungs-

problem: Der Wert des Objekts ist durch eine erste Modifikation verändert worden,
anschließend durch eine konfliktfreie Modifikation, und hat einen Wertebereich er-
reicht, in dem die Invertierung der ersten Modifikation nicht mehr anwendbar ist.
In unserem Beispiel kann das unsicher eingefügte Element nicht mehr ausgefügt
werden, weil es schon von der anderen Transaktion ausgefügt ist.

c©2001 Udo Kelter Stand: 01.12.2001

Semantikgestützte Concurrency-Control-Verfahren 21

3. Alle bisherigen Sperrmodi berechtigten dazu, die zulässigen Ope-
rationen beliebig oft auszuführen, die Atomarität der Transaktion
ist hierdurch nicht gefährdet. Bei konfliktfreien Modifikationen galt
dies deshalb, weil der Objektzustand keine Rolle spielte. Im Ge-
gensatz dazu kann eine Bedingung an den Objektzustand vor einer
zulässigen Modifikation erfüllt, danach aber verletzt sein. Z.B. ist
die Bedingung “Schlange nicht leer” erfüllt, wenn die Schlange genau
ein Element enthält; nach Ausführung von remove ist sie es nicht
mehr.

Literatur

[Ko83] Korth, H.F.: Locking primitives in a database system; JACM
30:1, p.55-79; 1983/01

[CCT] Kelter, U.: Lehrmodul “Concurrency-Control-Theorie”; 2003
[SPV] Kelter, U.: Lehrmodul “Sperrverfahren”; 2003
[TID] Kelter, U.: Lehrmodul “Transaktionen und die Integrität von

Datenbanken”; 2003

c©2001 Udo Kelter Stand: 01.12.2001

Index
2-Phasen-Protokoll, 8

Aktion, 4

Bereichsgrenze, 12, 14

Elementaroperation, 4

Integritätsprüfung, 4
Interpretation, 5
Invertierung, 8

Kommutativität, 5, 10
kompatibel, siehe Sperrmodus
Kompensation, 8
Konflikt, 3
konfliktfrei, 8, 11

mit Objektzustandseinschränkun-
gen, 19

mit Parametereinschränkungen,
17

semantisch, 6

Modifikation, 4
Atomarität, 9
inverse, 8, 14
kommutierende, 5
parametrisierte, 10

Konfliktfreiheit, 11
Undo, 7
Zwischenzustände, 14

Rollback, 8, 13
Fortpflanzung, 7

Serialisierbarkeit, 3, 5
cp-∼, 3

Sicht, 3

Fehlercode, 5, 12
Sperre

Freigabe, 8
Zuteilung, 15, 16, 18

Sperrmodus, 6, 17
Rechte, 6, 20
Verträglichkeit, 7, 11
Verträglichkeitsmatrix, 7, 11, 17,

20

Undo
einer Modifikation, 7

unsicher, 7, 15
Teilobjekt, 20

Unsicherheitsbereich, 15

verträglich, siehe Sperrmodus

22

	Einführung
	Modifikationen
	Definition
	Semantische Konfliktfreiheit von Modifikationen
	Sperrmodi für Modifikationen
	Undo von Modifikationen
	Atomarität von Modifikationen

	Parametrisierte Modifikationen
	Definition
	Vollständige Konfliktfreiheit

	Bereichsgrenzen
	Inkonsistente Zwischenzustände
	Unsichere Zwischenzustände und inverse Modifikationen
	Überwachung von Unsicherheitsbereichen

	Konfliktfreiheit mit Parametereinschränkungen
	Konfliktfreiheit mit Objektzustandseinschränkungen
	Literatur
	Index

