
Software-Entwicklungsumgebungen

Udo Kelter

02.02.2001

Zusammenfassung dieses Lehrmoduls

Dieses Lehrmodul führt in das Thema Software-Entwicklungsumge-
bungen ein. Wir diskutieren zunächst die Motive und den erwarteten
Nutzen durch den Einsatz von SEU. Typische Funktionen von Werk-
zeugen einer SEU werden aufgelistet. Eine SEU soll mehrere Qua-
litätsmerkmale aufweisen; das wichtigste Qualitätsmerkmal ist, daß
eine SEU in verschiedener Hinsicht integriert ist. Schließlich skizzie-
ren wir einige Klassen von SEU und konstatieren, daß eine SEU i.w.
als Standardsoftware anzusehen ist, die i.d.R. von ihren Benutzern, al-
so Softwareentwicklern, nicht komplett neu entworfen werden kann;
allenfalls können Standardprodukte lokal angepaßt werden.

Vorausgesetzte Lehrmodule:
obligatorisch: - Vorgehensmodelle

Stoffumfang in Vorlesungsdoppelstunden: 1.2

1

Software-Entwicklungsumgebungen 2

Inhaltsverzeichnis
1 Grundbegriffe 3

2 Ein “Lastenheft” für SEU 4
2.1 Ziele des Einsatzes von Werkzeugen 5
2.2 Einsatzbereiche und Funktionsumfang 7

2.2.1 Zu unterstützende Tätigkeiten bei der Software-Ent-
wicklung . 7

2.2.2 Funktionen von Werkzeugen 9
2.3 Benutzertypen . 12
2.4 Qualitätskriterien . 12

3 Beispiele für Klassen von Umgebungen 16

4 SEU als Standardsoftware 19

Literatur . 21
Index . 21

c©2001 Udo Kelter Stand: 02.02.2001
Dieser Text darf für nichtkommerzielle Nutzungen als Ganzes und unverändert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Veränderung und Überführung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist über http://kltr.de erreichbar.

Software-Entwicklungsumgebungen 3

1 Grundbegriffe

Fast alle Methoden der Softwaretechnik sind - zumindest ab einer
bestimmten Systemgröße - zu aufwendig, um manuell praktiziert zu
werden. Mit anderen Worten benötigt man computergestützte Software-
Entwicklungswerkzeuge oder -Umgebungen (SEU), die die Entwick-
lung von Software unterstützen. Dieses Prinzip wird auch durch das
Schlagwort Computer-Aided (oder Assisted) Software Enginee-
ring (CASE) bezeichnet. Mit CASE verfolgt man folgende abstrakten
Ziele:

- Verbesserung der Qualität der entwickelten Software

- Reduktion der Gesamtkosten

- Verbesserung des Managements von Entwicklungsprojekten

Diese abstrakten Ziele werden wir später noch verfeinern und damit
einzelne technische Anforderungen an SEU begründen.

Werkzeuge und Umgebungen. Unterstützung bei der Software-
Entwicklung durch Werkzeuge war schon immer zwingend notwendig.
Beispiele konventioneller Werkzeuge sind Text-Editoren, Assembler,
Übersetzer, Testhilfen, Modul-Bibliotheken oder andere Werkzeuge mit
einem begrenzten Funktionsumfang.

Hinzugekommen sind seit den 80er Jahren zusammen mit der Ver-
breitung von graphikfähigen PCs und Workstations vor allemWerkzeuge
mit graphischer Bedienschnittstelle und Werkzeuge für die frühen Pha-
sen der Software-Entwicklung, z.B. Editoren für Datenflußdiagramme,
Entity-Relationship-Diagramme, Petri-Netze und in letzter Zeit vor
allem UML-Modelle. Als CASE-Werkzeug bezeichnen wir hier al-
le Software-Produkte, die zumindest einzelne bei der Entwicklung von
Software benötigte Funktionen anbieten.

Das Arbeiten mit mehreren isolierten Einzelwerkzeugen hat sich
allerdings vielfach als zu ineffektiv erwiesen. Dies war eine Hauptmoti-
vation dafür, “integrierte” Systeme mit einem breiten, “vollständigen”
(s.u.) Funktionsumfang zu entwickeln. Letztere bezeichnet man als

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 4

Software-Entwicklungsumgebungen oder CASE-Umgebungen.

Einführung von CASE. CASE-Werkzeuge wurden und werden im-
mer wieder – überspitzt formuliert – als Zaubermittel, mit dem sich alle
Probleme bei der Softwareentwicklung lösen lassen, angepriesen und
verkauft. Dies ist ähnlich lächerlich wie der Glaube, man würde zum
Architekten, wenn man sich ein 3D-Zeichenprogramm für Häuser kauft.

Gute CASE-Werkzeuge können durchaus die Entwickler entlasten
und deren Produktivität erhöhen, allerdings nur unter der Vorausset-
zung, daß die Entwickler die Entwicklungsmethoden, die das Werkzeug
unterstützt, gut beherrschen (und diese Methoden überhaupt akzep-
tieren). Oft fehlen entsprechende Methodenkenntnisse; die Einführung
von CASE bei einem Software-Produzenten erfordert daher häufig,
zunächst einmal die zukünftigen Benutzer der Werkzeuge in den unter-
stützten Methoden auszubilden. Darüber hinaus muß u.U. die interne
organisatorische Struktur der Software-Entwicklung verändert werden.
Methodenschulung und organisatorische Anpassungen stellen das ent-
scheidende Problem bei der Einführung von CASE dar. Neben den
eigentlichen Werkzeugen benötigt ein CASE-Anwender daher häufig
Beratung bei der Methodenauswahl, Schulungen, Studienmaterialien
etc.

2 Ein “Lastenheft” für SEU

Eine SEU ist ein Softwaresystem, somit sollten im Prinzip die Methoden
der Softwaretechnik auch auf SEU anwendbar sein. In diesem Abschnitt
werden wir in Anlehnung an dieses Paradigma die allgemeinen Anfor-
derungen an eine SEU diskutieren und uns dabei lose an der Struktur
von Lastenheften (wie z.B. in [SASM] vorgeschlagen) orientieren. Auf
folgende Punkte gehen wir ein:

- Ziele des Einsatzes von Werkzeugen

- Einsatzbereiche und Funktionsumfang

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 5

- Benutzertypen

- Qualitätskriterien

Im Gegensatz zu einem Lastenheft beschreiben wir aber nicht die
Anforderungen an ein konkretes System, sondern die Spannbreite der
Anforderungen, die in unterschiedlichen Kontexten auftreten.

Auf eine detaillierte Anforderungsanalyse im Sinne eines Pflich-
tenhefts und Realisierungsaspekte gehen wir später in Abschnitt 4
ein.

2.1 Ziele des Einsatzes von Werkzeugen

Durch den Einsatz von Werkzeugen bzw. SEU will man viele Ziele er-
reichen. Aus Sicht des Anwenders, also hier eines Softwareproduzenten
– von dem wir annehmen, daß der mit der Softwareentwicklung Geld
verdienen will –, sind vor allem folgende Ziele offensichtlich:

- Kostenreduktion

- Verbesserung der Qualität des Produkts

- Verbesserung des Managements des Entwicklungsprozesses

- Reduktion der Entwicklungszeit

Aus einer rein kommerziellen Sicht ist die Kostenreduktion das ein-
zige primäre Ziel, die weiteren genannten Ziele tragen alle indirekt zur
Kostenreduktion bei1. Die Ziele sind nicht unabhängig voneinander, so
verursachen Maßnahmen zur Qualitätssteigerung Kosten, was dem Ziel
der Kostenreduktion zuwiderläuft.

Klar sollte sein, daß Werkzeuge nicht der einzige Einflußfaktor hin-
sichtlich der Erreichung dieser Ziele sind. Ebenfalls erheblichen Einfluß
haben u.a. die Wahl der Programmiersprache und der Entwicklungs-
methoden und die Ausbildung der Entwickler. Ein gutes Werkzeug für
eine schlechte Methode nützt wenig. Im folgenden gehen wir davon

1In gewisser Hinsicht ist die Reduktion der Entwicklungszeit eine Ausnahme
hiervon, denn eine verkürzte Entwicklungszeit bei unveränderten Kosten kann z.B.
entscheidend dafür sein, einen Auftrag überhaupt zu bekommen.

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 6

aus, daß die Methoden und Sprachen, die unterstützt werden sollen,
bereits vorgegeben sind und daß Qualitätsmängel derselben nicht als
Qualitätsmängel der Werkzeuge angesehen werden. Wir reduzieren
die Diskussion also darauf, was Werkzeuge bei diesen Vorgaben zur
Erreichung der o.g. Ziele beitragen können.

Kostenreduktion. Das Ziel der Kostenreduktion läßt sich in erster
Linie dadurch erreichen, daß die Entwickler von aufwendigen automati-
sierbaren Tätigkeiten entlastet werden. M.a.W. wird die Produktivität
der Entwickler gesteigert. Wichtige Beispiele für Tätigkeiten, die so-
wohl aufwendig als auch automatisierbar sind und für die eine SEU
Werkzeuge anbieten sollte, sind:

- die Transformation von Dokumenten in andere Formate bzw. ab-
hängige Dokumente. Triviales Beispiel ist die Übersetzung eines
Programms, das in einer höheren Programmiersprache geschrie-
ben ist, in Maschinensprache durch einen Compiler. Nicht weniger
trivial, aber heute noch nicht selbstverständlich ist die automati-
sche Generierung von Dokumentation wie z.B. Verweislisten, eine
durchsuchbare HTML-Darstellung der Schnittstellen eines Systems
usw.

- die Prüfung der Korrektheit bzw. Konsistenz von einzelnen Doku-
menten bzw. mehreren zusammengehörigen Dokumenten. Für die
Fehlersuche wird sehr viel Arbeitszeit verwendet, so daß hier Werk-
zeugunterstützung besonders lohnend ist. Die konkret durchzufüh-
renden Prüfungen hängen natürlich vom vorliegenden Dokumenttyp
ab. Beispiele sind Syntaxprüfungen in Quellprogrammen, wie sie üb-
licherweise von Compilern oder speziellen Testwerkzeugen durchge-
führt werden, oder die Überprüfung von Konsistenzkriterien zwischen
zusammengehörigen Einzeldokumenten, z.B. ER-Diagramm, Daten-
flußmodell und Data Dictionary in der Modernen Strukturierten
Analyse.

- die Integration von Dokumenten über mehrere Phasen hinweg; hier-
auf gehen wir unten näher ein.

- die Unterstützung der Wiederverwendung

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 7

- das automatische Veranlassen der vorstehenden Prüfungen bzw.
Transformationen, wenn sich das Ausgangsdokument verändert hat.

Qualitätsverbesserung. Viele der vorstehenden Tätigkeiten sind so
aufwendig, daß sie von Hand praktisch nicht oder nur selten durchge-
führt werden können und, sofern keine geeigneten Werkzeuge verfügbar
sind, schlicht unterbleiben. Folge ist eine reduzierte Qualität. Die
entsprechenden Dienste einer SEU wirken daher vielfach eher qualitäts-
verbessernd als kostensenkend.

Ferner können Arbeitsschritte, die von Hand gestartet werden, ver-
sehentlich mit falschen Optionen oder Dokumentversionen durchgeführt
oder ganz vergessen werden. Gegen derartige Bedienungsfehler hilft ein
weitgehend automatisiertes Anstoßen aller notwendigen Arbeitsschrit-
te auf der Basis eines Vorgehensmodells. Eine derartige Unterstützung
bedingt natürlich eine formale Spezifikation des Vorgehensmodells.

2.2 Einsatzbereiche und Funktionsumfang

2.2.1 Zu unterstützende Tätigkeiten bei der Software-Ent-
wicklung

Bei der Entwicklung eines Softwaresystems werden verschiedene Typen
von (meist papierlosen) Dokumenten mit entsprechenden Methoden
und Verfahren produziert. Eine (Entwicklungs-) Methode ist dabei
gegeben durch

1. einen Systembeschreibungstyp, z.B. ER-Diagramme, Petri-
Netze, Architekturdiagramme, Quellprogramme usw.,

2. eine Menge von detaillierteren Verfahren bzw. Arbeitsschritten (“Tä-
tigkeiten”) und mehr oder minder präzise Regeln, in welcher Weise
die Tätigkeiten auszuführen sind, um die gewünschte Systembe-
schreibung zu produzieren.

Eine Systembeschreibung eines bestimmten Typs beschreibt das
Softwaresystem aus einem bestimmten Blickwinkel bzw. auf einem

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 8

bestimmten Abstraktionsniveau. Um sie mit Werkzeugen verarbei-
ten zu können, muß sie in der Syntax einer konkreten textuellen oder
graphischen Sprache gespeichert werden.

Neben den Tätigkeiten, die unmittelbar zur (Weiter-) Entwicklung
der Software und der zugehörigen Dokumentation beitragen, treten
auch Tätigkeiten zur Projektadministration, Qualitätssicherung, Be-
richtswesen innerhalb des Unternehmens etc. auf.

In einem Vorgehensmodell (software process model) wird mehr
oder weniger exakt festgelegt, welche Dokumente zu produzieren sind,
welche Methoden und Verfahren dabei anzuwenden und welche Tä-
tigkeiten in welcher Abfolge durchzuführen sind. Beispiele sind das
Phasenmodell und das Spiral-Modell. Das Vorgehensmodell hängt vom
Typ, der Größenordnung und der geforderten Qualität der zu ent-
wickelnden Software sowie anderen Faktoren ab. Die Vorgehensmodelle
für verschiedene Klassen von Software können so unterschiedlich sein,
daß gewisse Tätigkeiten bei manchen Vorgehensmodellen auftreten und
bei anderen nicht.

Die in einem Vorgehensmodell auftretenden Methoden sollten inte-
griert sein in dem Sinne, daß die sukzessive zu erstellenden Dokumente
semantisch konsistent sind und durch inkrementelle Erweiterung oder
durch Transformation auseinander entstehen. Ferner sollen sie keine
Teile enthalten, die nicht zum Endergebnis beitragen.

Wie schon oben erwähnt hängen die anfallenden Tätigkeiten vom
Typ der zu entwickelnden Software und vom Vorgehensmodell ab. Es
ist hier nützlich, zwei Klassen von Tätigkeiten zu unterscheiden:

- Tätigkeiten, die bei fast allen Vorgehensmodellen auftreten: Pro-
jektverwaltung, Entwicklungsprozeßsteuerung, Konfigurationsmana-
gement, Dokumentation, Textverarbeitung, Berichterstellung, Wie-
derverwendung von Komponenten (Bibliotheken), elektronische Post
und andere Bürotätigkeiten.

- Vorgehensmodell-spezifische Tätigkeiten, z.B. editieren, prüfen,
transformieren, übersetzen etc. von konkreten Systembeschreibun-
gen bzw. Dokumenten.

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 9

2.2.2 Funktionen von Werkzeugen

Eine SEU umfaßt normalerweise (abhängig vom zu unterstützenden
Vorgehensmodell) eine größere Anzahl methodenspezifischer oder allge-
mein einsetzbarer “Werkzeuge”. Den Begriff Werkzeug verstehen wir
hier nicht im Sinne eines ladbaren Programms, sondern in einem allge-
meinen Sinn als eine Komponente oder ein Modul der SEU, das eine
Funktionalität realisiert bzw. Dienstleistungen anbietet, die die Lö-
sung einer bestimmten Klasse von Aufgaben unterstützen. Weniger
relevant sind hier Details des Aufrufs und der Benutzungsschnittstelle
(z.B. graphisch oder textuell, menügesteuert oder kommandoorientiert,
selbständig startbar oder eingebettet). Beispielsweise erlauben es viele
“Editoren” nicht nur, Dokumente zu editieren, sondern auch Konsi-
stenzprüfungen zu veranlassen, Dokumente in eine druckbare Form
zu konvertieren oder Konfigurationen zu verändern. Die Konsistenz-
prüfung, Konvertierung und Konfigurationsverwaltung betrachten wir
jeweils als eigene Funktionalität, die in verschiedenen Kontexten aufruf-
bar sein kann und die nur einmal innerhalb der SEU durch ein Modul
realisiert werden sollte. Es folgt eine Liste der wichtigsten Funktionali-
täten einer SEU2:

1. Dokumentenverwaltung:

- allgemeine Dokumentenverwaltung, typischerweise an Projekten
und anderen Organisationsstrukturen orientiert (klassischerweise
Aufgabe des Dateisystems)

- Verwaltung von Versionen und Konfigurationen incl. Kontrolle
des parallelen Arbeitens; Beispiele solcher Werkzeuge sind SCCS
und RCS

- Archivierung und Wiedereinspielung von Dokumenten
- vage Suche nach Dokumenten, u.a. bei der Wiederverwendung von

Software; Beispiele entsprechender Werkzeuge in UNIX-Systemen
2 Die Liste enthält auch Dienste, die von sog. “Dienstprogrammen” des Betriebs-

systems angeboten werden; diese arbeiten stets mit Dateien. In SEU, die auf einem
Objektmanagementsystem basieren, können diese Dienstprogramme natürlich nicht
mehr unverändert eingesetzt werden.

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 10

sind grep und apropos .

2. Dokumentbearbeitung:

- Dokumenteingabe und -Korrektur; Varianten hiervon:
- textuell oder graphisch oder beides gemischt

- syntaxorientiert oder nicht (d.h. generell oder methoden- /
phasenspezifisch)

- statische und dynamische Konsistenz- und Korrektheitsprüfun-
gen, incl. Testhilfen

- Dokumentformatierung und Berichterstellung: entspricht einem
Übersetzungsvorgang (ggf. inkrementell) in eine Druckersprache

- Konvertierung von Dokumenten, insb. Übersetzung aus höheren
Programmiersprachen in Maschinensprache (ggf. inkrementell)

3. Simulatoren (z.B. für Petri-Netze)
4. Steuerung von Werkzeugen

- Skriptsprachen und zugehörige Interpreter

- Programmgenerierung und Übersetzungssteuerung: in Dateisy-
stemen beispielsweise durch Systeme wie make abgedeckt; Basis
sind Abhängigkeiten zwischen Übersetzungseinheiten (“makefi-
le”) und Informationen über Änderungen an Dokumenten (z.B.
Zeitstempel)

5. Projektmanagement

- Netzplantechnik und andere Planungsverfahren

- Messung von Merkmalen zur Qualitäts- oder Aufwandsabschät-
zung

6. Kontrolle und Unterstützung eines formal modellierten Entwick-
lungsprozesses.

Neben den “normalen” Werkzeugen gibt es noch “Meta-Werk-
zeuge”, also Werkzeuge zum Erzeugen von Werkzeugen:

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 11

- Makroprozessoren: durch diese kann beispielsweise der Umfang einer
Sprache verändert werden

- Übersetzergeneratoren: diese erlauben es, aus einer Grammatik ei-
ner Sprache wesentliche Teile eines Übersetzers zu generieren; sofern
auch die Semantik der Sprache formal angebbar ist, kann sogar der
komplette Übersetzer generiert werden.

- Syntaxeditor-Generatoren: diese erlauben es, analog zu Übersetzer-
generatoren aus einer Grammatik einer Sprache einen zugehörigen
Syntaxeditor (manchmal gepaart mit einem inkrementellen Compi-
ler) zu generieren.

Wir haben bisher unterstellt, daß die SEU und die Software,
die mit der SEU entwickelt wird, auf dem gleichen Rechner laufen,
Entwicklungs- und “Produktionsrechner” also identisch sind. Dies ist
nicht immer möglich. Bei eingebetteten Prozessoren, z.B. in einer Chip-
karte oder einem Netzwerk-Controller, kann es sein, daß keine Tastatur,
kein Bildschirm oder keine Speichermedien angeschlossen werden kön-
nen oder die Prozessorleistung und der verfügbare Hauptspeicher viel
zu gering sind. Bei sehr teuren Hochleistungsrechnern kann es sein, daß
diese für die eigentliche Produktionsaufgabe eingesetzt werden müs-
sen und daß die Rechenlast, die durch die für die Entwickler laufenden
SEU verursacht wird, den Betrieb stören würde. In solchen Fällen
trennt man zwischen Entwicklungs- und Zielrechnern. Als Entwick-
lungsrechner verwendet man heute vernetzte PCs. Folgende zusätzliche
Funktionen müssen hier durch die SEU angeboten werden:

- Herunterladen von ausführbaren Programmen auf den Zielrechner,
incl. der Kontrolle der entsprechenden Vernetzungsmechanismen

- Starten und Kontrollieren der Programme auf dem Zielrechner, incl.
Testunterstützung

- Simulatoren, die den Zielrechner auf dem Entwicklungsrechner si-
mulieren

Wegen der Vielfalt existierender Vorgehensmodelle und der dar-
aus folgenden Vielfalt von SEU kann man sehr viele Einzelfunktionen,

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 12

die irgendwo in irgendeiner SEU auftreten, identifizieren. Ein um-
fangreiches Klassifikationsraster derartiger Funktionen findet sich in
[ECMATR69].

2.3 Benutzertypen

Der klassische Benutzer einer SEU ist der “qualifizierte Entwickler”, al-
so jemand, der i.w. die Methodenkenntnisse eines Diplom-Informatikers
hat und der längerfristig mit der gleichen Umgebung arbeitet, also Zeit
hat, viele Details und Facetten der SEU kennenzulernen.

Sehr häufig sind diese Annahmen aber nicht erfüllt. Software wird
vielfach von Personen (mit-) entwickelt, die in erster Linie Fachleute
auf einem Anwendungsgebiet sind und die in der Informatik nur rudi-
mentäre Kenntnisse haben. Für solche Personen ist es sinnvoller, viele
Details vorzugeben bzw. nur die wahrscheinlich sinnvollen Optionen zu-
zulassen. Ferner sind erhöhte Anforderungen an das Hilfesystem der
SEU zu stellen.

Ein weiterer Benutzertyp sind gelegentliche Nutzer; für diese bil-
det der oft unüberschaubare Vorrat an Funktionen und Optionen ein
wesentliches Hindernis.

Ähnlich sind “Anfänger” einzustufen, die noch ausgebildet werden,
und die zunächst nur die “wichtigen” Funktionen sehen sollten.

2.4 Qualitätskriterien

Funktionale Vollständigkeit: Eine SEU soll Dienste anbieten, die
alle bei der Entwicklung von Software anfallenden Tätigkeiten unter-
stützen. Wie schon oben erwähnt hängen die anfallenden Tätigkeiten
vom Typ der zu entwickelnden Software und vom Vorgehensmodell ab.
Gleiches gilt somit für den Begriff Vollständigkeit. Alle vorgehensmo-
dellspezifischen und alle allgemein auftretenden Tätigkeiten sollten von
einer SEU unterstützt werden.

Methodentreue: Sofern der Anbieter eines Werkzeugs behauptet,
daß dieses die Methode X unterstützt, sollte die Methode X auch voll-
ständig und exakt unterstützt werden. Wenn die Methode X z.B.

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 13

bestimmte Dokumenttypen, Dokumentelemente und Konsistenztests
vorsieht, sollten diese alle darstellbar sein bzw. angeboten werden (dies
kann zunächst noch als ein Aspekt der funktionalen Vollständigkeit an-
gesehen werden) und exakt gemäß der Methodenbeschreibung arbeiten.
Analog sollten graphische Notationen exakt unterstützt werden (bei
der Anzeige auf dem Bildschirm oder beim Drucken auf Papier).

Leider sind viele Methoden in Lehrbüchern oder sogar in den Ori-
ginalquellen nur recht vage beschrieben. Viele Details werden von
den Methodenbeschreibungen überhaupt nicht behandelt (z.B. Eigen-
schaften von Editoren: Welche Dokumentfragmente können auf die
Zwischenablage des Editors kopiert werden? Wie können mehrere Ent-
wickler parallel auf überlappenden Dokumenten arbeiten?) oder sind
nicht praktikabel (z.B. zu detailreiche graphische Notationen, die auf
Bildschirmen mit üblicher Auflösung nicht darstellbar sind, unzurei-
chende Unterstützung sehr großer Modelle usw.)

Integration: Eine besonders wichtige Anforderung an eine SEU ist,
daß sie in mehrfacher Hinsicht integriert ist (wobei die SEU “seman-
tisch” nur so weit integriert sein kann, wie die unterstützten Methoden
integriert sind):

- Verteilung, unterliegendes Betriebssystem: Wenn eine SEU aus ein-
zelnen Werkzeugen, die ggf. sogar auf verschiedenen Rechnern (PCs,
Mainframes, Workstations) laufen, zusammengesetzt ist, dann müs-
sen als elementarste Form der Integration diese Werkzeuge von einem
Arbeitsplatz aus benutzbar gemacht werden.

- Daten: Die verschiedenen Arten von Systembeschreibungen, die in
einem Vorgehensmodell auftreten, weisen fast immer gewisse Red-
undanzen (oder Konsistenzbedingungen untereinander) auf. Zum
Beispiel kann der Datentyp einer Klasse in einem Klassendiagramm
auch in einem zugehörigen Zustandsübergangsdiagramm und im
Quellprogramm auftreten. Redundante oder ableitbare Daten soll-
ten nicht erneut vom Software-Entwickler eingegeben werden müssen.
Sofern Redundanzen nicht vermeidbar sind, muß die Beseitigung
von Inkonsistenzen unterstützt werden.

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 14

- Benutzungsschnittstelle: Um den Lernaufwand zu begrenzen und
die Benutzungsfreundlichkeit zu erhöhen, sollen die Sprachen, in
denen der Entwickler mit verschiedenen Werkzeugen bzw. Funkti-
onsgruppen der SEU kommuniziert, möglichst einheitlich sein. Dies
gilt für alle Abstraktionsebenen der Kommunikation: einzelne Zei-
chen (lexikalische Ebene), Syntax und Semantik von Kommandos,
ganze Dialoge. Die lexikalischen und syntaktischen Aspekte der
Kommunikation können durch ein Fenstersystem konstruktiv verein-
heitlicht werden. Wünschenswert ist ferner, daß die Werkzeuge die
zum unterliegenden Basissystem gehörigen Gestaltungsrichtlinien
einhalten3.

- (Werkzeug-) Steuerung / Automation: Bei den meisten Vorgehens-
modellen treten häufig wiederholte Sequenzen von Arbeitsschritten
auf (z.B. Editieren - Prüfen - Übersetzen - Binden von Program-
men). Entsprechend können durch die Gruppierung von Funktionen
innerhalb einer SEU wiederholte Sequenzen von Benutzerkomman-
dos erforderlich sein. Soweit möglich und sinnvoll, sollten einzelne
Werkzeuge bzw. Funktionen der SEU automatisch aufgerufen und
gesteuert werden.

- Überwachung und Unterstützung des Software-Entwicklungsprozesses:
Die Einhaltung der im Vorgehensmodell enthaltenen Regeln sollte
kontrolliert werden. Diese Regeln sind immer dann anwendbar, wenn
ein Entwickler einen Arbeitsschritt beendet und ein Folgearbeits-
schritt ausgewählt werden muß. Die Kontrolle bzw. Unterstützung
kann z.B. darin bestehen,

- Abweichungen vom Vorgehensmodell durch Warnungen anzuzei-
gen

- mögliche nächste Arbeitsschritte vorzuschlagen
- den Entwickler bei der Auswahl alternativer Arbeitsschritte zu

beraten (z.B. anzuwendenden Prüfungen)
3Da die konkurrierenden Basissysteme in ihrer Funktionalität und den Gestal-

tungsrichtlinien nicht konsistent sind, kann eine komplexe Applikation immer nur
an eine Plattform optimal angepaßt werden. Will ein Werkzeuganbieter mehrere
Plattformen unterstützen, müssen u.U. Varianten des Werkzeugs gebildet werden.

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 15

- die Menge der zulässigen nächsten Arbeitsschritte einzuschränken

- den nächsten Arbeitsschritt automatisch zu starten4

Benutzungsfreundlichkeit: Die Bedienung der SEU sollte leicht
erlernbar, bequem, konsistent (s. auch Integration der Benutzerschnitt-
stelle) und an individuelle Benutzerbedürfnisse anpaßbar sein. Die
Benutzerschnittstelle der SEU sollte software-ergonomische Standards
(DIN 66234, Teil 8: Grundsätze der Dialoggestaltung) einhalten und
ein Hilfesystem enthalten.

Teamarbeit: Große Softwaresysteme werden arbeitsteilig in Teams
entwickelt. Die parallele Arbeit der Entwickler und die Kooperation
innerhalb des Teams muß unterstützt werden.

Adaptierbarkeit: Die SEU muß an die Arbeitsumgebung und an
die organisatorisch/technischen Verhältnisse beim Software-Entwickler
(z.B. Layout von Ausdrucken, interne Prozeduren und Standards etc.)
adaptierbar sein.

Offenheit: Die Architektur sollte interne Schnittstellen aufweisen, die
die Integration mit anderen Werkzeugen (z.B. beim Software-Entwickler
bereits vorhandenen oder für die Adaptierung zusätzlich benötigten
Werkzeugen) erleichtern. Diese Schnittstellen sollten offen sein. Bei-
spiele sind u.a. Datenaustauschformate.

Hintergrund dieser Forderung ist auch, daß viele Anwender sich ih-
re SEU aus Komponenten, die von verschiedenen Herstellern stammen,
zusammensetzen wollen (s. Abschnitt 4); ohne normierte Schnittstellen
ist nicht zu erwarten, daß Produkte unterschiedlicher Hersteller zu-
sammenpassen. Unter einer SEU-Plattform versteht man einen Satz
entsprechender Schnittstellen; unter Offenheit versteht man dann die
Fähigkeit der SEU, in SEU-Plattformen integrierbar zu sein.

4Dieser Fall entspricht der schon erwähnten automatischen Werkzeugsteuerung.

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 16

3 Beispiele für Klassen von Umgebungen

Im folgenden werden aus der Vielzahl verschiedener Arten von Umge-
bungen nur einige wenige typische Formen vorgestellt. Die angegebenen
Merkmale beziehen sich sowohl auf den für den Benutzer sichtbaren
Funktionsumfang als auch auf die Architektur der Umgebung. [Na93]
enthält ein sehr detailliertes Klassifikationsraster für SEU und viele
weitere Beispiele. Literaturangaben zu den als Beispiel angeführten Um-
gebungen finden sich in [PeR88]. Beschreibungen weiterer Umgebungen
finden sich in [Ba98, Na93].

Klassifikation nach Abdeckungsgrad der Phasen:
Programmierumgebungen unterstützen nur die “späten” Phasen

der Software-Entwicklung (“ lower CASE ”), also Entwurf, Programmie-
rung und Test von Programmen, meist nur in einer konkreten Program-
miersprache.

“Upper-CASE”-Umgebungen enthalten primär Werkzeuge, die
die frühen Entwicklungsphasen unterstützen. Typische unterstützte
Methoden sind die UML5, Datenmodellierung mit Entity-Relationship-
Diagrammen oder Datenflußmodelle. Derartige Umgebungen werden
vor allem bei der Entwicklung von betrieblichen Informationssyste-
men benutzt; dieser spezielle Anwendungsbereich der Softwaretechnik
hat vermutlich die größte Zahl von Anwendern und das der Zahl nach
umfangreichste Angebot an Werkzeugen. “Upper-CASE”-Umgebungen
bzw. Werkzeuge müssen mit einem Data Dictionary System, einem
Datenbanksystem und ggf. einer 4.-Generationssprache integriert sein;
letztere werden in diesem Kontext meist nicht als CASE-Werkzeuge
bezeichnet.

Klassifikation nach der Realisierungsmethode:
“Werkzeugkästen” bestehen aus mehreren durch das Betriebs-

system verbundenen Einzelwerkzeugen. Die Daten sind in Dateien
5Bei objektorientierten Methoden ist die Trennung zwischen Analyse, Entwurf

und Implementierung nicht scharf bzw. soll gerade überwunden werden; UML-
Werkzeuge unterstützen daher oft auch die späten Phasen.

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 17

gespeichert; Werkzeuge tauschen Daten über Dateien aus. Der Be-
nutzer muß die Werkzeuge durch Betriebssystemkommandos aufrufen;
allerdings kann durch geeignete Kommandoprozeduren dieser Aufwand
stark reduziert und insgesamt der Eindruck einer integrierten Umgebung
erweckt werden. Bekanntestes Beispiel ist UNIX mit den zugehöri-
gen Werkzeugen. Die einzelnen Werkzeuge können in unterschiedlichen
Sprachen geschrieben sein.

In sprachbezogenen SEU sind alle Werkzeuge in der gleichen
Programmiersprache geschrieben und werden typischerweise sogar zu-
sammen in einem einzigen Betriebssystemprozeß ausgeführt bzw. in-
terpretiert; hierdurch können sie über gemeinsame Hauptspeicherda-
tenstrukturen besonders effizient Daten untereinander austauschen und
wirken daher aus Benutzersicht besser integriert.

Meta-CASE-Umgebungen bestehen im Kern aus einem Inter-
preter für Werkzeugspezifikationen. Motiviert sind solche Architekturen
dadurch, daß z.B. die vielen in den frühen Phasen auftretenden Dia-
grammtypen sehr viele Gemeinsamkeiten aufweisen (z.B. Operationen
in Formularen oder graphischen Editoren für netzartige Dokumente),
die in einem generischen Kern realisiert werden; um eine Instanz der
SEU für konkrete Dokumenttypen zu bilden, wird der generische Kern
u.a. um Operationen zur Darstellung von Knoten und Kanten in Netzen
erweitert. Die Werkzeugspezifikationen stellen ihrerseits Dokumente
dar und können ggf. durch spezielle oder sogar “normale” Werkzeuge
bearbeitet werden. Vorteil des Meta-CASE-Konzepts ist aus Sicht der
Anbieter der reduzierte Implementierungsaufwand und aus Sicht der
Benutzer ggf. die Möglichkeit, die Werkzeuge über ihre Spezifikationen
weitgehend anpassen zu können.

Klassifikation nach der Art der Datenverwaltung:
Dateien sind das klassische Medium zur Dokumentspeicherung

und typisch für Werkzeugkästen. Nachteilig an Dateien ist u.a., daß
keine feingranularen Konsistenzbedingungen zwischen verschiedenen
Dokumenten direkt dargestellt und überwacht werden können und daß
nicht ohne weiteres zusätzliche (benutzerspezifische) Erweiterungen

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 18

vorgenommen werden können6.
Vielfach ist versucht worden, die Nachteile von Dateien durch Ein-

satz konventioneller, insb. relationaler DBMS zu vermeiden. Es zeigt
sich allerdings, daß die konventionellen Datenbankmodelle wenig geeig-
net sind, die komplexen Strukturen innerhalb von Softwaredokumenten
nachzubilden; in der Folge kommt es typischerweise zu erheblichen
Performance-Problemen. Weiterhin sind die Transaktionskonzepte und
andere Details konventioneller DBMS weniger geeignet für diesen An-
wendungsbereich.

Aufgrund der vorstehend skizzierten Probleme benutzen manche
SEU eine Kombination von Dateisystem und DBMS: die einzelnen
Werkzeuge arbeiten primär auf Dateien. Zusätzlich, also redundant,
werden relevante Informationen in einem typischerweise relationalen
DBMS abgelegt. Die Datenbank enthält nur solche Daten, die z.B.
für dokumentübergreifende Konsistenztests oder die Projektverwaltung
notwendig sind, also gerade die Daten, auf denen interessierende Abfra-
gen gestellt werden können. Die relevanten beschreibenden Daten zu
einem Dokument werden typischerweise nur auf explizite Benutzeran-
forderung hin extrahiert und in die Datenbank eingetragen; deswegen,
aber auch aus anderen Gründen, kann man i.a. nicht garantieren, daß
die Daten in der Datenbank und in den Dateien immer konsistent sind.

Alternativ kann man ein nichtkonventionelles DBMS einsetzen und
die Werkzeuge direkt auf diesem arbeiten lassen; solche DBMS wer-
den auch als Repository bezeichnet7. In technischer Hinsicht kann
diese Lösung optimal gestaltet werden. Intern werden bei einigen kom-
merziell erhältlichen Umgebungen derartige Repositories eingesetzt.
Versuche, Repositories zu standardisieren (PCTE, IRDS), um die Inte-
gration von Werkzeugen zu erleichtern, sind in der Praxis gescheitert; es
handelt sich hier um sehr komplexe Systeme, für die der Markt eher eng

6Dies gilt auch, wenn z.B. XML als Dateiformat benutzt wird; XML ermög-
licht es zwar, Dokumente feingranular zu modellieren, unterstützt aber keinen
Sichtenmechanismus ähnlich wie Datenbanksysteme.

7Die Bezeichnung Repository wird allerdings auch für andere Systeme verwen-
det, z.B. in Versionsmanagementsystemen für Verzeichnisse und Dateien, die Daten
über frühere Versionen enthalten, und für Datenbanken, die vor allem Metadaten
enthalten.

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 19

ist, was zu einem geringen Angebot und zu einer schlechten Relation
zwischen Preis und Qualität führt8, ferner macht sich ein Werkzeugher-
steller abhängig von dem Repository-Anbieter und kann nicht mehr
ohne weiteres im Repository Funktionalität ändern, wenn dies für die
Weiterentwicklung der Werkzeug wünschenswert erscheint.

4 SEU als Standardsoftware

In den vorstehenden Abschnitten, speziell in Abschnitt 2.4, waren An-
forderungen an eine SEU beschrieben worden, allerdings recht allgemein
und etwa auf dem Niveau eines Lastenhefts. Die Frage ist, ob und
wie man diese Anforderungen detaillierter ausarbeitet. Wenn wir ei-
ne SEU als Individualsoftware ansehen, wobei ein Entwickler oder ein
Gruppe von Entwicklern der “Kunde” wären, und das übliche Phasen-
modell beibehalten, dann würde der nächste Schritt darin bestehen,
die Anforderungen detailliert zu analysieren, anschließend das System
zu entwerfen, zu implementieren usw. Die grundlegenden Analyse- und
Entwurfsmethoden, die üblicherweise im Rahmen von Softwaretechnik-
Vorlesungen vermittelt werden, reichen allerdings für die Entwicklung
von SEU nicht aus bzw. sind nicht sinnvoll anwendbar:

- SEU sind sehr komplexe Systeme, die unterschiedlichste Komponen-
ten enthalten, zu deren Konstruktion ganz unterschiedliche Techno-
logien eingesetzt werden. Für die fast immer enthaltenen Compi-
ler wird man z.B. auf Methoden des Compilerbaus zurückgreifen.
Dementsprechend müßte schon in der Analysephase eine Mixtur von
Methoden für die unterschiedlichen Komponenten eingesetzt werden.

- Aufgrund des Umfangs und der Diversität der Funktionen einer SEU
verursacht ein halbwegs vollständiges Pflichtenheft einen extremen
Aufwand. Dieser Aufwand ist nur in seltenen Ausnahmefällen finan-
zierbar. Normalerweise ist es allenfalls realistisch, zwischen komplet-
ten SEU verschiedener Hersteller auszuwählen oder Komponenten
verschiedener Hersteller zusammenzustellen und zu integrieren. Ei-
ne SEU ist hier als Standardsoftware zu behandeln, die überwiegend
8Eine ausführliche Diskussion von Repositories findet sich u.a. in [IRA].

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 20

aus im Markt erhältlichen Komponenten besteht, die auf die speziel-
len Benutzeranforderungen hin adaptiert bzw. nur punktuell durch
eigene Software ergänzt werden.

Daher ist das klassische Phasenmodell bei SEU (und generell bei
Standardsoftware) nur in stark modifizierter Form anwendbar: zentral
ist die Auswahl der Standard-Komponenten, klassische Entwicklertä-
tigkeiten fallen nur noch am Rande an. Den Auswahlprozeß können
wir hier nur kurz behandeln.

Die Auswahl von SEU bzw. von SEU-Komponenten erfordert eine
Bewertung derselben, für die Bewertung müssen Bewertungsmaßstä-
be festgelegt werden. Bewertungsmaßstäbe sind aber inhaltlich i.w.
Anforderungen, allenfalls die Formulierung ist anders, und es kommen
Wichtigkeitsgrade bzw. Wertigkeiten hinzu. Wie schon erwähnt können
Anforderungen mit vertretbarem Aufwand nur oberflächlich formuliert
werden.

Eine einigermaßen gründliche Bewertung einer SEU anhand gegebe-
ner Bewertungsmaßstäbe ist, wenn sie mit Experimenten unterfüttert
wird, sehr aufwendig. Je nach Umfang der SEU ist von einem Aufwand
von mehreren Wochen oder Monaten auszugehen. Ein Grund hierfür
ist, daß sich die Bewerter normalerweise erst in das System einarbeiten
müssen. Bewertungen, die von “Anfängern” angestellt werden, sagen
meist mehr über den Lernzustand des Bewerters als über das bewertete
System aus.

Dieses Aufwandsproblem vervielfacht sich, wenn mehrere SEU zur
Auswahl stehen und bewertet werden sollen. Aus Aufwandsgründen
muß daher i.d.R. auf recht oberflächliche Verfahren (einfache Checkli-
sten), die Auswertung von Testberichten und Erfahrungen anderer und
vor allem Beratung zurückgegriffen werden.

Die vorstehenden Probleme zeigen andererseits, wie wichtig es ist,
daß eine SEU offen, adaptierbar und erweiterbar ist (vgl. Abschnitt
2.4), um ggf. punktuell eigene Software einbinden zu können.

c©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 21

Literatur

[Ba98] Balzert, H.: Lehrbuch der Software-Technik - Software-Manage-
ment, Software-Qualitätssicherung, Unternehmensmodellierung;
Spektrum Akademischer Verlag; 1998

[ECMATR69] Reference Model for Project Support Environments; EC-
MA Technical Report TR/69; zugleich NIST Special Publication
500-213; 1994/12

[Na93] Nagl, M.: Software-Entwicklungsumgebungen: Einordnung und
zukünftige Entwicklungslinien; Informatik-Spektrum 16:5, p.270-
280; 1993/10

[PaS94] Pagel, B.-U.; Six, H.-W.: Software Engineering, Band 1; Addi-
son Wesley (Deutschland) GmbH, Bonn; 1994

[PeR88] Penedo, L.; Riddle, W.E.: Software Engineering Environment
Architectures; IEEE Trans. o. Software Engineering 14:6, p.689-
696; 1988/06

[IRA] Kelter, U.: Lehrmodul “Integrationsrahmen für Software-Ent-
wicklungsumgebungen”; 1999/11

[SASM] Kelter, U.: Lehrmodul “Systemanalyse und Systemmodellie-
rung”; 1999/10

c©2001 Udo Kelter Stand: 02.02.2001

Index
Benutzer, 12

CASE, 3
Einführung von, 4

CASE-Umgebung, 4

Dokument
Bearbeitung, 10
Korrektheitsprüfung, 6
Transformation, 6

Entwicklungsrechner, 11
Entwicklungstätigkeiten, 8

Vorgehensmodell-spezifische, 8

Integration, 6
IRDS, 19

Lastenheft, 4

Methode, 7
Meta-CASE, 17
Meta-Werkzeuge, 10

PCTE, 19
Phasenmodell, 20
Produktivität, 6
Programmierumgebungen, 16

Qualität, 7, 12
Adaptierbarkeit, 15
Benutzungsfreundlichkeit, 15
Datenintegration, 13
Integration, 13
Methodentreue, 12
Offenheit, 15
Prozeßunterstützung, 14

Referenzmodell, 12

Repository, 18

SEU, 3
Software-Entwicklungsumgebung, 3,

4
Anforderungen, 19
Auswahl, 20
Bewertung, 20
Integration, 13
Konfiguration, 19
Offenheit, 20
Ziele, 5

software process model, 8
Systembeschreibung, 7
Systembeschreibungstyp, 7

Upper-CASE-Umgebung, 16

Vorgehensmodell, 7, 8

Werkzeug, 3
als SEU-Komponente, 9
Funktionen, 12
Steuerung von -en, 10

Werkzeugkästen, 17

22

	Grundbegriffe
	Ein ``Lastenheft'' für SEU
	Ziele des Einsatzes von Werkzeugen
	Einsatzbereiche und Funktionsumfang
	Zu unterstützende Tätigkeiten bei der Software-Entwicklung
	Funktionen von Werkzeugen

	Benutzertypen
	Qualitätskriterien

	Beispiele für Klassen von Umgebungen
	SEU als Standardsoftware
	Literatur
	Index

