
Folien zum Lehrmodul

XSLT, Teil 3

Lernziele:

- weitere Steuer- und Ausgabekommandos von XSLT kennen
- Variablenkonzept verstehen
- Verbund berechnen können, hier mit Variablen

Inhaltsverzeichnis 3

Inhaltsverzeichnis
1 Ausgabe- und Steuerkommandos 5

1.1 Versuch einer Systematik und Übersicht 6
1.2 Das Kommando xsl:copy-of . 11
1.3 Das Kommando xsl:if . 12
1.4 Das Kommando xsl:choose . 14
1.5 Attributwertschablonen . 15
1.6 Das Kommando xsl:attribute 21
1.7 Das Kommando xsl:element . 24

2 Variablen 26
2.1 Wertangabe in select . 28
2.2 Wertangabe in innerer Schablone 30
2.3 Verbundbildung mit Variablen . 32
2.4 Weiterverarbeitung des Verbundergebnisses 40

3 Mehrere Ein- und Ausgabedateien 41

Inhaltsverzeichnis 4

3.1 Das Kommando xsl:document 42
3.2 Die XSLT-Funktion document(...) 45

Ausgabe- und Steuerkommandos 5

1 Ausgabe- und Steuerkommandos

hier nur punktuell und informell dargestellt, Details (insb. weitere
Parameter) und genaue Definition s. XSLT-Standard
Gemeinsamkeiten:

- sind entweder Steuerkommandos oder erzeugen direkt irgend-
welche Teile des Ausgabebaums

- treten in Schablonen auf
- haben oft einen Inhalt, der wiederum eine Schablone darstellt,

m.a.W. können Ausgabekommandos geschachtelt werden
- werden als Element mit Typ xsl:..... notiert

Ausgabe- und Steuerkommandos / Versuch einer Systematik und Übersicht 6

1.1 Versuch einer Systematik und Übersicht
1. Steuerkommandos

xsl:for-each iteriert über eine Knotenmenge und ruft für
jeden Knoten die innere Schablone auf

xsl:apply-templates iteriert über eine Knotenmenge und
wendet die jeweils zutreffende Transformati-
onsregel an

xsl:if bedingter Aufruf einer inneren Schablone
xsl:choose verallgemeinertes if; mehrere nacheinander

zu testende Bedingungen,
ggf. eine otherwise-Alternative

Ausgabe- und Steuerkommandos / Versuch einer Systematik und Übersicht 7

2. Ausgabekommandos, die Knoten verschiedener Typen durch
Kopieren vom Eingabebaum in den Ausgabebaum erzeugen:

xsl:copy kopiert einen Knoten des Eingabebaums (den
Kontextknoten, kein select-Parameter); Typ
des Knotens ist beliebig

xsl:copy-of select=’ XPath-Ausdruck ’
kopiert beliebig viele Teilbäume des Eingabe-
baums, Wurzeln der Teilbäume gemäß XPath-
Ausdruck

Ausgabe- und Steuerkommandos / Versuch einer Systematik und Übersicht 8

3. Ausgabekommandos, die Elementknoten erzeugen:

<...> direkte Angabe der öffnenden und schließen-
den tags

xsl:element erzeugt einen Elementknoten; der Typ wird
als Parameter angegeben und kann dynamisch
berechnet werden

ggf. auch xsl:copy und xsl:copy-of

Ausgabe- und Steuerkommandos / Versuch einer Systematik und Übersicht 9

4. Ausgabekommandos, die Textknoten erzeugen

... direkte Angabe von Text
xsl:text erzeugt den angegebenen Text; spezielle Mög-

lichkeiten zur Behandlung von Leerraum
xsl:value-of konvertiert einzelne Eingabeknoten oder ganze

Teilbäume in textuelle Darstellung

ggf. auch xsl:copy und xsl:copy-of

Ausgabe- und Steuerkommandos / Versuch einer Systematik und Übersicht 10

5. Ausgabekommandos, die Attributknoten erzeugen

xxx=’...’ direkte Angabe von Attributname und Wert
im öffnenden tags; nur möglich, wenn auch das
Element direkt angegeben wird

ggf. variable Inhalte mit Attributwertschablo-
nen

xsl:attribute erzeugt einen Attributknoten; Attributname
und Wert werden in Parametern angegeben
und können dynamisch berechnet werden

ggf. auch xsl:copy und xsl:copy-of

Ausgabe- und Steuerkommandos / Das Kommando xsl:copy-of 11

1.2 Das Kommando xsl:copy-of

Syntax:

<xsl:copy-of select=’ ... ’ />

- keine innere Schablone
- Wenn der select-Parameter einen XPath-Ausdruck enthält,

werden alle Treffer ausgegeben. Ausgegeben wird zu jedem
Treffer eine komplette Kopie des Teilbaums, dessen Wurzel
dieser Treffer ist.

Ausgabe- und Steuerkommandos / Das Kommando xsl:if 12

1.3 Das Kommando xsl:if

Schema:

<xsl:if test=’ boolean-expression ’ >
<!-- innere Schablone -->

</xsl:if>

Merkmale:

- hat einen Parameter test , der einen Booleschen Ausdruck
enthält (Vorsicht mit < -Zeichen! müssen umcodiert / ver-
mieden werden)

- Inhalt: innere Schablone
- kein “else”-Zweig möglich

Ausgabe- und Steuerkommandos / Das Kommando xsl:if 13

Wirkung:

1. der im Parameter test enthaltene Booleschen Ausdruck wird
ausgewertet

2. bei positivem Testergebnis wird die innere Schablone ausgeführt
Kontextknoten für die innere Schablone: der gleiche (!) wie der
der aufrufenden Schablone

Ausgabe- und Steuerkommandos / Das Kommando xsl:choose 14

1.4 Das Kommando xsl:choose

entspricht einer case- / switch-Verzweigung
Schema:

<xsl:choose>
<xsl:when test=’ boolean-expression ’ >

<!-- Content: template -->
</xsl:when>
......
......
<xsl:otherwise>

<!-- Content: template -->
</xsl:otherwise>

</xsl:choose>

Ausgabe- und Steuerkommandos / Attributwertschablonen 15

1.5 Attributwertschablonen

Problem, falls Attributwerte keinen festen Wert erhalten, sondern
berechnet werden sollen:
- keine inneren Elemente erlaubt
- daher Ausgabekommandos als <xsl:... select=’ ... ’ />

Element nicht direkt im Inhalt eines Attributs erlaubt

direkte Angabe des Werts nur brauchbar, wenn der Wert immer
gleich ist

Ausgabe- und Steuerkommandos / Attributwertschablonen 16

Beispiel: die Telefonliste aus LM XSLT2 soll in folgende Form
umgewandelt werden:

<Telefonliste>
<Eintrag name=’Meier’ land=’0049’ vorwahl=’0271’

nummer=’891234’ />
<Eintrag name=’Schmitz’ land=’0049’ vorwahl=’0228’

nummer=’870887’ />
</Telefonliste>

Attribut land kann direkt mit festem Wert angegeben werden:

<xsl:template match=’ Eintrag ’>
<Eintrag land=’0049’ vorwahl=’??????’ />

</xsl:template>

Ausgabe- und Steuerkommandos / Attributwertschablonen 17

Die Werte der anderen Attribute hängen von anderen Knoten des
Eingabebaums ab;
z.B. Wert von nummer ist Kopie des Inhalts des Elements Telnr

xsl:value-of kann man nicht benutzen:

<xsl:template match=’ Eintrag ’> <!-- FALSCH !!!!! -->
<Eintrag

vorwahl=’<xsl:value-of select=" Telnr/@vorwahl " />’
nummer =’<xsl:value-of select=" Telnr " />’

/>
</xsl:template>

ist falsch, weil

Ausgabe- und Steuerkommandos / Attributwertschablonen 18

syntaktisch betrachtet: < ist in Attributwerten nicht erlaubt

umcodieren des < mit < nützt nichts: dann wird das <
“wörtlich” genommen und kein Kommando interpretiert

von der Struktur des Transformationsdokuments her betrachtet:
das Kommando müßte in der Schablone ein Kindelement des At-
tributs sein - generell nicht erlaubt

Ausgabe- und Steuerkommandos / Attributwertschablonen 19

Attributwertschablonen:
Attributwertschablone = Ausdruck, der Knotenliste liefert, in
geschweiften Klammern
Syntax: { Ausdruck }
Ausgabe: textuelle Darstellung des ersten (!) Knotens der Liste

Beispiel:

<xsl:template match=’ Eintrag ’ >
<Eintrag name =’{ name }’

land =’0049’
vorwahl =’{ Telnr/@vorwahl }’
nummer =’{ Telnr }’ />

</xsl:template>

Ausgabe- und Steuerkommandos / Attributwertschablonen 20

Beispiel 2: nur 1 Attribut mit kompletter Telefonnummer ge-
mäß Muster “[0049] 0271-7402611”

<xsl:template match=’ Eintrag ’ >
<Eintrag name=’{ name }’

telefonnr=’[0049] { Telnr/@vorwahl }-{ Telnr }’ />
</xsl:template>

d.h. Attributwert wird durch mehrere Attributwertschablonen und
feste Texte erzeugt

Ausgabe- und Steuerkommandos / Das Kommando xsl:attribute 21

1.6 Das Kommando xsl:attribute

Anzuwenden, wenn auch der Name des auszugebenden Attributs
berechnet werden soll oder wenn der Attributwert ziemlich komplex
ist
Merkmale und Wirkung:

- xsl:attribute -Anweisung muß vor Anweisungen ausgeführt
werden, die den Inhalt des Elements erzeugen

- hat einen Parameter name , der den Namen des zu erzeugenden
Attributs angibt

- innere Schablone: berechnet Wert des Attributs
Wert: Konkatenation aller erzeugten Text-Knoten

Ausgabe- und Steuerkommandos / Das Kommando xsl:attribute 22

Beispiel 1: In einer Lehrveranstaltungsbeschreibung alle Durch-
führungen in einem einzigen Attribut zusammenfassen;
Bsp: <DURCHFUEHRUNG semester=’Meier:2007s; Koch:2008w;’ />

Lösung:

<xsl:template match=’ DURCHFUEHRUNG ’ />
<xsl:template match=’ DURCHFUEHRUNG[1] ’ >

<DURCHFUEHRUNGEN>
<xsl:attribute name=’semester’>

<xsl:for-each select=’ ../DURCHFUEHRUNG ’ >
<xsl:value-of select=’ @dozentId ’ />:
<xsl:value-of select=’ @semester ’ />;

</xsl:for-each>
</xsl:attribute>

</DURCHFUEHRUNGEN>
</xsl:template>

Ausgabe- und Steuerkommandos / Das Kommando xsl:attribute 23

Beispiel 2: xsl:attribute-Schablone, die Elemente und einen
Kommentar enthält

<xsl:template match=" / " >
<alles>

<xsl:attribute name="x">
<!-- test -->
123abc456

</xsl:attribute>
</alles>

</xsl:template>

ergibt:
<alles x="
 123abc456
 "/>

Ausgabe- und Steuerkommandos / Das Kommando xsl:element 24

1.7 Das Kommando xsl:element

Anzuwenden, wenn auch der Name des auszugebenden Elements
berechnet werden soll
Merkmale und Wirkung:

- xsl:element -Anweisung statt öffnendem und schließenden
Tag

- Parameter name gibt Namen des zu erzeugenden Elements
an

- Parameter namespace deklariert Namensraumbezeichner für
dieses Element

- innere Schablone: erzeugt Kinder des Elements

Ausgabe- und Steuerkommandos / Das Kommando xsl:element 25

Beispiel (um des Beispiels willen): DURCHFUEHRUNG-Ele-
mente bilden, die die dozentId im Elementnamen enthalten

<xsl:template match=’ DURCHFUEHRUNG ’ >
<xsl:element

name=’DURCHFUEHRUNGvon{ @dozentId }’>
<xsl:attribute name=’semester’>

<xsl:value-of select=’ @semester ’ />
</xsl:attribute>

</xsl:element>
</xsl:template>

Variablen 26

2 Variablen
- Variable = im Prinzip Paar (Name, Wert)
- werden u.a. benötigt, um Gruppierungen / Aggregationen und

Verbunde zu berechnen
- können in verschiedenen Kontexten benutzt werden (Suchbe-

dingungen in Pfaden, Ausgabeanweisungen usw.)
- sehr viele Sonderfälle und Verhaltensvarianten → eher schlecht

verständlich
- in XSLT Version 2 deutlich besser als in XSLT Version 1
- sind als top-level-Element zulässig, aber auch als Anweisung

innerhalb von Schablonen
- finale Wertzuweisung bei der Deklaration, keine erneute Wert-

zuweisung erlaubt!

Variablen 27

Deklaration:

<xsl:variable name=’...’
select=’ ... ’ >

<!-- Content: template -->
</xsl:variable>

- Attribut name muß syntaktisch korrekten Namen enthalten
- Angabe des Werts entweder im Attribut select oder durch

eine innere Schablone

Benutzung in der Form $variablenname

Variablen / Wertangabe in select 28

2.1 Wertangabe in select

select muß Ausdruck enthalten, der

1. eine Zeichenkette,
2. eine Zahl,
3. einen Booleschen Wert oder
4. eine Knotenmenge liefert

falls Knotenmenge: Knoten können als Ausgangspunkt von Navi-
gationen dienen. Beispiele:

<xsl:value-of select=’ $variablenname / lokalerPfad ’ />
<element attribut=’{ $variablenname / lokalerPfad }’ />

Vorsicht: viele automatische Konversionen!

Variablen / Wertangabe in select 29

Beispiele:

<xsl:variable name=’n1’ select=’2+3’ />
<xsl:variable name=’n2’ select=’"2+3"’ />
<xsl:variable name=’n3’ select=’$n1+3*4’ />
<xsl:variable name=’n4’ select="’xxyyzz’" />
<xsl:variable name=’n5’ select="’’" />
<xsl:variable name=’n6’ select=’1>2’ />
<xsl:variable name=’n7’ select=’//@semester’ />

<xsl:template match=’ / ’> <out n1=’{$n1}’ n2=’{$n2}’
n3=’{$n3}’ n4=’{$n4}’ n5=’{$n5}’ n6=’{$n6}’ />

</xsl:template>

liefert:

<out n1="5" n2="2+3" n3="17" n4="xxyyzz" n5="" n6="false" />

Variablen / Wertangabe in innerer Schablone 30

2.2 Wertangabe in innerer Schablone

Beispiele:

<xsl:variable name=’n8’ >
Dies ist ein fetter Text.

</xsl:variable>

<xsl:variable name=’n9’ >
<xsl:for-each select=’//@semester’ >

<xsl:value-of select=’.’ />
<xsl:text>..</xsl:text>

</xsl:for-each>
</xsl:variable>

Ergebnistyp: result tree fragment

Variablen / Wertangabe in innerer Schablone 31

Nutzungsmöglichkeiten eines result tree fragments:

- Ausgabe mit xsl:value-of: konvertiert zu einem Textknoten
- Ausgabe mit <xsl:copy-of select=’$xxx’ />: als komplette

Kopie mit allen inneren Knoten
- können nicht als weitere Eingabe, Startpunkt von Navigationen

o.ä. benutzt werden (in XSLT 1.0)

Variablen / Verbundbildung mit Variablen 32

2.3 Verbundbildung mit Variablen
- Nachimplementierung eines Verbunds von Hand unter Benut-

zung von Variablen
- Bestimmung der Verbundpartner mit einem XPath-Ausdruck

Beispiel:

- wie bisher Lehrveranstaltungsdaten, die eine dozentId als
“Fremdschlüssel” auf die Personendaten enthalten

- zusätzliche Personendaten

Variablen / Verbundbildung mit Variablen 33

<FBINFO>
<PERSONEN>

<PERSON persId=’Kelter’ nachname=’Kelter’
vornameInit=’U.’ fachgr=’PI’ />

....
</PERSONEN>

<LEHRVERANSTALTUNG>
....
<VERANTWORTLICHER dozentId=’Kelter’ />
....

</LEHRVERANSTALTUNG>
</FBINFO>

Variablen / Verbundbildung mit Variablen 34

Aufgabe: Im Element VERANTWORTLICHER sollen innen der Na-
me, Initialen und Fachgruppenzugehörigkeit eingetragen werden,
Beispiel:

<FBINFO>
....
<LEHRVERANSTALTUNG>

....
<VERANTWORTLICHER dozentId=’Kelter’ >

Kelter, Udo (PI)
</VERANTWORTLICHER>
....

</LEHRVERANSTALTUNG>
</FBINFO>

Variablen / Verbundbildung mit Variablen 35

Lösungsstrategie: Verbund manuell wie folgt in drei Schritten
implementieren

1. eine Variable mit dem Fremdschlüsselwert anlegen (dzId)
2. die Variable nutzen, um in der “Zielrelation des Fremdschlüs-

sels” den zugehörigen Eintrag zu lokalisieren –
in zweiter Variable (dzElem) Referenz auf diesen Eintrag spei-
chern

3. von der Referenz in der zweiten Variablen aus zu den auszuge-
benden Daten navigieren

Variablen / Verbundbildung mit Variablen 36

Lösungsausschnitt:

<xsl:template match=’ VERANTWORTLICHER ’ >
<!-- Schritt 1 -->

<xsl:variable name=’dzId’ select=’ @dozentId ’ />
<!-- Schritt 2 -->

<xsl:variable name=’dzElem’ select=
’ // PERSON [@persId = $dzId] ’ />

<!-- Schritt 3 -->
<VERANTWORTLICHER dozentId=’{ $dzId }’ >

<xsl:value-of select=’ $dzElem / @nachname ’ />,
<xsl:value-of select=’ $dzElem / @vornameInit ’ />
(<xsl:value-of select=’ $dzElem / @fachgr ’ />)

</VERANTWORTLICHER>
</xsl:template>

Variablen / Verbundbildung mit Variablen 37

Anmerkungen:

- in Schritt 2 ist intuitiv naheliegend, aber falsch:
select=’ // PERSON [@persId = @dozentId] ’

Kontextknoten der Pfade @persId und @dozentId ist ein
PERSON-Element, dort gibt es kein Attribut @dozentId!

im absoluten Pfad ’//PERSON [..]’ ist die Position des aktu-
ellen Vergleichs-Attributs @dozentId ohne die Variable @dzId
mit den bisher eingeführten Konzepten nicht rekonstruierbar

- Variable dzElem enthält i.a. eine Menge von Referenzen auf
Knoten im Eingabebaum, weil mit select=’ pfad ’ gesetzt;
wenn Daten korrekt, max. 1 Element.

- von dort aus weiternavigieren,
Beispiel: $dzElem / @nachname

Variablen / Verbundbildung mit Variablen 38

- Variable dzElem ist verzichtbar (verbessert aber die Lesbarkeit):
jedes Auftreten von $dzElem in Schritt 3 kann ersetzt werden
durch
select=’ // PERSON [@persId = $dzId] ’

- in Schritt 3 wäre dozentId=’{ @dozentId }’ ebenfalls richtig,
- dozentId=’$dzId’ wäre falsch, das würde $dzId wörtlich aus-

geben

Variablen / Verbundbildung mit Variablen 39

Effizienzproblem: Implementierung des Pfadausdrucks //
PERSON [@persId = $dzId]

- kann am einfachsten durch lineare Suche implementiert werden
– sehr ineffizient

- könnte durch einen automatisch angelegten Sekundärindex be-
schleunigt werden
Optimierung der Ausführung von Transformationen sehr kom-
plex - entfällt / nicht voraussetzbar
→ manueller Einsatz von Sekundärindexen

Variablen / Weiterverarbeitung des Verbundergebnisses 40

2.4 Weiterverarbeitung des Verbundergebnis-
ses

Beispiele:

- weiterer Verbund, z.B. @fachgr ist Referenz auf Daten der
Fachgruppe, Ergänzung von Merkmalen der Fachgruppe

- Suche nach allen Lehrveranstaltungen einer bestimmten Fach-
gruppe

möglich, führt aber zu sehr komplizierten (fehleranfälligen) Lösun-
gen
besser: temporäre XML-Datei

Mehrere Ein- und Ausgabedateien 41

3 Mehrere Ein- und Ausgabedateien

bisher: genau 1 Ein- und Ausgabedatei - oft zu restriktiv
Beispiele:

- aus der FBINFO-Datei sollen für jede Lehrveranstaltung eine
separate HTML-Datei erzeugt werden

- Eingabedaten sollen auf mehrere XML-Dateien verteilt werden,
z.B. pro Fachgruppe eine separate XML-Datei

Mehrere Ein- und Ausgabedateien / Das Kommando xsl:document 42

3.1 Das Kommando xsl:document

Schema:

<xsl:document
method=".."
href=".."
encoding=".."
.....

>
<!-- innere Schablone -->

</xsl:document>

- erst ab XSLT 1.1 verfügbar
- erzeugt eine XML-/HTML-/Text-Datei gemäß Angabe in

@method (Angaben wie in xsl:output-Elementen)
- Name der Ausgabedatei in @href

Mehrere Ein- und Ausgabedateien / Das Kommando xsl:document 43

- bei method="xml": alle Merkmale in der XML-Deklaration
können durch weitere Attribute angegeben werden, Beispiel:
encoding="ISO-8859-1"

Beispiel (Lösungsausschnitt):

<xsl:template match=’ LEHRVERANSTALTUNG ’ >
<xsl:document

method="html"
href="{LEHRVERANSTALTUNGSKUERZEL}.html"

>
<html>

<head> </head>
<body> </body>

</html>
</xsl:document>

</xsl:template>

Mehrere Ein- und Ausgabedateien / Das Kommando xsl:document 44

dazu passendes “Hauptprogramm”:

<xsl:template match=’ FBINFO ’ >
<xsl:apply-templates select=’ LEHRVERANSTALTUNG ’ />

</xsl:template>

Mehrere Ein- und Ausgabedateien / Die XSLT-Funktion document(...) 45

3.2 Die XSLT-Funktion document(...)

Schnittstelle (stark vereinfacht; vollständige Spezifikation s. https:
//www.w3.org/TR/xslt-10/#document):

node-set document(uri:string)

- im Argument uri wird eine XML-Datei angegeben
- die Datei wird eingelesen zu einem eigenen Syntaxbaum
- zurückgegeben wird eine Referenz auf die Dokumentwurzel

dieses Syntaxbaums
- vor dort kann (wie bei einer Variablen) mit einem relativen

Pfadausdruck weiternavigiert werden

https://www.w3.org/TR/xslt-10/#document
https://www.w3.org/TR/xslt-10/#document

Mehrere Ein- und Ausgabedateien / Die XSLT-Funktion document(...) 46

Beispiel:

<xsl:output method="text" />
<xsl:template match=" / ">

<xsl:document method="xml" href="/tmp/test.xml" >
<a>

<b x="1">eins
<b x="2">zwei
<b x="3">drei

</xsl:document>

<xsl:variable name="doc"
select=" document(’/tmp/test.xml’) " />

<xsl:value-of select=’ $doc / a / b [@x=2] ’ />
<xsl:value-of select=’ $doc / a / b [@x=3] ’ />

</xsl:template>

Mehrere Ein- und Ausgabedateien / Die XSLT-Funktion document(...) 47

- diese Transformation erzeugt (bei beliebiger Eingabe) die Text-
Ausgabe “zweidrei”

- das Kommando xsl:document erzeugt die Datei
/tmp/test.xml

- diese Datei kann sofort danach wieder eingelesen werden, die
Dokumentwurzel wird hier einer Variablen zugewiesen

Mehrere Ein- und Ausgabedateien / Die XSLT-Funktion document(...) 48

Nutzung von document(...) :

- aufsammeln von Daten aus verschiedenen Quellen
- Vorverarbeitung der Eingabedaten mit xsl:document , z.B.

Verbundbildung,
danach Wiedereinlesen dieser Daten mit document(...)

	Ausgabe- und Steuerkommandos
	Versuch einer Systematik und Übersicht
	Das Kommando xsl:copy-of
	Das Kommando xsl:if
	Das Kommando xsl:choose
	Attributwertschablonen
	Das Kommando xsl:attribute
	Das Kommando xsl:element

	Variablen
	Wertangabe in select
	Wertangabe in innerer Schablone
	Verbundbildung mit Variablen
	Weiterverarbeitung des Verbundergebnisses

	Mehrere Ein- und Ausgabedateien
	Das Kommando xsl:document
	Die XSLT-Funktion document(...)

