Software-Entwicklungsumgebungen

Udo Kelter

02.02.2001

Zusammenfassung dieses Lehrmoduls

Dieses Lehrmodul fiihrt in das Thema Software-Entwicklungsumge-
bungen ein. Wir diskutieren zunéchst die Motive und den erwarteten
Nutzen durch den Einsatz von SEU. Typische Funktionen von Werk-
zeugen einer SEU werden aufgelistet. Eine SEU soll mehrere Qua-
litatsmerkmale aufweisen; das wichtigste Qualitdtsmerkmal ist, dafs
eine SEU in verschiedener Hinsicht integriert ist. Schliefslich skizzie-
ren wir einige Klassen von SEU und konstatieren, dafs eine SEU i.w.
als Standardsoftware anzusehen ist, die i.d.R. von ihren Benutzern, al-
so Softwareentwicklern, nicht komplett neu entworfen werden kann;
allenfalls konnen Standardprodukte lokal angepafst werden.

Vorausgesetzte Lehrmodule:

obligatorisch: - Vorgehensmodelle

Stoffumfang in Vorlesungsdoppelstunden: 1.2

Software-Entwicklungsumgebungen 2

Inhaltsverzeichnis

11 Grundbegritie| 3

2"Ein “Lastenheft” fir SEUJ 4
[2.1 _Ziele des Finsatzes von Werkzeugen| 5

2.2 nsatzbereiche un nktionsumfiang 7
2.2.1 Zu unterstutzende Tatigkeiten bel der boftware—Ent— |

| wicklung] . 7
12.2.2 Funktlonen von Werkzeugen| e e 9

2.3 Benutzertypen| 12
2.4 Qualitatskriterien|. oo o000 12
13 Beispiele fur Klassen von Umgebungen| 16
4 SKEU als Standardsoftwarel 19

(©2001 Udo Kelter Stand: 02.02.2001
Dieser Text darf fiir nichtkommerzielle Nutzungen als Ganzes und unveréndert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Verdnderung und Uberfiihrung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist iiber http://kltr.de erreichbar.

Software-Entwicklungsumgebungen 3

1 Grundbegriffe

Fast alle Methoden der Softwaretechnik sind - zumindest ab einer
bestimmten Systemgrofe - zu aufwendig, um manuell praktiziert zu
werden. Mit anderen Worten ben6tigt man computergestiitzte Software-
Entwicklungswerkzeuge oder -Umgebungen (SEU), die die Entwick-
lung von Software unterstiitzen. Dieses Prinzip wird auch durch das
Schlagwort Computer-Aided (oder Assisted) Software Enginee-
ring (CASE) bezeichnet. Mit CASE verfolgt man folgende abstrakten
Ziele:

- Verbesserung der Qualitét der entwickelten Software
- Reduktion der Gesamtkosten

- Verbesserung des Managements von Entwicklungsprojekten

Diese abstrakten Ziele werden wir spéater noch verfeinern und damit
einzelne technische Anforderungen an SEU begriinden.

Werkzeuge und Umgebungen. Unterstiitzung bei der Software-
Entwicklung durch Werkzeuge war schon immer zwingend notwendig.
Beispiele konventioneller Werkzeuge sind Text-Editoren, Assembler,
Ubersetzer, Testhilfen, Modul-Bibliotheken oder andere Werkzeuge mit
einem begrenzten Funktionsumfang.

Hinzugekommen sind seit den 80er Jahren zusammen mit der Ver-
breitung von graphikfahigen PCs und Workstations vor allem Werkzeuge
mit graphischer Bedienschnittstelle und Werkzeuge fiir die friithen Pha-
sen der Software-Entwicklung, z.B. Editoren fiir Datenflulidiagramme,
Entity-Relationship-Diagramme, Petri-Netze und in letzter Zeit vor
allem UML-Modelle. Als CASE-Werkzeug bezeichnen wir hier al-
le Software-Produkte, die zumindest einzelne bei der Entwicklung von
Software benotigte Funktionen anbieten.

Das Arbeiten mit mehreren isolierten Einzelwerkzeugen hat sich
allerdings vielfach als zu ineffektiv erwiesen. Dies war eine Hauptmoti-
vation dafiir, “integrierte” Systeme mit einem breiten, “vollsténdigen”
(s.u.) Funktionsumfang zu entwickeln. Letztere bezeichnet man als

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 4

Software-Entwicklungsumgebungen oder CASE-Umgebungen.

Einfithrung von CASE. CASE-Werkzeuge wurden und werden im-
mer wieder — iiberspitzt formuliert — als Zaubermittel, mit dem sich alle
Probleme bei der Softwareentwicklung l6sen lassen, angepriesen und
verkauft. Dies ist dhnlich ldcherlich wie der Glaube, man wiirde zum
Architekten, wenn man sich ein 3D-Zeichenprogramm fiir Hauser kauft.

Gute CASE-Werkzeuge konnen durchaus die Entwickler entlasten
und deren Produktivitdt erhéhen, allerdings nur unter der Vorausset-
zung, daf die Entwickler die Entwicklungsmethoden, die das Werkzeug
unterstiitzt, gut beherrschen (und diese Methoden iiberhaupt akzep-
tieren). Oft fehlen entsprechende Methodenkenntnisse; die Einfithrung
von CASE bei einem Software-Produzenten erfordert daher haufig,
zundchst einmal die zukiinftigen Benutzer der Werkzeuge in den unter-
stiitzten Methoden auszubilden. Dariiber hinaus muf u.U. die interne
organisatorische Struktur der Software-Entwicklung verdndert werden.
Methodenschulung und organisatorische Anpassungen stellen das ent-
scheidende Problem bei der Einfithrung von CASE dar. Neben den
eigentlichen Werkzeugen benétigt ein CASE-Anwender daher haufig
Beratung bei der Methodenauswahl, Schulungen, Studienmaterialien
etc.

2 Ein “Lastenheft” fir SEU

Eine SEU ist ein Softwaresystem, somit sollten im Prinzip die Methoden
der Softwaretechnik auch auf SEU anwendbar sein. In diesem Abschnitt
werden wir in Anlehnung an dieses Paradigma die allgemeinen Anfor-
derungen an eine SEU diskutieren und uns dabei lose an der Struktur
von Lastenheften (wie z.B. in [SASM]| vorgeschlagen) orientieren. Auf
folgende Punkte gehen wir ein:

— Ziele des Einsatzes von Werkzeugen

- Einsatzbereiche und Funktionsumfang

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 5

- Benutzertypen

- Qualitatskriterien

Im Gegensatz zu einem Lastenheft beschreiben wir aber nicht die
Anforderungen an ein konkretes System, sondern die Spannbreite der
Anforderungen, die in unterschiedlichen Kontexten auftreten.

Auf eine detaillierte Anforderungsanalyse im Sinne eines Pflich-
tenhefts und Realisierungsaspekte gehen wir spéter in Abschnitt [4]
ein.

2.1 Ziele des Einsatzes von Werkzeugen

Durch den Einsatz von Werkzeugen bzw. SEU will man viele Ziele er-
reichen. Aus Sicht des Anwenders, also hier eines Softwareproduzenten
— von dem wir annehmen, daft der mit der Softwareentwicklung Geld
verdienen will —, sind vor allem folgende Ziele offensichtlich:

- Kostenreduktion
— Verbesserung der Qualitdt des Produkts
- Verbesserung des Managements des Entwicklungsprozesses

- Reduktion der Entwicklungszeit

Aus einer rein kommerziellen Sicht ist die Kostenreduktion das ein-
zige primare Ziel, die weiteren genannten Ziele tragen alle indirekt zur
Kostenreduktion beilﬂ Die Ziele sind nicht unabhéngig voneinander, so
verursachen Mafnahmen zur Qualitétssteigerung Kosten, was dem Ziel
der Kostenreduktion zuwiderlauft.

Klar sollte sein, daft Werkzeuge nicht der einzige Einfluftfaktor hin-
sichtlich der Erreichung dieser Ziele sind. Ebenfalls erheblichen Einflufs
haben u.a. die Wahl der Programmiersprache und der Entwicklungs-
methoden und die Ausbildung der Entwickler. Ein gutes Werkzeug fiir
eine schlechte Methode niitzt wenig. Im folgenden gehen wir davon

In gewisser Hinsicht ist die Reduktion der Entwicklungszeit eine Ausnahme
hiervon, denn eine verkiirzte Entwicklungszeit bei unverdnderten Kosten kann z.B.
entscheidend dafiir sein, einen Auftrag iiberhaupt zu bekommen.

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 6

aus, dak die Methoden und Sprachen, die unterstiitzt werden sollen,
bereits vorgegeben sind und daf Qualitdtsméngel derselben nicht als
Qualitdtsméngel der Werkzeuge angesehen werden. Wir reduzieren
die Diskussion also darauf, was Werkzeuge bei diesen Vorgaben zur
Erreichung der o.g. Ziele beitragen kénnen.

Kostenreduktion. Das Ziel der Kostenreduktion 1dft sich in erster
Linie dadurch erreichen, daf die Entwickler von aufwendigen automati-
sierbaren Tatigkeiten entlastet werden. M.a.W. wird die Produktivitét
der Entwickler gesteigert. Wichtige Beispiele fiir Tétigkeiten, die so-
wohl aufwendig als auch automatisierbar sind und fiir die eine SEU
Werkzeuge anbieten sollte, sind:

- die Transformation von Dokumenten in andere Formate bzw. ab-
hingige Dokumente. Triviales Beispiel ist die Ubersetzung eines
Programms, das in einer hoheren Programmiersprache geschrie-
ben ist, in Maschinensprache durch einen Compiler. Nicht weniger
trivial, aber heute noch nicht selbstverstéandlich ist die automati-
sche Generierung von Dokumentation wie z.B. Verweislisten, eine
durchsuchbare HTML-Darstellung der Schnittstellen eines Systems
USW.

- die Priifung der Korrektheit bzw. Konsistenz von einzelnen Doku-
menten bzw. mehreren zusammengehorigen Dokumenten. Fiir die
Fehlersuche wird sehr viel Arbeitszeit verwendet, so dafs hier Werk-
zeugunterstiitzung besonders lohnend ist. Die konkret durchzufiih-
renden Priifungen héngen natiirlich vom vorliegenden Dokumenttyp
ab. Beispiele sind Syntaxpriifungen in Quellprogrammen, wie sie iib-
licherweise von Compilern oder speziellen Testwerkzeugen durchge-
fiihrt werden, oder die Uberpriifung von Konsistenzkriterien zwischen
zusammengehorigen Einzeldokumenten, z.B. ER-Diagramm, Daten-
flusmodell und Data Dictionary in der Modernen Strukturierten
Analyse.

- die Integration von Dokumenten iiber mehrere Phasen hinweg; hier-
auf gehen wir unten néher ein.

- die Unterstiitzung der Wiederverwendung

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 7

- das automatische Veranlassen der vorstehenden Priifungen bzw.
Transformationen, wenn sich das Ausgangsdokument verdndert hat.

Qualitatsverbesserung. Viele der vorstehenden Tétigkeiten sind so
aufwendig, dafs sie von Hand praktisch nicht oder nur selten durchge-
flihrt werden konnen und, sofern keine geeigneten Werkzeuge verfligbar
sind, schlicht unterbleiben. Folge ist eine reduzierte Qualitdt. Die
entsprechenden Dienste einer SEU wirken daher vielfach eher qualitits-
verbessernd als kostensenkend.

Ferner konnen Arbeitsschritte, die von Hand gestartet werden, ver-
sehentlich mit falschen Optionen oder Dokumentversionen durchgefiihrt
oder ganz vergessen werden. Gegen derartige Bedienungsfehler hilft ein
weitgehend automatisiertes Anstofen aller notwendigen Arbeitsschrit-
te auf der Basis eines Vorgehensmodells. Eine derartige Unterstiitzung
bedingt natiirlich eine formale Spezifikation des Vorgehensmodells.

2.2 Einsatzbereiche und Funktionsumfang

2.2.1 Zu unterstiitzende Téitigkeiten bei der Software-Ent-
wicklung

Bei der Entwicklung eines Softwaresystems werden verschiedene Typen
von (meist papierlosen) Dokumenten mit entsprechenden Methoden
und Verfahren produziert. Eine (Entwicklungs-) Methode ist dabei
gegeben durch

1. einen Systembeschreibungstyp, z.B. ER-Diagramme, Petri-
Netze, Architekturdiagramme, Quellprogramme usw.,

2. eine Menge von detaillierteren Verfahren bzw. Arbeitsschritten (“Té-
tigkeiten”) und mehr oder minder prazise Regeln, in welcher Weise
die Tatigkeiten auszufithren sind, um die gewiinschte Systembe-
schreibung zu produzieren.

Eine Systembeschreibung eines bestimmten Typs beschreibt das
Softwaresystem aus einem bestimmten Blickwinkel bzw. auf einem

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 8

bestimmten Abstraktionsniveau. Um sie mit Werkzeugen verarbei-
ten zu konnen, muf sie in der Syntax einer konkreten textuellen oder
graphischen Sprache gespeichert werden.

Neben den Tétigkeiten, die unmittelbar zur (Weiter-) Entwicklung
der Software und der zugehorigen Dokumentation beitragen, treten
auch Tétigkeiten zur Projektadministration, Qualitédtssicherung, Be-
richtswesen innerhalb des Unternehmens etc. auf.

In einem Vorgehensmodell (software process model) wird mehr
oder weniger exakt festgelegt, welche Dokumente zu produzieren sind,
welche Methoden und Verfahren dabei anzuwenden und welche Té-
tigkeiten in welcher Abfolge durchzufiihren sind. Beispiele sind das
Phasenmodell und das Spiral-Modell. Das Vorgehensmodell héngt vom
Typ, der Grofsenordnung und der geforderten Qualitat der zu ent-
wickelnden Software sowie anderen Faktoren ab. Die Vorgehensmodelle
fiir verschiedene Klassen von Software konnen so unterschiedlich sein,
dafl gewisse Téatigkeiten bei manchen Vorgehensmodellen auftreten und
bei anderen nicht.

Die in einem Vorgehensmodell auftretenden Methoden sollten inte-
griert sein in dem Sinne, daf die sukzessive zu erstellenden Dokumente
semantisch konsistent sind und durch inkrementelle Erweiterung oder
durch Transformation auseinander entstehen. Ferner sollen sie keine
Teile enthalten, die nicht zum Endergebnis beitragen.

Wie schon oben erwéhnt héngen die anfallenden Tétigkeiten vom
Typ der zu entwickelnden Software und vom Vorgehensmodell ab. Es
ist hier niitzlich, zwei Klassen von Tétigkeiten zu unterscheiden:

- Téatigkeiten, die bei fast allen Vorgehensmodellen auftreten: Pro-
jektverwaltung, Entwicklungsprozefssteuerung, Konfigurationsmana-
gement, Dokumentation, Textverarbeitung, Berichterstellung, Wie-
derverwendung von Komponenten (Bibliotheken), elektronische Post
und andere Biirotatigkeiten.

- Vorgehensmodell-spezifische Tétigkeiten, z.B. editieren, priifen,
transformieren, iibersetzen etc. von konkreten Systembeschreibun-
gen bzw. Dokumenten.

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 9

2.2.2 Funktionen von Werkzeugen

Eine SEU umfafit normalerweise (abhéngig vom zu unterstiitzenden
Vorgehensmodell) eine grofere Anzahl methodenspezifischer oder allge-
mein einsetzbarer “Werkzeuge”. Den Begriff Werkzeug verstehen wir
hier nicht im Sinne eines ladbaren Programms, sondern in einem allge-
meinen Sinn als eine Komponente oder ein Modul der SEU, das eine
Funktionalitédt realisiert bzw. Dienstleistungen anbietet, die die Lo-
sung einer bestimmten Klasse von Aufgaben unterstiitzen. Weniger
relevant sind hier Details des Aufrufs und der Benutzungsschnittstelle
(z.B. graphisch oder textuell, meniigesteuert oder kommandoorientiert,
selbstandig startbar oder eingebettet). Beispielsweise erlauben es viele
“Editoren” nicht nur, Dokumente zu editieren, sondern auch Konsi-
stenzpriifungen zu veranlassen, Dokumente in eine druckbare Form
zu konvertieren oder Konfigurationen zu verdndern. Die Konsistenz-
prifung, Konvertierung und Konfigurationsverwaltung betrachten wir
jeweils als eigene Funktionalitdt, die in verschiedenen Kontexten aufruf-
bar sein kann und die nur einmal innerhalb der SEU durch ein Modul
realisiert werden sollte. Es folgt eine Liste der wichtigsten Funktionali-
téten einer SEUR

1. Dokumentenverwaltung:

- allgemeine Dokumentenverwaltung, typischerweise an Projekten
und anderen Organisationsstrukturen orientiert (klassischerweise
Aufgabe des Dateisystems)

- Verwaltung von Versionen und Konfigurationen incl. Kontrolle
des parallelen Arbeitens; Beispiele solcher Werkzeuge sind SCCS
und RCS

- Archivierung und Wiedereinspielung von Dokumenten

- vage Suche nach Dokumenten, u.a. bei der Wiederverwendung von
Software; Beispiele entsprechender Werkzeuge in UNIX-Systemen

2 Die Liste enthalt auch Dienste, die von sog. “Dienstprogrammen” des Betriebs-
systems angeboten werden; diese arbeiten stets mit Dateien. In SEU, die auf einem
Objektmanagementsystem basieren, konnen diese Dienstprogramme natiirlich nicht
mehr unverdndert eingesetzt werden.

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 10

sind grep und apropos .

2. Dokumentbearbeitung:

Dokumenteingabe und -Korrektur; Varianten hiervon:
- textuell oder graphisch oder beides gemischt

- syntaxorientiert oder nicht (d.h. generell oder methoden- /
phasenspezifisch)

statische und dynamische Konsistenz- und Korrektheitspriifun-
gen, incl. Testhilfen

Dokumentformatierung und Berichterstellung: entspricht einem
Ubersetzungsvorgang (ggf. inkrementell) in eine Druckersprache

Konvertierung von Dokumenten, insb. Ubersetzung aus hoheren
Programmiersprachen in Maschinensprache (ggf. inkrementell)

3. Simulatoren (z.B. fiir Petri-Netze)
4. Steuerung von Werkzeugen

Skriptsprachen und zugehorige Interpreter

Programmgenerierung und Ubersetzungssteuerung: in Dateisy-
stemen beispielsweise durch Systeme wie make abgedeckt; Basis
sind Abhiéingigkeiten zwischen Ubersetzungseinheiten (“makefi-
le”) und Informationen iiber Anderungen an Dokumenten (z.B.
Zeitstempel)

5. Projektmanagement

Netzplantechnik und andere Planungsverfahren

Messung von Merkmalen zur Qualitits- oder Aufwandsabschét-
zung

6. Kontrolle und Unterstiitzung eines formal modellierten Entwick-
lungsprozesses.

Neben den “normalen” Werkzeugen gibt es noch “Meta-Werk-
zeuge”, also Werkzeuge zum Erzeugen von Werkzeugen:

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 11

- Makroprozessoren: durch diese kann beispielsweise der Umfang einer
Sprache verdandert werden

- Ubersetzergeneratoren: diese erlauben es, aus einer Grammatik ei-
ner Sprache wesentliche Teile eines Ubersetzers zu generieren; sofern
auch die Semantik der Sprache formal angebbar ist, kann sogar der
komplette Ubersetzer generiert werden.

- Syntaxeditor-Generatoren: diese erlauben es, analog zu Ubersetzer-
generatoren aus einer Grammatik einer Sprache einen zugehdrigen
Syntaxeditor (manchmal gepaart mit einem inkrementellen Compi-
ler) zu generieren.

Wir haben bisher unterstellt, daf die SEU und die Software,
die mit der SEU entwickelt wird, auf dem gleichen Rechner laufen,
Entwicklungs- und “Produktionsrechner” also identisch sind. Dies ist
nicht immer moglich. Bei eingebetteten Prozessoren, z.B. in einer Chip-
karte oder einem Netzwerk-Controller, kann es sein, dafl keine Tastatur,
kein Bildschirm oder keine Speichermedien angeschlossen werden kon-
nen oder die Prozessorleistung und der verfiigbare Hauptspeicher viel
zu gering sind. Bei sehr teuren Hochleistungsrechnern kann es sein, daf
diese fiir die eigentliche Produktionsaufgabe eingesetzt werden miis-
sen und dak die Rechenlast, die durch die fiir die Entwickler laufenden
SEU verursacht wird, den Betrieb storen wiirde. In solchen Féllen
trennt man zwischen Entwicklungs- und Zielrechnern. Als Entwick-
lungsrechner verwendet man heute vernetzte PCs. Folgende zusétzliche
Funktionen miissen hier durch die SEU angeboten werden:

- Herunterladen von ausfithrbaren Programmen auf den Zielrechner,
incl. der Kontrolle der entsprechenden Vernetzungsmechanismen

- Starten und Kontrollieren der Programme auf dem Zielrechner, incl.
Testunterstiitzung

- Simulatoren, die den Zielrechner auf dem Entwicklungsrechner si-
mulieren

Wegen der Vielfalt existierender Vorgehensmodelle und der dar-
aus folgenden Vielfalt von SEU kann man sehr viele Einzelfunktionen,

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 12

die irgendwo in irgendeiner SEU auftreten, identifizieren. Ein um-
fangreiches Klassifikationsraster derartiger Funktionen findet sich in
[ECMATRG69.

2.3 Benutzertypen

Der klassische Benutzer einer SEU ist der “qualifizierte Entwickler”, al-
so jemand, der i.w. die Methodenkenntnisse eines Diplom-Informatikers
hat und der langerfristig mit der gleichen Umgebung arbeitet, also Zeit
hat, viele Details und Facetten der SEU kennenzulernen.

Sehr haufig sind diese Annahmen aber nicht erfiillt. Software wird
vielfach von Personen (mit-) entwickelt, die in erster Linie Fachleute
auf einem Anwendungsgebiet sind und die in der Informatik nur rudi-
mentire Kenntnisse haben. Fiir solche Personen ist es sinnvoller, viele
Details vorzugeben bzw. nur die wahrscheinlich sinnvollen Optionen zu-
zulassen. Ferner sind erhohte Anforderungen an das Hilfesystem der
SEU zu stellen.

Ein weiterer Benutzertyp sind gelegentliche Nutzer; fiir diese bil-
det der oft uniiberschaubare Vorrat an Funktionen und Optionen ein
wesentliches Hindernis.

Ahnlich sind “Anfianger” einzustufen, die noch ausgebildet werden,
und die zunédchst nur die “wichtigen” Funktionen sehen sollten.

2.4 Qualitatskriterien

Funktionale Vollstindigkeit: FEine SEU soll Dienste anbieten, die
alle bei der Entwicklung von Software anfallenden Tétigkeiten unter-
stiitzen. Wie schon oben erwahnt hangen die anfallenden Téatigkeiten
vom Typ der zu entwickelnden Software und vom Vorgehensmodell ab.
Gleiches gilt somit fiir den Begriff Vollstandigkeit. Alle vorgehensmo-
dellspezifischen und alle allgemein auftretenden Tétigkeiten sollten von
einer SEU unterstiitzt werden.

Methodentreue: Sofern der Anbieter eines Werkzeugs behauptet,
dals dieses die Methode X unterstiitzt, sollte die Methode X auch voll-
stdndig und exakt unterstiitzt werden. Wenn die Methode X z.B.

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 13

bestimmte Dokumenttypen, Dokumentelemente und Konsistenztests
vorsieht, sollten diese alle darstellbar sein bzw. angeboten werden (dies
kann zunéchst noch als ein Aspekt der funktionalen Vollstéandigkeit an-
gesehen werden) und exakt geméfs der Methodenbeschreibung arbeiten.
Analog sollten graphische Notationen exakt unterstiitzt werden (bei
der Anzeige auf dem Bildschirm oder beim Drucken auf Papier).

Leider sind viele Methoden in Lehrbiichern oder sogar in den Ori-
ginalquellen nur recht vage beschrieben. Viele Details werden von
den Methodenbeschreibungen iiberhaupt nicht behandelt (z.B. Eigen-
schaften von Editoren: Welche Dokumentfragmente kénnen auf die
Zwischenablage des Editors kopiert werden? Wie konnen mehrere Ent-
wickler parallel auf tiberlappenden Dokumenten arbeiten?) oder sind
nicht praktikabel (z.B. zu detailreiche graphische Notationen, die auf
Bildschirmen mit iiblicher Auflésung nicht darstellbar sind, unzurei-
chende Unterstiitzung sehr grofer Modelle usw.)

Integration: Eine besonders wichtige Anforderung an eine SEU ist,
dafs sie in mehrfacher Hinsicht integriert ist (wobei die SEU “seman-
tisch” nur so weit integriert sein kann, wie die unterstiitzten Methoden
integriert sind):

- Verteilung, unterliegendes Betriebssystem: Wenn eine SEU aus ein-
zelnen Werkzeugen, die ggf. sogar auf verschiedenen Rechnern (PCs,
Mainframes, Workstations) laufen, zusammengesetzt ist, dann miis-
sen als elementarste Form der Integration diese Werkzeuge von einem
Arbeitsplatz aus benutzbar gemacht werden.

- Daten: Die verschiedenen Arten von Systembeschreibungen, die in
einem Vorgehensmodell auftreten, weisen fast immer gewisse Red-
undanzen (oder Konsistenzbedingungen untereinander) auf. Zum
Beispiel kann der Datentyp einer Klasse in einem Klassendiagramm
auch in einem zugehdrigen Zustandsiibergangsdiagramm und im
Quellprogramm auftreten. Redundante oder ableitbare Daten soll-
ten nicht erneut vom Software-Entwickler eingegeben werden miissen.
Sofern Redundanzen nicht vermeidbar sind, muf die Beseitigung
von Inkonsistenzen unterstiitzt werden.

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 14

- Benutzungsschnittstelle: Um den Lernaufwand zu begrenzen und
die Benutzungsfreundlichkeit zu erhéhen, sollen die Sprachen, in
denen der Entwickler mit verschiedenen Werkzeugen bzw. Funkti-
onsgruppen der SEU kommuniziert, moglichst einheitlich sein. Dies
gilt fiir alle Abstraktionsebenen der Kommunikation: einzelne Zei-
chen (lexikalische Ebene), Syntax und Semantik von Kommandos,
ganze Dialoge. Die lexikalischen und syntaktischen Aspekte der
Kommunikation kénnen durch ein Fenstersystem konstruktiv verein-
heitlicht werden. Wiinschenswert ist ferner, daf die Werkzeuge die

zum unterliegenden Basissystem gehorigen Gestaltungsrichtlinien
einhalter’]

- (Werkzeug-) Steuerung / Automation: Bei den meisten Vorgehens-
modellen treten héufig wiederholte Sequenzen von Arbeitsschritten
auf (z.B. Editieren - Priifen - Ubersetzen - Binden von Program-
men). Entsprechend kénnen durch die Gruppierung von Funktionen
innerhalb einer SEU wiederholte Sequenzen von Benutzerkomman-
dos erforderlich sein. Soweit moglich und sinnvoll, sollten einzelne
Werkzeuge bzw. Funktionen der SEU automatisch aufgerufen und
gesteuert werden.

- Uberwachung und Unterstiitzung des Software- Entwicklungsprozesses:
Die Einhaltung der im Vorgehensmodell enthaltenen Regeln sollte
kontrolliert werden. Diese Regeln sind immer dann anwendbar, wenn
ein Entwickler einen Arbeitsschritt beendet und ein Folgearbeits-
schritt ausgewéhlt werden mufs. Die Kontrolle bzw. Unterstiitzung
kann z.B. darin bestehen,

- Abweichungen vom Vorgehensmodell durch Warnungen anzuzei-
gen
- mogliche néchste Arbeitsschritte vorzuschlagen

— den Entwickler bei der Auswahl alternativer Arbeitsschritte zu
beraten (z.B. anzuwendenden Priifungen)

3Da die konkurrierenden Basissysteme in ihrer Funktionalitét und den Gestal-
tungsrichtlinien nicht konsistent sind, kann eine komplexe Applikation immer nur
an eine Plattform optimal angepafst werden. Will ein Werkzeuganbieter mehrere
Plattformen unterstiitzen, miissen u.U. Varianten des Werkzeugs gebildet werden.

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 15

- die Menge der zuléssigen néachsten Arbeitsschritte einzuschranken

- den nichsten Arbeitsschritt automatisch zu startenf

Benutzungsfreundlichkeit: Die Bedienung der SEU sollte leicht
erlernbar, bequem, konsistent (s. auch Integration der Benutzerschnitt-
stelle) und an individuelle Benutzerbediirfnisse anpafbar sein. Die
Benutzerschnittstelle der SEU sollte software-ergonomische Standards
(DIN 66234, Teil 8: Grundséitze der Dialoggestaltung) einhalten und
ein Hilfesystem enthalten.

Teamarbeit: Grofse Softwaresysteme werden arbeitsteilig in Teams
entwickelt. Die parallele Arbeit der Entwickler und die Kooperation
innerhalb des Teams mufs unterstiitzt werden.

Adaptierbarkeit: Die SEU mufs an die Arbeitsumgebung und an
die organisatorisch/technischen Verhdltnisse beim Software-Entwickler
(z.B. Layout von Ausdrucken, interne Prozeduren und Standards etc.)
adaptierbar sein.

Offenheit: Die Architektur sollte interne Schnittstellen aufweisen, die
die Integration mit anderen Werkzeugen (z.B. beim Software-Entwickler
bereits vorhandenen oder fiir die Adaptierung zuséitzlich bendtigten
Werkzeugen) erleichtern. Diese Schnittstellen sollten offen sein. Bei-
spiele sind u.a. Datenaustauschformate.

Hintergrund dieser Forderung ist auch, daf viele Anwender sich ih-
re SEU aus Komponenten, die von verschiedenen Herstellern stammen,
zusammensetzen wollen (s. Abschnitt [4); ohne normierte Schnittstellen
ist nicht zu erwarten, daft Produkte unterschiedlicher Hersteller zu-
sammenpassen. Unter einer SEU-Plattform versteht man einen Satz
entsprechender Schnittstellen; unter Offenheit versteht man dann die
Fahigkeit der SEU, in SEU-Plattformen integrierbar zu sein.

4Dieser Fall entspricht der schon erwihnten automatischen Werkzeugsteuerung.

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 16

3 Beispiele fiir Klassen von Umgebungen

Im folgenden werden aus der Vielzahl verschiedener Arten von Umge-
bungen nur einige wenige typische Formen vorgestellt. Die angegebenen
Merkmale beziehen sich sowohl auf den fiir den Benutzer sichtbaren
Funktionsumfang als auch auf die Architektur der Umgebung. [Na93]|
enthélt ein sehr detailliertes Klassifikationsraster fiir SEU und viele
weitere Beispiele. Literaturangaben zu den als Beispiel angefiithrten Um-
gebungen finden sich in [PeR&8]|. Beschreibungen weiterer Umgebungen
finden sich in [Ba98| Na93].

Klassifikation nach Abdeckungsgrad der Phasen:

Programmierumgebungen unterstiitzen nur die “spaten” Phasen
der Software-Entwicklung (“lower CASE”), also Entwurf, Programmie-
rung und Test von Programmen, meist nur in einer konkreten Program-
miersprache.

“Upper-CASE”-Umgebungen enthalten priméar Werkzeuge, die
die frithen Entwicklungsphasen unterstiitzen. Typische unterstiitzte
Methoden sind die UMIH, Datenmodellierung mit Entity-Relationship-
Diagrammen oder Datenflufimodelle. Derartige Umgebungen werden
vor allem bei der Entwicklung von betrieblichen Informationssyste-
men benutzt; dieser spezielle Anwendungsbereich der Softwaretechnik
hat vermutlich die grofste Zahl von Anwendern und das der Zahl nach
umfangreichste Angebot an Werkzeugen. “Upper-CASE’-Umgebungen
bzw. Werkzeuge miissen mit einem Data Dictionary System, einem
Datenbanksystem und ggf. einer 4.-Generationssprache integriert sein;
letztere werden in diesem Kontext meist nicht als CASE-Werkzeuge
bezeichnet.

Klassifikation nach der Realisierungsmethode:
“Werkzeugkisten” bestehen aus mehreren durch das Betriebs-
system verbundenen Einzelwerkzeugen. Die Daten sind in Dateien

5Bei objektorientierten Methoden ist die Trennung zwischen Analyse, Entwurf
und Implementierung nicht scharf bzw. soll gerade iiberwunden werden; UML-
Werkzeuge unterstiitzen daher oft auch die spiaten Phasen.

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 17

gespeichert; Werkzeuge tauschen Daten iiber Dateien aus. Der Be-
nutzer mufs die Werkzeuge durch Betriebssystemkommandos aufrufen;
allerdings kann durch geeignete Kommandoprozeduren dieser Aufwand
stark reduziert und insgesamt der Eindruck einer integrierten Umgebung
erweckt werden. Bekanntestes Beispiel ist UNIX mit den zugehori-
gen Werkzeugen. Die einzelnen Werkzeuge kénnen in unterschiedlichen
Sprachen geschrieben sein.

In sprachbezogenen SEU sind alle Werkzeuge in der gleichen
Programmiersprache geschrieben und werden typischerweise sogar zu-
sammen in einem einzigen Betriebssystemprozefs ausgefithrt bzw. in-
terpretiert; hierdurch konnen sie iber gemeinsame Hauptspeicherda-
tenstrukturen besonders effizient Daten untereinander austauschen und
wirken daher aus Benutzersicht besser integriert.

Meta-CASE-Umgebungen bestehen im Kern aus einem Inter-
preter fiir Werkzeugspezifikationen. Motiviert sind solche Architekturen
dadurch, dafs z.B. die vielen in den frithen Phasen auftretenden Dia-
grammtypen sehr viele Gemeinsamkeiten aufweisen (z.B. Operationen
in Formularen oder graphischen Editoren fiir netzartige Dokumente),
die in einem generischen Kern realisiert werden; um eine Instanz der
SEU fiir konkrete Dokumenttypen zu bilden, wird der generische Kern
uw.a. um Operationen zur Darstellung von Knoten und Kanten in Netzen
erweitert. Die Werkzeugspezifikationen stellen ihrerseits Dokumente
dar und koénnen ggf. durch spezielle oder sogar “normale” Werkzeuge
bearbeitet werden. Vorteil des Meta-CASE-Konzepts ist aus Sicht der
Anbieter der reduzierte Implementierungsaufwand und aus Sicht der
Benutzer ggf. die Moglichkeit, die Werkzeuge iiber ihre Spezifikationen
weitgehend anpassen zu kénnen.

Klassifikation nach der Art der Datenverwaltung:

Dateien sind das klassische Medium zur Dokumentspeicherung
und typisch fiir Werkzeugkésten. Nachteilig an Dateien ist u.a., da
keine feingranularen Konsistenzbedingungen zwischen verschiedenen
Dokumenten direkt dargestellt und tiberwacht werden konnen und dafs
nicht ohne weiteres zusétzliche (benutzerspezifische) Erweiterungen

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 18

vorgenommen werden kénnerﬁ

Vielfach ist versucht worden, die Nachteile von Dateien durch Ein-
satz konventioneller, insb. relationaler DBMS zu vermeiden. Es zeigt
sich allerdings, daft die konventionellen Datenbankmodelle wenig geeig-
net sind, die komplexen Strukturen innerhalb von Softwaredokumenten
nachzubilden; in der Folge kommt es typischerweise zu erheblichen
Performance-Problemen. Weiterhin sind die Transaktionskonzepte und
andere Details konventioneller DBMS weniger geeignet fiir diesen An-
wendungsbereich.

Aufgrund der vorstehend skizzierten Probleme benutzen manche
SEU eine Kombination von Dateisystem und DBMS: die einzelnen
Werkzeuge arbeiten primér auf Dateien. Zusétzlich, also redundant,
werden relevante Informationen in einem typischerweise relationalen
DBMS abgelegt. Die Datenbank enthélt nur solche Daten, die z.B.
flir dokumentiibergreifende Konsistenztests oder die Projektverwaltung
notwendig sind, also gerade die Daten, auf denen interessierende Abfra-
gen gestellt werden kénnen. Die relevanten beschreibenden Daten zu
einem Dokument werden typischerweise nur auf explizite Benutzeran-
forderung hin extrahiert und in die Datenbank eingetragen; deswegen,
aber auch aus anderen Griinden, kann man i.a. nicht garantieren, dafs
die Daten in der Datenbank und in den Dateien immer konsistent sind.

Alternativ kann man ein nichtkonventionelles DBMS einsetzen und
die Werkzeuge direkt auf diesem arbeiten lassen; solche DBMS wer-
den auch als Repository bezeichnelﬂ In technischer Hinsicht kann
diese Losung optimal gestaltet werden. Intern werden bei einigen kom-
merziell erhéltlichen Umgebungen derartige Repositories eingesetzt.
Versuche, Repositories zu standardisieren (PCTE, IRDS), um die Inte-
gration von Werkzeugen zu erleichtern, sind in der Praxis gescheitert; es
handelt sich hier um sehr komplexe Systeme, fiir die der Markt eher eng

5Dies gilt auch, wenn z.B. XML als Dateiformat benutzt wird; XML ermdg-
licht es zwar, Dokumente feingranular zu modellieren, unterstiitzt aber keinen
Sichtenmechanismus dhnlich wie Datenbanksysteme.

"Die Bezeichnung Repository wird allerdings auch fiir andere Systeme verwen-
det, z.B. in Versionsmanagementsystemen fiir Verzeichnisse und Dateien, die Daten
iiber frithere Versionen enthalten, und fiir Datenbanken, die vor allem Metadaten
enthalten.

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 19

ist, was zu einem geringen Angebot und zu einer schlechten Relation
zwischen Preis und Qualitéit fiihrtf] ferner macht sich ein Werkzeugher-
steller abhéngig von dem Repository-Anbieter und kann nicht mehr
ohne weiteres im Repository Funktionalitit dndern, wenn dies fiir die
Weiterentwicklung der Werkzeug wiinschenswert erscheint.

4 SEU als Standardsoftware

In den vorstehenden Abschnitten, speziell in Abschnitt [2.4) waren An-
forderungen an eine SEU beschrieben worden, allerdings recht allgemein
und etwa auf dem Niveau eines Lastenhefts. Die Frage ist, ob und
wie man diese Anforderungen detaillierter ausarbeitet. Wenn wir ei-
ne SEU als Individualsoftware ansehen, wobei ein Entwickler oder ein
Gruppe von Entwicklern der “Kunde” wéren, und das iibliche Phasen-
modell beibehalten, dann wiirde der néchste Schritt darin bestehen,
die Anforderungen detailliert zu analysieren, anschlieffend das System
zu entwerfen, zu implementieren usw. Die grundlegenden Analyse- und
Entwurfsmethoden, die iiblicherweise im Rahmen von Softwaretechnik-
Vorlesungen vermittelt werden, reichen allerdings fiir die Entwicklung
von SEU nicht aus bzw. sind nicht sinnvoll anwendbar:

- SEU sind sehr komplexe Systeme, die unterschiedlichste Komponen-
ten enthalten, zu deren Konstruktion ganz unterschiedliche Techno-
logien eingesetzt werden. Fiir die fast immer enthaltenen Compi-
ler wird man z.B. auf Methoden des Compilerbaus zuriickgreifen.
Dementsprechend miifste schon in der Analysephase eine Mixtur von
Methoden fiir die unterschiedlichen Komponenten eingesetzt werden.

- Aufgrund des Umfangs und der Diversitit der Funktionen einer SEU
verursacht ein halbwegs vollstéindiges Pflichtenheft einen extremen
Aufwand. Dieser Aufwand ist nur in seltenen Ausnahmefillen finan-
zierbar. Normalerweise ist es allenfalls realistisch, zwischen komplet-
ten SEU verschiedener Hersteller auszuwéihlen oder Komponenten
verschiedener Hersteller zusammenzustellen und zu integrieren. Ei-
ne SEU ist hier als Standardsoftware zu behandeln, die {iberwiegend

8Eine ausfiihrliche Diskussion von Repositories findet sich u.a. in [IRA].

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 20

aus im Markt erhéltlichen Komponenten besteht, die auf die speziel-
len Benutzeranforderungen hin adaptiert bzw. nur punktuell durch
eigene Software ergdnzt werden.

Daher ist das klassische Phasenmodell bei SEU (und generell bei
Standardsoftware) nur in stark modifizierter Form anwendbar: zentral
ist die Auswahl der Standard-Komponenten, klassische Entwicklerté-
tigkeiten fallen nur noch am Rande an. Den Auswahlprozeft kénnen
wir hier nur kurz behandeln.

Die Auswahl von SEU bzw. von SEU-Komponenten erfordert eine
Bewertung derselben, fiir die Bewertung miissen Bewertungsmafisté-
be festgelegt werden. Bewertungsmafistdbe sind aber inhaltlich i.w.
Anforderungen, allenfalls die Formulierung ist anders, und es kommen
Wichtigkeitsgrade bzw. Wertigkeiten hinzu. Wie schon erwéhnt konnen
Anforderungen mit vertretbarem Aufwand nur oberflachlich formuliert
werden.

Eine einigermafsen griindliche Bewertung einer SEU anhand gegebe-
ner Bewertungsmafsstibe ist, wenn sie mit Experimenten unterfiittert
wird, sehr aufwendig. Je nach Umfang der SEU ist von einem Aufwand
von mehreren Wochen oder Monaten auszugehen. Ein Grund hierfiir
ist, daf sich die Bewerter normalerweise erst in das System einarbeiten
miissen. Bewertungen, die von “Anfdngern” angestellt werden, sagen
meist mehr iiber den Lernzustand des Bewerters als {iber das bewertete
System aus.

Dieses Aufwandsproblem vervielfacht sich, wenn mehrere SEU zur
Auswahl stehen und bewertet werden sollen. Aus Aufwandsgriinden
muf daher i.d.R. auf recht oberflachliche Verfahren (einfache Checkli-
sten), die Auswertung von Testberichten und Erfahrungen anderer und
vor allem Beratung zuriickgegriffen werden.

Die vorstehenden Probleme zeigen andererseits, wie wichtig es ist,
dak eine SEU offen, adaptierbar und erweiterbar ist (vgl. Abschnitt
, um ggf. punktuell eigene Software einbinden zu kénnen.

(©2001 Udo Kelter Stand: 02.02.2001

Software-Entwicklungsumgebungen 21

Literatur

[Ba98| Balzert, H.: Lehrbuch der Software-Technik - Software-Manage-
ment, Software-Qualitdtssicherung, Unternehmensmodellierung;
Spektrum Akademischer Verlag; 1998

[ECMATRG69| Reference Model for Project Support Environments; EC-
MA Technical Report TR/69; zugleich NIST Special Publication
500-213; 1994 /12

[Na93] Nagl, M.: Software-Entwicklungsumgebungen: Einordnung und
zukiinftige Entwicklungslinien; Informatik-Spektrum 16:5, p.270-
280; 1993/10

[PaS94| Pagel, B.-U.; Six, H.-W.: Software Engineering, Band 1; Addi-
son Wesley (Deutschland) GmbH, Bonn; 1994

[PeR88] Penedo, L.; Riddle, W.E.: Software Engineering Environment
Architectures; IEEE Trans. o. Software Engineering 14:6, p.689-
696; 1988/06

[IRA] Kelter, U.: Lehrmodul “Integrationsrahmen fiir Software-Ent-
wicklungsumgebungen”; 1999 /11

[SASM] Kelter, U.: Lehrmodul “Systemanalyse und Systemmodellie-
rung”; 1999/10

(©2001 Udo Kelter Stand: 02.02.2001

Index

Benutzer, 12 Repository, 18
CASE, 3 SEU, 3
Einfiihrung von, 4 Software-Entwicklungsumgebung, 3,
CASE-Umgebung, 4 4
Anforderungen, 19
Dokument Auswahl, 20

Bearbeitung, 10
Korrektheitspriifung, 6
Transformation, 6

Bewertung, 20
Integration, 13
Konfiguration, 19
Offenheit, 20
Ziele, 5
software process model, 8
Systembeschreibung, 7
Systembeschreibungstyp, 7

Entwicklungsrechner, 11
Entwicklungstétigkeiten, 8
Vorgehensmodell-spezifische, 8

Integration, 6
IRDS, 1
RDS, 19 Upper-CASE-Umgebung, 16

Lastenheft, 4
Vorgehensmodell, 7, 8

Methode, 7

Meta-CASE, 17 Werkzeug, 3

Meta-Werkzeuge, 10 als SEU-Komponente, 9
Funktionen, 12

PCTE, 19 Steuerung von -en, 10

Phasenmodell, 20 Werkzeugkasten, 17

Produktivitat, 6
Programmierumgebungen, 16

Qualitat, 7, 12
Adaptierbarkeit, 15
Benutzungsfreundlichkeit, 15
Datenintegration, 13
Integration, 13
Methodentreue, 12
Offenheit, 15
Prozefunterstiitzung, 14

Referenzmodell, 12

22

	Grundbegriffe
	Ein ``Lastenheft'' für SEU
	Ziele des Einsatzes von Werkzeugen
	Einsatzbereiche und Funktionsumfang
	Zu unterstützende Tätigkeiten bei der Software-Entwicklung
	Funktionen von Werkzeugen

	Benutzertypen
	Qualitätskriterien

	Beispiele für Klassen von Umgebungen
	SEU als Standardsoftware
	Literatur
	Index

