Semantikgestiitzte
Concurrency-Control-Verfahren

Udo Kelter

01.12.2001

Zusammenfassung dieses Lehrmoduls

Die géngigen Concurrency-Control-Verfahren basieren auf einem “syn-
taktischen” Konfliktbegriff: Es werden nur lesende und schreibende Ope-
rationen unterschieden. In manchen Fallen liegt es nahe, semantische
Eigenschaften, insb. Kommutativitdtseigenschaften der Operationen
auszunutzen und zu einem semantischen Konfliktbegriff {iberzugehen.
Typischerweise handelt es sich um numerische Datenfelder, auf denen
Betriage addiert und subtrahiert werden. Es zeigt sich allerdings, dafs
eine Reihe nicht offensichtlicher Probleme gelést werden miissen, die
durch Rollback, Bereichsgrenzen und “Ausnahmen” von der Kommuta-
tivitdt entstehen und die teilweise sehr aufwendige Gegenmafsnahmen
erforderlich machen.

Vorausgesetzte Lehrmodule:

obligatorisch: - Transaktionen und die Integritdt von Datenbanken
- Sperrverfahren
empfohlen: - Recovery

- Concurrency-Control-Theorie

Stoffumfang in Vorlesungsdoppelstunden: 1.2

Semantikgestiitzte Concurrency-Control-Verfahren 2

Inhaltsverzeichnis
11 Einfiihrung] 3
B Modfkan | 4
EI Definffion] . « « v v vovooe e 4
22 S e KonkiTehc Nodhkan . 5
2.3 Sperrmodi fir Modifikationen| 6
2.4 Undo von Modifikationenl . . . 7
2.5 Atomaritat von Modifikationenl 9
5P — Modifkan | 10
BI Definition]o oo v 10
3.2 Vollstandige Konfliktfretheitf 10
|4 Bereichsgrenzen| 12
4.2 Unsichere Zwischenzustande und inverse | A
4.3 Uberwachung von Unsicherheitsbereichen| 15
[Konfliktfreiheit mit Parametereinschrankungen| 16
16 Konfliktfreiheit mit Objektzustandseinschrankungen)| 19

(©2001 Udo Kelter Stand: 01.12.2001
Dieser Text darf fiir nichtkommerzielle Nutzungen als Ganzes und unveréndert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Verdnderung und Uberfiihrung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist iiber http://kltr.de erreichbar.

Semantikgestiitzte Concurrency-Control-Verfahren 3

1 Einfiihrung

Die géngigen Concurrency-Control- (CC-) Verfahren basieren auf einem
“syntaktischen” Begriff Konflikt: Es wird nur unterschieden, ob Objek-
te geschrieben oder nur gelesen werden, von weitergehenden Details der
Zugriffsoperationen wird abstrahiert. Bei den Sperrverfahren (s. [SPV])
dufert sich dies darin, daf nur Lese- und Schreibsperren unterschieden
werden. Auch theoretische Analysen des Serialisierbarkeitsproblems
fiihren zu der Erkenntnis, daf man i.a. Korrektheitsbegriffe auf Basis des
syntaktischen Konfliktbegriffs verwenden mufs (s. [CCT]), konkret mufs
ein CC-Verfahren wenigstens die cp-Serialisierbarkeit realisieren. Ein
Ablauf ist cp-serialisierbar, wenn beim Serialisieren keine in Konflikt ste-
henden Ereignisse vertauscht werden. Wiirde man in Konflikt stehende
Ereignisse vertauschen, wiirde die Sicht der betroffenen Transaktionen
oder der Endzustand der betroffenen Objekte verdndert werden.

Manchmal kennt man die Semantik von Aktionen recht genau und
mochte diese Kenntnisse dahingehend ausnutzen, die Parallelitat der
Transaktionsausfiihrungen zu erhéhen. Die Anwendungsbeispiele kom-
men nicht nur aus klassischen Datenbankanwendungen, sondern auch
aus verteilten Betriebssystemen bzw. allgemeiner verteilten, parallel be-
nutzbaren Objektsystemen, wo z.B. Datentypen wie Listen oder Mengen
auftreten.

In vielen Fallen scheint die Ausnutzung semantischer Eigenschaf-
ten (zumindest auf den ersten Blick) relativ einfach méglich zu sein.
Ein Beispiel: Wir nehmen an, zwei Umbuchungen seien wie in Bild
angegeben verzahnt. Wir benutzen eine tabellenférmige Notation
fir Abldufe; X und Y seien lokalisierte Objekte, “X:=X+a” steht als
Abkiirzung fiir “u:=X; w:=u+a; X:=u”, worin u eine lokale Variable sei.

Bei diesem Ablauf liest T2 einen ungesicherten Wert von T1, bei-
de Transaktionen erhalten eine inkonsistente Sicht der Datenbank, und
dennoch wird man ihn als “korrekt” empfinden, denn die Umbuchun-
gen werden korrekt durchgefiihrt. Im néchsten Abschnitt wollen wir
zunéchst klaren, in welchem Sinne dieser Ablauf korrekt ist, um dann
im iiberndchsten Abschnitt konkrete Sperrverfahren zu entwickeln.

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 4

T1 T2 Werte von
X Y
1000 | 500
X:=X-500 500
Y:=Y-300 200
Y:=Y+500 700
X:=X+300 | 800

Abbildung 1: Verzahnte Ausfiihrung zweier Umbuchungen

2 Modifikationen

2.1 Definition

Daf man den oben gezeigten Ablauf als “korrekt” empfindet, liegt u.a.
an der Art, wie die Objekte gelesen und zuriickgeschrieben werden.
Wesentlich sind folgende Merkmale:

1. Die Verdnderungen an den Datenbank-Objekten, also das Lesen
des alten Inhalts, Berechnen und zuriickschreiben des neuen Inhalts
(“X:=X+a”) sind atomar, d.h. das verdnderte Datenbank-Objekt
wird zwischenzeitlich nicht von anderen Transaktionen gelesen oder
verandert. Wir nennen eine solche Verédnderung eine Modifikation.

Wir fassen Modifikationen als eine dritte Art von Aktionen auf
(neben Lese- und Schreibaktionen).

Im Gegensatz zu konventionellen Aktionen sind Modifikationen
gef. keine Elementaroperation des jeweiligen Datenbankmodells, d.h.
sie sind applikationsspezifisch und oberhalb des APIs der Datenbank
individuell zu programmieren, genauso wie Transaktionen. Man
kann sie daher auch “Subtransaktionen” nennen.

2. Gewisse Integritétstests miissen innerhalb der Modifikationen durch-
gefiihrt werden. In unserem obigen Beispiel kdnnte es einen unteren
Grenzwert fiir den Kontostand geben. Da der Wert des Objekts
bei der Riickkehr zur aufrufenden Transaktion schon verdndert ist,
kommt ein anschlieffender Test innerhalb der Transaktion schon zu

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 5

spat. Das Ergebnis von Integrititstests wird durch einen Fehlercode
an die aufrufende Transaktion mitgeteilt.

3. Die innerhalb einer Modifikation gelesenen Werte zahlen nicht zur
Sicht einer Transaktion. Typischerweise, so auch im obigen Beispiel,
werden sie nur innerhalb dieser Modifikation benutzt, also nicht
direkt oder in transformierter Form an den Benutzer weitergege-
ben oder in ein anderes Objekt geschrieben. In vielen Féllen liefern
Modifikationen dennoch einen Wert an die aufrufende Transaktion
ab, z.B. einen Fehlercode. Dieser zahlt (neben den Werten, die bei
normalen Lese-Aktionen gelesen werden) zur Sicht der Transaktion.

2.2 Semantische Konfliktfreiheit von Modifikationen

Das Modifikationskonzept allein erkldrt noch nicht, warum der obige
Ablauf “korrekt” sein soll. Er ist nicht cp-serialisierbar, sogar nicht
einmal Sicht-serialisierbar (vgl. . Diese Korrektheitsbegriffe sind
hier unnotig strengﬂ da sie die vollstdndigen Sichten beriicksichtigen,
wahrend tatséchlich nur die reduzierten Sichten relevant sind.

Sofern man die Semantik der Rechenoperationen aufier Betracht
lafst, ist der obige Ablauf auch nicht Endzustands-serialisierbar (s. Ab-
schnitt [3.2). Man findet leicht Interpretationen (also Semantiken der
Datentypen und Operationen), bei denen der Endzustand von X und
Y im obigen Beispiel mit keinem der Endzustdnde tibereinstimmt, die
bei den beiden seriellen Abldufen entstehen. Bei der Endzustands-
Serialisierbarkeit werden beliebig “ungiinstige” Interpretationen beriick-
sichtigt, wihrend wir oben wissen, dafs eine “glinstige” Interpretation
vorliegt.

Glinstig ist hier, daff die Modifikationen in einem gewissen Sinn
kommutieren. Um diesen Begriff zu préazisieren, fassen wir eine Modifi-
kation, die oben als Algorithmus eingefiihrt wurde, stattdessen als eine
Funktion auf dem Wertebereich des modifizierten Datenbank-Objektes
auf. Der Hintereinanderausfithrung von Modifikationen entspricht die
Komposition der Funktionen.

"'Wobei wir sie in kanonischer Weise auf das n-Schritt-Modell fiir Transaktionen
erweitern konnten.

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 6

So wird im obigen Beispiel zunichst die Modifikation “Erniedrige
um 500" auf X ausgefiihrt, danach “Erhohe um 300“. Die entsprechen-
den Funktionen sind z — x — 500 und z — x 4 300; ihre Komposition
ist — x — 200. Diese Funktion l&ft sich sogar direkt durch eine Mo-
difikation erzeugen, ndmlich “Erniedrige um 200”; notwendig ist dies
aber nicht.

Das entscheidende Merkmal des Konfliktbegriffs ist folgendes: Wenn
zwel Ereignisse nicht in Konflikt stehen, darf ihre Reihenfolge vertauscht
werden, ohne daf die Vertauschung Einflut hat auf

1. den Endzustand der betroffenen Objekte
2. die Sichten der beiden beteiligten Transaktionen.

Zwei derartige Ereignisse nennen wir semantisch konfliktfrei.

Die bisherige Definition des Konfliktbegriffs war insofern syntaktisch,
als sie sich nur auf die Identitidt von Objekten und die Unterscheidung in
verdndernde und nicht verdndernde Zugriffe bezog, also Merkmale, die
auf dem syntaktischen Niveau angesiedelt sind. Die syntaktische Kon-
fliktfreiheit ist hinreichend, aber nicht notwendig fiir die semantische
Konfliktfreiheit.

Offensichtlich stehen Modifikationen i.d.R. in Konflikt mit Lese-
und Schreibereignissen.

2.3 Sperrmodi fiir Modifikationen

Wir kénnen semantisch konfliktfreie Aktionen genauso behandeln wie
herkémmlich konfliktfreie Aktionen, sowohl bei den Korrektheitsbegrif-
fen fiir Logs wie auch bei Sperrverfahren.

Wenn eine Transaktion eine Sperre fiir ein Objekt héalt und so-
mit das Recht hat, gewisse Aktionen auszufiihren, kénnen wir dies so
interpretieren, daft wahrend der Sperrzeiten nur konfliktfreie Aktio-
nen anderer Transaktionen auf diesem Objekt eintreten diirfen. Fiir
Modifikationen gilt dies analog. Im einfachsten Fall gehort zu einer
Modifikation M ein eigener Sperrmodus. Dieser ist kompatibel mit sol-
chen Sperrmodi, die nur das Recht zu Ausfiihrung solcher Aktionen
implizieren, die mit M nicht in Konflikt stehen.

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 7

Kompatibilitit|seeVertraglichkeit

Allgemeiner definieren wir zwei Sperrmodi als kompatibel, wenn
jede der beim ersten Sperrmodus zuldssigen Aktionen mit jeder beim
zweiten Sperrmodus zuldssigen Aktionen (auf dem gleichen Objekt) se-
mantisch konfliktfrei ist. Die bisherige Definition der Vertréglichkeit
von Lese- und Schreibsperren ist ein Sonderfall dieser allgemeineren

DefinitionPl

Im obigen Beispiel ergeben sich folgende Vertraglichkeiten, wobei
die {iblichen Modi S und X hinzugenommen wurden:

vorhandene beantragte Sperre:

Sperre: S | X | “4+3007 | “-300” | “4+500” | “-500”
S + | - - - - -

X N i, - , -
“4+-300” -] - + + + +
“-300” -] - + + + +
“4-500” - - + + + +
“-500” -] - + + + +

2.4 Undo von Modifikationen

Das Undo einer Aktion wird iiblicherweise durch Riickschreiben des
vorher vorhandenen Werts realisiert. Da ein Objekt von mehreren
gleichzeitig aktiven Transaktionen verédndert werden kann, wiirden beim
Riickschreiben des alten Werts anléaflich des Rollbacks einer Trans-
aktion auch zwischenzeitliche Anderungen anderer, eventuell bereits
abgeschlossener Transaktionen verloren gehen.

Konventionelle Sperrprotokolle halten die Isolation ein: es werden
keine ungesicherten Werte gelesen. Die Isolation mufs bei Modifikationen
aufgegeben werden, wenn man mit ihnen iiberhaupt einen Paralleli-
tatsgewinn erzielen will. Hierdurch entsteht wieder das Problem der
Rollbackfortpflanzung.

2Die Konstruktion von Update- und Warnsperrmodi kann ebenfalls auf beliebige
Basis-Sperrmodi verallgemeinert werden, s. [Ko83]).

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 8

Zur Losung dieses Problems benutzt man ein anderes (Riickwérts-)
Recovery-Prinzip, ndmlich Kompensation. Zu jeder Modifikation wird
eine inverse Modifikation (kurz: Invertierung) vorgesehen, welche
vom Programmierer der Modifikation zu liefern ist. Hieraus resultiert,
dafs fiir Modifikationen spezielle Eintrage im Log vorgesehen werden
miissen und dafs die inversen Modifikationen jederzeit dem Recovery-
Manager in einer Bibliothek zur Verfiigung stehen miissen.

Sofern ein Objekt innerhalb einer Transaktion mehrfach modifiziert
wurde, miissen die Invertierungen in umgekehrter Reihenfolge durch-
gefiithrt werden, sofern sie nicht semantisch konfliktfrei miteinander
sind.

Eine zuriickgesetzte Transaktion wird durch die Invertierungen ge-
danklich fortgesetzt, bis sie am Ende den Effekt Null hat. Hieraus
folgt:

- Sperren fiir Modifikationen diirfen nicht vor Commit freigegeben
werdenP} Damit die entstehenden Logs korrekt sind, miissen die
Invertierungen namlich konfliktfrei in die Verarbeitungsphase der
Transaktion verschoben werden konnen.

- Die Invertierung zu einer Modifikation M mufs mit allen Modifika-
tionen konfliktfrei sein, mit denen M konfliktfrei ist bzw. die beim
zu M gehorigen Sperrmodus fiir andere Transaktionen aufgerufen
werden diirfen.

Wir nennen daher zwei Modifikationen nur dann konfliktfrei, wenn
zusatzlich jede Modifikation mit der Invertierung der anderen und die
beiden Invertierungen zueinander konfliktfrei sind.

Die Verwendung des Kompensationsprinzips fithrt zu weiteren Pro-
blemen beim Neustart nach Systemfehlern, die wir hier nicht ndher
diskutieren.

3Bei Sperren fiir konventionelle Aktionen ist dies im Rahmen des 2-Phasen-
Protokolls im Prinzip erlaubt, wegen der Fortpflanzung von Rollback ist jedoch
generell davon abzuraten.

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 9

2.5 Atomaritat von Modifikationen

Wir hatten oben vereinbart, Modifikationen als eine dritte Art von
Aktionen aufzufassen. Aktionen miissen die gleichen Atomaritétseigen-
schaften erfiillen wie Transaktionen, ndmlich Fehler-Atomaritdt und
Serialisierbarkeit (bzw. funktionale Atomaritét).

FEin Unterschied von Modifikationen zu Lese- oder Schreibaktio-
nen ist, dafs letztere durch das DBMS implementiert sind, wéhrend
Modifikationen ggf. vom Anwender zu implementieren sind.

Bei der Realisierung der funktionalen Atomaritdt ist zu bedenken,
dafs Modifikationen typischerweise kurz sind und nur ein einziges Objekt
betreffen. Durch komplizierte Protokolle ist daher nur wenig zu gewin-
nen; wir gehen davon aus, dafs das modifizierte Objekt wechselseitig
ausgeschlossen benutzt wird.

Beziiglich der Fehler-Atomaritédt gelten im Prinzip die gleichen
Uberlegungen wie fiir Transaktionen. Ursachen fiir den Abbruch einer
Modifikation kénnen sein:

- unbeabsichtigte Laufzeitfehler

- programmiertes Rollback nach einem Integritatstest mit negativem
Ausgang. Dies kann, muf aber nicht bedeuten, daft auch die zuge-
horige Transaktion abbricht. Dies wird innerhalb der Transaktion
anhand des von der Modifikation zuriickgegebenen Fehlercodes ent-
schieden.

- die zugehorige Transaktion wird aus duferen Griinden zuriickgesetzt.

Diese Fehler treten innerhalb der Modifikation auf, d.h. zwischen
dem Lesen des Objekts und dem Zuriickschreiben des neuen Inhalts.
Fiir das Rollback einer Modifikation kénnen im Prinzip die gleichen
Techniken angewandt werden wie fiir Transaktione

4Fiir die Invertierung von Modifikationen miissen hingegen spezielle Recovery-
Mechanismen vorgesehen werden.

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 10

3 Parametrisierte Modifikationen

3.1 Definition

Bei den Modifikationen in den obigen Beispielen wurde stets um einen
festen Wert erhoht oder erniedrigt. Programmtechnisch wird man die-
sen Wert natiirlich als Parameter iibergeben, d.h. es handelt sich um
parametrisierte Modifikationen. Diese entsprechen Funktionalen,
durch Einsetzen eines zuléssigen Parameters ergibt sich eine Modifikati-
on bzw. eine Funktion. Es konnen auch mehrere Parameter vorhanden
sein, so daft man ein zulédssiges Tupel von Parametern einsetzen miif-
te. Die Menge aller zuléssigen Parameterbelegungen definiert die zu
einer parametrisierten Modifikation gehorige Menge von Mo-
difikationen.

Beispiele von parametrisierten Modifikationen, die oben auftraten,
sind “Erhdéhe um ...” und “Erniedrige um ...”, kurz incr() und decr().

Diesen Funktionalen entsprechen numerische Operatoren. Deren
Kommutativitat impliziert sofort, daft Modifikationen bei beliebigen
Parameterwerten semantisch konfliktfrei sind (Probleme, die bzgl. Kom-
mutativitiat durch Bereichsiiberlauf verursacht werden, behandeln wir
spater), denn fiir alle Parameterwerte a, b gilt (* steht fiir Komposition):

incr(a) * incr(b) = x+— (x +a) + b
=x — (x +b) + a = incr(b) * incr(a)

“Einfache” Modifikationen fassen wir i.f. als Sonderfall von parame-
trisierten auf. Die “Menge von zugehorigen Modifikationen” besteht nur
aus ihr selbst.

3.2 Vollstandige Konfliktfreiheit

Durch eine parametrisierte Modifikation wird i.a. eine so grofse Menge
von zugehorigen Modifikationen definiert, man man nicht mehr sinnvoll
nach der oben vorgestellten Methode verfahren kann, jeder Modifikation
einen eigenen Sperrmodus zuzuordnen. Wie eben am Beispiel “incr()”

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 11

gezeigt wurde, sind sowieso alle zugehorigen Modifikationen paarweise
semantisch konfliktfrei, so dafs man offensichtlich mit einem einzigen
Sperrmodus auskdme. Dies gilt sogar dann noch, wenn man zusétz-
lich alle Modifikationen hinzunimmt, die zu “decr()” gehoren. Diese
Gegebenheit lafst sich wie folgt formaler beschreiben:

Sei PM eine Menge von parametrisierten (und “einfachen”) Modi-
fikationen. Wir bilden die Gesamtmenge aller zugehorigen Modifika-
tionen. Wenn in dieser Gesamtmenge alle Modifikationen paarweise
konfliktfrei sind, dann heift PM vollstindig (semantisch) konflikt-
frei.

Offensichtlich reicht fiir eine Menge vollstdndig konfliktfreier para-
metrisierter Modifikationen ein einziger Sperrmodus aus. Eine Sperre
in diesem Modus berechtigt dazu, auf dem jeweiligen Objekt beliebige
Modifikationen aus dieser Menge auszufiithren. Der Modus ist mit sich
selbst vertraglich.

Im obigen Beispiel kénnen wir also fiir “incr()” und “decr()” einen
einzigen Sperrmodus “incr” vergeben. Wir fiigen noch einen weiteren
Sperrmodus “mult” hinzu, der fiir Multiplikationen oder Divisionen
steht. Die Vertraglichkeitsmatrix ist:

vorhandene | beantragte Sperre:
Sperre: S | X | incr | mult
S + - - -
X . . -
incr - - + -
mult - - - +

Eine Sperre im Modus “incr” berechtigt nun dazu, beliebig viele
Betridge zu einem Objekt hinzuzuaddieren.

In dem Fall, daf man innerhalb der gleichen Transaktion dieses Ob-
jekt aufserdem mit einem Faktor multiplizieren will, benotigt man einen
Sperrmodus, der die Zugriffsrechte von “incr” und “mult” vereinigt. Ein
Verfahren zur Konstruktion derartiger Kombinations-Sperrmodi ist in

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 12

[Ko83] fiir die normalen Sperrmodi vorgestellt worden; es kann im Prin-
zip auf beliebige Arten von Sperrmodi verallgemeinert werden. Es stellt
sich allerdings die Frage, unter welchen Randbedingungen so komple-
xe Mengen von Sperrmodi und zugehorigen Kompatibilitdtstest sowie
Hoéherstufungsregeln noch sinnvoll sind.

4 Bereichsgrenzen

Bei der Feststellung, daft die beiden Modifikationen im obigen Beispiel
semantisch konfliktfrei sind, haben wir ein Problem ausgeklammert:
nach der ersten Modifikation kénnte ein Bereichsiiberlauf eintreten.

Hierzu ein Beispiel: das verdnderte Objekt stellt ein Konto, einem
Lagerbestand o0.4. dar, der Stand darf nicht unter 0 fallen, anfangs sei
der Stand 300. Nun wollen zwei Transaktionen jeweils 200 Einheiten
abbuchen. Bei der zweiten Abbuchung wird die Bereichsgrenze unter-
schritten, was durch einen Integritatstest innerhalb der Modifikation
festgestellt wird. Die Modifikation wird abgebrochen und zurtickgesetzt.
Die aufrufende Transaktion erhélt einen entsprechenden Fehlercode als
Ergebnis. Dieser Fehlercode z&hlt zur Sicht der Transaktionen; er wird
benutzt, um iiber das weitere Vorgehen in der Transaktion zu entschei-
den, z.B., ob die Transaktion ebenfalls abgebrochen werden soll. Die
Sicht der Transaktion und der Endzustand des modifizierten Objekts
sind also durch die Reihenfolgevertauschung verdndert worden!

In vielen Fallen wird nach einer Bereichsiiberschreitung die Trans-
aktion ebenfalls abgebrochen werden; man kann sich dann auf den
Standpunkt stellen, daf die Sicht der Transaktion dann ohnehin eine
Rolle gespielt hat, das Risiko des Abbruchs der Transaktion bestand
auf jeden Fall und der Abbruch war somit ein “korrekter” Ausgang der
Transaktion.

4.1 Inkonsistente Zwischenzustiande

Das folgende Beispiel zeigt allerdings, daf die logische Atomaritét
dennoch verloren gehen kann: zwei Transaktionen soll zwei Teilbetra-
ge von zwei Konten abbuchen und die Summe einem dritten Konto

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 13

gutschreiben. Transaktion T1 wiirde die Sequenz X:=X-200; Y:=Y-
200; Z:=7Z-+400 ausfiithren, T2 die Sequenz Y:=Y-200; X:=X-200;
U:=U+400. Innerhalb jeder Modifikation “-200” wird getestet, ob der
Wert negativ werden wiirde; falls ja, wird die Modifikation abgebrochen.
Die Transaktion 16st daraufthin ein Rollback aus.

Nehmen wir an, die Konten X und Y enthalten beide anfangs 300.
Dann wiirde bei serieller Ausfiihrung genau eine der beiden Transaktio-
nen erfolgreich ausgefithrt werden, die andere nicht mehr. Im folgenden
Ablauf wird aber keine Transaktion erfolgreich ausgefiihrt:

T1 T2 Werte von Fehler
X Y
300 300
X:=X-200 100
Y:=Y-200 100
Y:=Y-200 (-10077) | Y <0
100
X:=X-200 (-10077) X <0
100
Rollback
(X:=X+200) 300
Rollback
(Y:=Y+200) 300

Die Ursache des Problems im vorigen Beispiel liegt in folgendem:
nach den beiden ersten Rechenschritten haben die Daten einen tem-
pordaren Zustand erreicht, den man als inkonsistent bezeichnen kann.
Er wiirde bei einer seriellen Ausfiihrung nicht erreicht und liegt sozu-
sagen ‘“zu nahe” an den Bereichsgrenzen, er manifestiert sich in Form
von {iberfliissigen Fehlermeldungen bzw. Rollbacks. Man kann auf das
Problem unterschiedlich reagieren:

1. Man kann solche Abldufe verhindern: Dann sind allerdings kompli-
zierte Algorithmen zu deren Erkennung erforderlich (s.u.), die u.U.

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 14

die Absicht, durch Modifikationen die Performance des DBMS zu
verbessern, durchkreuzen.

2. Man kann solche Abldufe dulden: Dann verzichtet man auf die
vollstédndige Atomaritédt, man toleriert die (seltenen) Abweichun-
gen, sofern nur geringe Folgeschaden auftreten. Die Vorstellung ist
typischerweise, daf aus Sicht jeder einzelnen Transaktion der erfolg-
lose Ausgang ein im Prinzip denkbares, also korrektes Ergebnis war
und dafs der Benutzer eine erfolglose Transaktion spéter und einmal
wiederholen kann.

4.2 Unsichere Zwischenzustiande und inverse Modifika-
tionen

Bereichsgrenzen werfen zusétzliche Probleme bei den inversen Modifi-
kationen auf, die im Rahmen eines Rollbacks fillig werden. Betrachten
wir hierzu folgendes Beispiel: Ein Konto X hat einen Stand von 200
und darf nicht negativ werden; Transaktion T1 erhoht das Konto um
500 Einheiten und fithrt danach weitere Aktionen auf anderen Objek-
ten aus, die zu einem Rollback fiihren; Transaktion T2 vermindert das
Konto um 400 Einheiten. Unterstellt sei folgender Ablauf:

T1 | T2 | Werte von X ‘ Fehler ‘
200
X:=X+500 700
X:=X-400 300
Rollback
(X:=X-500) -20077 | X<0 !

Die im Rahmen des Rollbacks von T1 erforderliche inverse Modi-
fikation X:=X-500 wiirde zu einer Uberschreitung der Bereichsgrenze
fihren! Verursacht wird das Problem dadurch, dafs T2 auf einem
unsicheren Wert gearbeitet hat. T2 hétte an dieser Stelle gar nicht
ausgefiihrt werden diirfen, denn T2 ist im gegebenen Zustand nicht
semantisch konfliktfrei mit der inversen Modifikation zu X:=X+500.

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 15

Anders gesehen hatte bei der Ausfithrung von T2 X zwar den Wert 700,
und bei diesem Wert war die Bereichsgrenzen noch weit genug entfernt,
aber es war ein Rollback von T1 moglich, wonach X=200 gewesen wére,
und in diesem Zustand war T2 nicht mehr erfolgreich ausfiithrbar.

Allgemeiner gesehen stellt sich das Problem folgendermafien dar: Ein
Wert kann unsicher sein, weil mehrere nicht abgeschlossene Transaktio-
nen Modifikationen auf ihm ausgefiihrt haben. Jede der Transaktionen
kann unabhéngig von den anderen zuriickgesetzt werden; bei n Trans-
aktionen bestehen somit 2™ Moglichkeiten, dafs eine Teilmenge der
Transaktionen zuriickgesetzt wird. Jede Teilmenge entspricht einem
bestimmten Wert des Objekts, der bei Riicksetzung dieser Transaktio-
nen entstehen wiirde. Eine Transaktion darf nur dann ausgefiihrt (bzw.
die entsprechende beantragte Sperre zugeteilt) werden, wenn sie bei
allen Werten erfolgreich ausgefiihrt werden kannlﬂ.

Wegen der kombinatorischen Explosion der Zahl der Teilmengen ist
es praktisch nahezu ausgeschlossen, ab einem Parallelitdtsgrad von ca. 5
alle Werte tatséchlich einzeln zu berechnen. Ein noch halbwegs effizient
realisierbares Verfahren ist die nachfolgend beschriebene Uberwachung
von Unsicherheitsbereichen.

4.3 Uberwachung von Unsicherheitsbereichen

Das folgende Verfahren ist nur bei linear geordneten Wertebereichen
anwendbar, bei denen sich die Bereichsgrenzen einfach als Intervall (mi-
nimaler und maximaler Wert des Objekts) ausdriicken lassen. In der
Praxis kommen wohl nur numerische Wertebereiche und Modifikationen
wie incr() und decr() infrage, von denen wir i.f. auch ausgehen.

Die Idee des Verfahrens besteht darin, daft man gar nicht alle Teil-
mengen von Riicksetzungen zu berechnen braucht, sondern sich wegen
der linearen Ordnung auf den ungiinstigsten Fall beschréanken kann.
Dieser ungiinstigste Fall sieht wie folgt aus:

- bei einer Inkrementierung:

5Analog kann man dies auch fiir nicht erfolgreiche Ausfiihrungen definieren,
an diesen ist man i.a. aber nicht interessiert, so daff wir diesen Fall nicht weiter
betrachten.

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 16

fir die obere Grenze: kein Rollback
fir die untere Grenze: Rollback

- bei einer Dekrementierung;:
fir die obere Grenze: Rollback

fir die untere Grenze: kein Rollback

Zu einem numerischen Objekt X seien deltaMin und deltaMax
die Differenzen zu den Werten von X, die infolge von Riicksetzungen
im ungiinstigsten Fall eintreten kénnen. Die beiden Werte stellen den
Unsicherheitsbereichen nach oben bzw. unten dar und werden wie folgt
berechnet:

- bei einer Inkrementierung incr(a) (a>0):
deltaMax bleibt unveréndert
deltaMin := deltaMin + a

- bei einer Dekrementierung decr(a) (a>0):
deltaMax := deltaMax + a
deltaMin bleibt unveréndert

Sobald eine Transaktion endet (Commit oder Rollback), werden fiir
alle von dieser Transaktion durchgefithrten Modifizierungen die vorste-
henden Anderungen von deltaMax bzw. deltaMin wieder riickgingig
gemacht.

Seien XMin und XMax die minimal bzw. maximal fiir X zulédssigen
Werte. Zugelassen wird incr(a) nur noch dann, wenn

X + deltaMax + a < XMax
ist. Analog dazu wird decr(a) nur noch dann, wenn
X - deltaMin - a > XMin

ist.

5 Konfliktfreiheit mit Parametereinschrankun-
gen

Das folgende Beispiel zeigt zwei parametrisierte Modifikationen, die
nicht fiir alle Parameterwerte semantisch konfliktfreie Modifikationen

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 17

ergeben: Wertebereich seien Mengen iiber einer Basismenge (z.B. set
of char), Funktionale sind das Hinzufligen eines Elements (oder einer
Menge) zu einer Menge und das Wegnehmen im Sinne der unsymmetri-
schen Differenz. Unter der Bedingung, dafs als Parameter verschiedene
Elemente (bzw. disjunkte Mengen) verwendet werden, sind die beiden
entstehenden Modifikationen semantisch konfliktfrei, sonst nicht.

Fiir eine genauere Definition dieses Sachverhalts bilden wir wieder
zu einer gegebenen Menge PM von (parametrisierten) Modifikationen
die Gesamtmenge der zugehorigen Modifikationen. Wenn sich eine
Menge von Paaren von konfliktfreier Modifikationen aus dieser Gesamt-
menge durch eine Bedingung an die Parameter, die in den beteiligten
Modifikationen gelten, angeben laft, dann heit PM (semantisch)
konfliktfrei mit Parametereinschrankungen.

Im obigen Beispiel bestand PM aus “einfligen(x)” und “ausfiigen(y)”,
die Parametereinschrankung war x # vy.

Die Menge der Paare in der obigen Definition sollte eine sinnvolle
Grofse haben, also in der gleichen Grofenordnung wie das Quadrat der
Grofe der Gesamtmenge der Modifikationen liegen; letztlich ist diese
Bewertung etwas subjektiv und auch von der Haufigkeit des Auftre-
tens einzelner Parameter abhéngig. Als Negativbeispiel sei genannt:
incr(x) und mult(y) sind mit der Parametereinschrinkung x=0 oder
y=1 konfliktfrei.

FEinheitliche Sperrmodi fiir die Gesamtmenge von Modifikationen
sind nun leider nicht mehr anwendbar. Wir miissen daher zu modifika-
tionsbezogenen Sperrmodi zuriickkehren. (In gewissen Fillen kann die
Zahl der Sperrmodi aber verringert werden, indem man gleichwertige
Modi geschickt zusammenfafst.) In der Kompatibilitdtsmatrix notie-
ren wir anstelle von + oder - die Bedingung, die die Parameter der
Modifikationen erfiillen miissen.

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 18

vorhandene beantragte Sperre:
Sperre: S | X | insert(a) | remove(b)
S + | - - -

X - - B, B,
insert(c) - | - + b#c
remove(d) - | - a#d +

Beispielsweise darf eine Sperre in Modus “remove(x)” nicht zuge-
teilt werden, solange eine Sperre im Modus insert(x) fiir diese Menge
besteht.

Die Realisierung solcher Sperren erfordert flexiblere Sperroperatio-
nen als bisher; genauer miissen neben den bisherigen Sperrmodi (S,
X, IS, ...) Darstellungen fiir alle Modifikationen incl. Parameterwer-
te verarbeitet werden konnen. Hierzu miissen die Datenstrukturen in
einer Sperrtabelle erweitert werden. Die Kompatibilitdt von Sperren
mufs durch spezielle Algorithmen festgestellt werden, die vom Benutzer
(bzw. dem Programmierer der Modifikationen) zu liefern sind. Dieser
Algorithmus bendtigt als Eingabedaten die Namen der Modifikationen
und ggf. deren Parameter. Daher bietet es sich an, diese Angaben di-
rekt in der Sperrtabelle zu speichern. Die Sperroperation hitte dann
drei Parameter:

1. Objektidentifikation
2. Identifikation der Modifikation
3. ggf. Parameter der Modifikation

Derartige dufere Eingriffe in die Sperrenverwaltung werden in den
meisten Féllen vollig undenkbar sein; selbst wenn sie in einem speziel-
len Fall zuléssig sind, bleibt das Effizienzproblem: Die Sperroperation
darf trotz der deutlich hoheren Flexibilitdt nicht wesentlich ineffizien-
ter werden, sonst wird je nach den Umstédnden insgesamt kein Gewinn
an Performance durch diese Sperrmodi erzielt.

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 19

6 Konfliktfreiheit mit Objektzustandseinschran-
kungen

Beim letzten Beispiel hing die semantische Konfliktfreiheit zweier pa-
rametrisierter Modifikationen von den Parametern ab; im néchsten
Beispiel wird sie statt dessen vom Zustand des modifizierten Objekts
abhingen. Der Typ des Objekts sei hier eine (Warte-) Schlange iiber
irgendeinem Basistyp; wir betrachten nur die Operationen:

append(x)
ein Element mit Inhalt x hinten an die Schlange anhéngen

remove():x

eine Element vorne entnehmen; x ist Riickgabewert. Ist die
Schlange leer, wird ein Fehlercode zuriickgegeben.

Zwei append-Operationen sind nicht konfliktfrei, da die Reihenfolge
der Anfligungen relevant ist. Zwei remove-Operationen sind ebenfalls
nicht konfliktfrei, da i.a. verschiedene Werte in den Elementen der
Schlange enthalten sind und der gelesene Wert bei remove zur Sicht
dieser Operation zihlt!

Je eine append- und remove-Operation sind offensichtlich genau
dann konfliktfrei, wenn die Schlange nicht leer ist. Hierbei handelt es
sich um eine neue Bedingung an die semantische Konfliktfreiheit, die
unabhéngig von Bedingungen an die Parameter von parametrisierten
Modifikationen auftreten kann und die auch fiir nichtparametrisierte
Modifikationen sinnvoll ist. Wir definieren daher:

- Zwei (nichtparametrisierte) Modifikationen heifen (semantisch)
konfliktfrei mit Objektzustandseinschrinkung P, wenn ihre
beiden seriellen Ausfithrungen dieselbe Funktion ergeben, vorausge-
setzt der Zustand des modifizierten Objekts erfiillt zu Beginn ein
Priadikat P.

- Zwel parametrisierte Modifikationen heifen (semantisch) kon-
fliktfrei mit Objektzustandseinschriankung P, wenn alle zuge-
horigen Paare von Modifikationen konfliktfrei mit Objektzustand-
seinschriankung P sind.

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 20

- Zwei parametrisierte Modifikationen heifen (semantisch) konflikt-
frei mit Parametereinschriankung P1 und Objektzustand-
seinschrinkung P2, wenn fiir alle Paare von Modifikationen, die
unter Einhaltung der Bedingung P1 an die Parameter abgeleitet
werden konnen, gilt, daft deren beide Hintereinanderausfithrungen
dieselbe Funktion ergeben, vorausgesetzt der Zustand des modifi-
zierten Objekts erfiillt zu Beginn ein Pradikat P2.

Man kann nun analog zum letzten Beispiel eine Vertraglichkeits-
matrix, z.B. flir append und remove, konstruieren, in der Bedingungen
auftreten, die sich auf den Zustand des Objekts beziehen. Die obigen
Bemerkungen zu solchen Eintragen gelten hier verstarkt. Hinzu kom-
men allerdings weitere Probleme mit derartigen Modifikationen und
ihren Invertierungen, die es zweifelhaft erscheinen lassen, ob sie wirklich
praktisch verwertbar sind:

1. Die erforderlichen inversen Modifikationen, z.B. das Zuriickstellen
eines Eintrags “vorne” in eine Schlange, konnen i.d.R. nicht durch
schon vorhandene Modifikationen realisiert werden; stattdessen sind
zusétzliche Operationen zu realisieren, die ggf. eine vollige Neuspe-
zifikation und Neuimplementierung des Typs erforderlich machen.

2. Es konnen unsichere Teilobjekte entstehen. So kann eine Trans-
aktion T1 ein Element in die Schlange einfiigen, Transaktion T2
will dieses Element entnehmen, bevor T1 beendet ist. Wenn nun
T1 zuriickgesetzt wird, mufs auch T2 zuriickgesetzt werden. Wie
schon in [TID] erwédhnt ist die Fortpflanzung von Rollback dufserst
problematisch.

Anders gesagt ist bei unsicheren Teilobjekten das Ausfiigen nicht
mit der Invertierung des Einfiigens konﬂiktfreiﬂ

SHierbei handelt es sich iibrigens um ein allgemeineres Bereichsiiberwachungs-
problem: Der Wert des Objekts ist durch eine erste Modifikation verdndert worden,
anschliefsend durch eine konfliktfreie Modifikation, und hat einen Wertebereich er-
reicht, in dem die Invertierung der ersten Modifikation nicht mehr anwendbar ist.
In unserem Beispiel kann das unsicher eingefiigte Element nicht mehr ausgefiigt
werden, weil es schon von der anderen Transaktion ausgefiigt ist.

(©2001 Udo Kelter Stand: 01.12.2001

Semantikgestiitzte Concurrency-Control-Verfahren 21

3. Alle bisherigen Sperrmodi berechtigten dazu, die zuléssigen Ope-
rationen beliebig oft auszufiihren, die Atomaritiat der Transaktion
ist hierdurch nicht gefdhrdet. Bei konfliktfreien Modifikationen galt
dies deshalb, weil der Objektzustand keine Rolle spielte. Im Ge-
gensatz dazu kann eine Bedingung an den Objektzustand vor einer
zuldssigen Modifikation erfiillt, danach aber verletzt sein. Z.B. ist
die Bedingung “Schlange nicht leer” erfiillt, wenn die Schlange genau
ein Element enthélt; nach Ausfiihrung von remove ist sie es nicht
mehr.

Literatur

[Ko83] Korth, H.F.: Locking primitives in a database system; JACM
30:1, p.55-79; 1983/01

[CCT| Kelter, U.: Lehrmodul “Concurrency-Control-Theorie”; 2003

[SPV] Kelter, U.: Lehrmodul “Sperrverfahren”; 2003

[TID] Kelter, U.: Lehrmodul “Transaktionen und die Integritét von
Datenbanken”; 2003

(©2001 Udo Kelter Stand: 01.12.2001

Index

2-Phasen-Protokoll, 8 Fehlercode, 5, 12
Sperre
Aktion, 4 Freigabe, 8

Zuteilung, 15, 16, 18
Sperrmodus, 6, 17
Rechte, 6, 20
Vertréglichkeit, 7, 11
Vertraglichkeitsmatrix, 7, 11, 17,
20

Bereichsgrenze, 12, 14
Elementaroperation, 4

Integritatspriifung, 4
Interpretation, 5
Invertierung, 8

Undo

Kommutativitit, 5, 10 einer Modifikation, 7

kompatibel, siehe Sperrmodus unsiche'r, 7’_ 15
Kompensation, 8 Teilobjekt, 20
Konflikt, 3 Unsicherheitsbereich, 15
konfliktfrei, 8, 11
mit Objektzustandseinschrankun-
gen, 19
mit Parametereinschrénkungen,
17
semantisch, 6

vertraglich, siehe Sperrmodus

Modifikation, 4
Atomaritét, 9
inverse, 8, 14
kommutierende, 5
parametrisierte, 10

Konfliktfreiheit, 11
Undo, 7
Zwischenzustinde, 14

Rollback, 8, 13
Fortpflanzung, 7

Serialisierbarkeit, 3, 5

cp-~, 3
Sicht, 3

22

	Einführung
	Modifikationen
	Definition
	Semantische Konfliktfreiheit von Modifikationen
	Sperrmodi für Modifikationen
	Undo von Modifikationen
	Atomarität von Modifikationen

	Parametrisierte Modifikationen
	Definition
	Vollständige Konfliktfreiheit

	Bereichsgrenzen
	Inkonsistente Zwischenzustände
	Unsichere Zwischenzustände und inverse Modifikationen
	Überwachung von Unsicherheitsbereichen

	Konfliktfreiheit mit Parametereinschränkungen
	Konfliktfreiheit mit Objektzustandseinschränkungen
	Literatur
	Index

