Folien zum Lehrmodul

XSLT, Teil 3

Lernziele:

- weitere Steuer- und Ausgabekommandos von XSLT kennen
— Variablenkonzept verstehen

— Verbund berechnen kénnen, hier mit Variablen

[1nhaltsverzeichnis

Inhaltsverzeichnis

|1 Ausgabe- und Steuerkommandos|
[1.1 Versuch einer Systematik und Ubersicht| . .

11.2° Das Kommando xsl:copy-of |.

E"Variablenl

|2.1 Wertangabe in select|.

12.2 Wertangabe 1n 1innerer Schablone|.
12.3 Verbundbildung mit Variablen|

12.4 Weiterverarbeitung des Verbundergebnisses|

I3 Mehrere Ein- und Ausgabedateien|

11
12
14
15
21
24

26
28
30
32
40

41

| Inhaltsverzeichnis 4
B.1__Das Kommando xsl:document | 42
13.2 Die XSLT-Funktion document(...) |. 45

l Ausgabe- und Steuerkommandos 5

1 Ausgabe- und Steuerkommandos

hier nur punktuell und informell dargestellt, Details (insb. weitere
Parameter) und genaue Definition s. XSLT-Standard

Gemeinsamkeiten:

- sind entweder Steuerkommandos oder erzeugen direkt irgend-
welche Teile des Ausgabebaums

— treten in Schablonen auf

— haben oft einen Inhalt, der wiederum eine Schablone darstellt,
m.a.W. kénnen Ausgabekommandos geschachtelt werden

— werden als Element mit Typ xsl:..... notiert

’ Ausgabe- und Steuerkommandos / Versuch einer Systematik und Ubersicht 6 ‘

1.1 Versuch einer Systematik und Ubersicht

1. Steuerkommandos

xsl

xsl:

xsl:

xsl:

:for-each iteriert {iber eine Knotenmenge und ruft fiir

jeden Knoten die innere Schablone auf

apply-templates iteriert iiber eine Knotenmenge und
wendet die jeweils zutreffende Transformati-
onsregel an

if bedingter Aufruf einer inneren Schablone

choose verallgemeinertes if; mehrere nacheinander
zu testende Bedingungen,
gef. eine otherwise-Alternative

’ Ausgabe- und Steuerkommandos / Versuch einer Systematik und Ubersicht 7 ‘

2. Ausgabekommandos, die Knoten verschiedener Typen durch
Kopieren vom Eingabebaum in den Ausgabebaum erzeugen:

xsl:copy kopiert einen Knoten des Eingabebaums (den
Kontextknoten, kein select-Parameter); Typ
des Knotens ist beliebig

xsl:copy-of select=’ XPath-Ausdruck ’
kopiert beliebig viele Teilbdume des Eingabe-
baums, Wurzeln der Teilbdume geméaf XPath-
Ausdruck

’ Ausgabe- und Steuerkommandos / Versuch einer Systematik und Ubersicht 8 ‘

3. Ausgabekommandos, die Elementknoten erzeugen:
<. direkte Angabe der 6ffnenden und schlieffen-
den tags

xsl:element erzeugt einen Elementknoten; der Typ wird
als Parameter angegeben und kann dynamisch
berechnet werden

gef. auch xsl:copy und xsl:copy-of

’ Ausgabe- und Steuerkommandos / Versuch einer Systematik und Ubersicht 9

4. Ausgabekommandos, die Textknoten erzeugen

direkte Angabe von Text

xsl:text erzeugt den angegebenen Text; spezielle Mog-
lichkeiten zur Behandlung von Leerraum

xsl:value-of konvertiert einzelne Eingabeknoten oder ganze
Teilbdume in textuelle Darstellung

ggf. auch xsl:copy und xsl:copy-of

’ Ausgabe- und Steuerkommandos / Versuch einer Systematik und Ubersicht 10 ‘

5. Ausgabekommandos, die Attributknoten erzeugen

xxx=’...’ direkte Angabe von Attributname und Wert
im 6ffnenden tags; nur moglich, wenn auch das
Element direkt angegeben wird

ggf. variable Inhalte mit Attributwertschablo-
nen

xsl:attribute erzeugt einen Attributknoten; Attributname
und Wert werden in Parametern angegeben
und kénnen dynamisch berechnet werden

gef. auch xsl:copy und xsl:copy-of

lAusgabcf und Steuerkommandos / Das Kommando xsl:copy-of 11

1.2 Das Kommando xsl:copy-of

Syntax:
<xsl:copy-of select=’ ... > />

— keine innere Schablone

— Wenn der select-Parameter einen XPath-Ausdruck enthélt,
werden alle Treffer ausgegeben. Ausgegeben wird zu jedem

Treffer eine komplette Kopie des Teilbaums, dessen Wurzel
dieser Treffer ist.

lAusgabc— und Steuerkommandos / Das Kommando xsl:if 12

1.3 Das Kommando xsl:if

Schema.:

<xsl:if test=’ boolean-expression ’ >
<!-- innere Schablone -->
</xsl:if>

Merkmale:

— hat einen Parameter test , der einen Booleschen Ausdruck
enthélt (Vorsicht mit < -Zeichen! miissen umcodiert / ver-
mieden werden)

— Inhalt: innere Schablone

- kein “else”-Zweig moglich

l Ausgabe- und Steuerkommandos / Das Kommando xsl:if 13 ‘

Wirkung;:

1. der im Parameter test enthaltene Booleschen Ausdruck wird
ausgewertet
2. bei positivem Testergebnis wird die innere Schablone ausgefiihrt

Kontextknoten fiir die innere Schablone: der gleiche (!) wie der
der aufrufenden Schablone

lAusgabc— und Steuerkommandos / Das Kommando xsl:choose 14

1.4 Das Kommando xsl:choose

entspricht einer case- / switch-Verzweigung
Schema:

<xsl:choose>
<xsl:when test=’ boolean-expression ’ >
<!-- Content: template -->
</xsl:when>

<xsl:otherwise>
<!-- Content: template -->
</xsl:otherwise>
</xsl:choose>

l Ausgabe- und Steuerkommandos / Attributwertschablonen 15 ‘

1.5 Attributwertschablonen

Problem, falls Attributwerte keinen festen Wert erhalten, sondern

berechnet werden sollen:

— keine inneren Elemente erlaubt

— daher Ausgabekommandos als <xsl:... select=’ ... ’ />
Element nicht direkt im Inhalt eines Attributs erlaubt

direkte Angabe des Werts nur brauchbar, wenn der Wert immer
gleich ist

l Ausgabe- und Steuerkommandos / Attributwertschablonen 16 ‘

Beispiel: die Telefonliste aus LM XSLT2 soll in folgende Form
umgewandelt werden:

<Telefonliste>
<Eintrag name=’Meier’ land=’0049°’ vorwahl=’0271’
nummer=’891234’ />
<Eintrag name=’Schmitz’ land=’0049’ vorwahl=’0228’
nummer=’870887° />
</Telefonliste>

Attribut land kann direkt mit festem Wert angegeben werden:

<xsl:template match=’ Eintrag ’>
<Eintrag land=’0049’ vorwahl=’7?7?77?77’ />
</xsl:template>

l Ausgabe- und Steuerkommandos / Attributwertschablonen 17 ‘

Die Werte der anderen Attribute héngen von anderen Knoten des
Eingabebaums ab;

z.B. Wert von nummer ist Kopie des Inhalts des Elements Telnr

xsl:value-of kann man nicht benutzen:

<xsl:template match=’ Eintrag ’> <!-- FALSCH !!!!! -->
<Eintrag
vorwahl=’<xsl:value-of select=" Telnr/@vorwahl " />’
nummer =’<xsl:value-of select=" Telnr " />’
/>
</xsl:template>

ist falsch, weil

l Ausgabe- und Steuerkommandos / Attributwertschablonen 18 ‘

syntaktisch betrachtet: < ist in Attributwerten nicht erlaubt

umcodieren des < mit &1t; nilitzt nichts: dann wird das <
“wortlich” genommen und kein Kommando interpretiert

von der Struktur des Transformationsdokuments her betrachtet:
das Kommando miifste in der Schablone ein Kindelement des At-
tributs sein - generell nicht erlaubt

l Ausgabe- und Steuerkommandos / Attributwertschablonen 19 ‘

Attributwertschablonen:

Attributwertschablone = Ausdruck, der Knotenliste liefert, in
geschweiften Klammern

Syntax: { Ausdruck }

Ausgabe: textuelle Darstellung des ersten (!) Knotens der Liste

Beispiel:
<xsl:template match=’ Eintrag ’ >
<Eintrag name =’{ name }’
land =20049°

vorwahl =’{ Telnr/@vorwahl }’
nummer =’{ Telnr }’ />
</xsl:template>

l Ausgabe- und Steuerkommandos / Attributwertschablonen 20 ‘

Beispiel 2: nur 1 Attribut mit kompletter Telefonnummer ge-
mék Muster “[0049] 0271-7402611”

<xsl:template match=’ Eintrag ’ >
<Eintrag name=’{ name }’
telefonnr=’[0049] { Telnr/@vorwahl }-{ Telnr }’ />

</xsl:template>

d.h. Attributwert wird durch mehrere Attributwertschablonen und
feste Texte erzeugt

l Ausgabe- und Steuerkommandos / Das Kommando xsl:attribute 21 ‘

1.6 Das Kommando xsl:attribute

Anzuwenden, wenn auch der Name des auszugebenden Attributs
berechnet werden soll oder wenn der Attributwert ziemlich komplex
ist

Merkmale und Wirkung;:

— xsl:attribute -Anweisung muft vor Anweisungen ausgefiihrt
werden, die den Inhalt des Elements erzeugen

— hat einen Parameter name , der den Namen des zu erzeugenden
Attributs angibt

— innere Schablone: berechnet Wert des Attributs
Wert: Konkatenation aller erzeugten Text-Knoten

l Ausgabe- und Steuerkommandos / Das Kommando xsl:attribute 22 ‘

Beispiel 1: In einer Lehrveranstaltungsbeschreibung alle Durch-
fliihrungen in einem einzigen Attribut zusammenfassen;

Bsp: <DURCHFUEHRUNG semester=’Meier:2007s; Koch:2008w;’ />

Losung:

<xsl:template match=’ DURCHFUEHRUNG °’> />
<xsl:template match=’ DURCHFUEHRUNG[1] °’> >

<DURCHFUEHRUNGEN>
<xsl:attribute name=’semester’>
<xsl:for-each select=’ ../DURCHFUEHRUNG °’> >

<xsl:value-of select=’ @dozentId ’> />:
<xsl:value-of select=’ @semester ’> />;
</xsl:for-each>
</xsl:attribute>
</DURCHFUEHRUNGEN>
</xsl:template>

l Ausgabe- und Steuerkommandos / Das Kommando xsl:attribute 23 ‘

Beispiel 2: xsl:attribute-Schablone, die Elemente und einen
Kommentar enthalt

<xsl:template match=" / " >
<alles>
<xsl:attribute name="x">
<!-- test -->
123abc456
</xsl:attribute>
</alles>
</xsl:template>

ergibt:
<alles x="
 123abc456
 "/>

l Ausgabe- und Steuerkommandos / Das Kommando xsl:element 24 ‘

1.7 Das Kommando xsl:element
Anzuwenden, wenn auch der Name des auszugebenden Elements

berechnet werden soll

Merkmale und Wirkung:

— xsl:element -Anweisung statt 6ffnendem und schliefenden
Tag

— Parameter name gibt Namen des zu erzeugenden Elements
an

— Parameter namespace deklariert Namensraumbezeichner fiir
dieses Element

— innere Schablone: erzeugt Kinder des Elements

l Ausgabe- und Steuerkommandos / Das Kommando xsl:element 25 ‘

Beispiel (um des Beispiels willen): DURCHFUEHRUNG-Ele-
mente bilden, die die dozentld im Elementnamen enthalten

<xsl:template match=’ DURCHFUEHRUNG ’ >
<xsl:element
name=’DURCHFUEHRUNGvon{ @dozentId }’>
<xsl:attribute name=’semester’>
<xsl:value-of select=’ @semester ’> />
</xsl:attribute>
</xsl:element>
</xsl:template>

l Variablen 26

2 Variablen

— Variable = im Prinzip Paar (Name, Wert)

- werden u.a. ben6tigt, um Gruppierungen / Aggregationen und
Verbunde zu berechnen

- konnen in verschiedenen Kontexten benutzt werden (Suchbe-
dingungen in Pfaden, Ausgabeanweisungen usw.)

— sehr viele Sonderfalle und Verhaltensvarianten — eher schlecht
verstandlich

— in XSLT Version 2 deutlich besser als in XSLT Version 1

— sind als top-level-Element zuldssig, aber auch als Anweisung
innerhalb von Schablonen

— finale Wertzuweisung bei der Deklaration, keine erneute Wert-
zuweisung erlaubt!

l Variablen

Deklaration:

<xsl:variable name=’...’
select=? ... ? >
<!-- Content: template -->

</xsl:variable>

— Attribut name mufs syntaktisch korrekten Namen enthalten

— Angabe des Werts entweder im Attribut select oder durch
eine innere Schablone

Benutzung in der Form $variablenname

l Variablen / Wertangabe in select 28

2.1 Wertangabe in select

select muft Ausdruck enthalten, der

eine Zeichenkette,
eine Zahl,
einen Booleschen Wert oder

Ll

eine Knotenmenge liefert
falls Knotenmenge: Knoten kénnen als Ausgangspunkt von Navi-
gationen dienen. Beispiele:

<xsl:value-of select=’ $variablenname / lokalerPfad °> />
<element attribut=’{ $variablenname / lokalerPfad }’ />

Vorsicht: viele automatische Konversionen!

l Variablen / Wertangabe in select 29

Beispiele:

<xsl:variable name=’nl’ select=’2+3’ />
<xsl:variable name=’n2’ select=’"2+3"’ />
<xsl:variable name=’n3’ select=’$ni1+3%4’> />
<xsl:variable name=’n4’ select="’xxyyzz’" />
<xsl:variable name=’n5’ select="’’" />
<xsl:variable name=’n6’ select=’1>2’ />
<xsl:variable name=’n7’ select=’//@semester’ />

<xsl:template match=> / ’> <out n1=’{$n1}’ n2=’{$n2}’
n3="{$n3}’ n4=’{$n4}’ n6=>{$nb6}’ n6="{$n6}’> />
</xsl:template>

liefert:

<out ni1="5" n2="2+3" n3="17" n4="xxyyzz" nb="" n6="false" />

l Variablen / Wertangabe in innerer Schablone

30

2.2 Wertangabe in innerer Schablone
Beispiele:

<xsl:variable name=’n8’ >
Dies ist ein fetter Text.
</xsl:variable>

<xsl:variable name=’n9’ >
<xsl:for-each select=’//@semester’ >
<xsl:value-of select=’.’ />
<xsl:text>..</xsl:text>
</xsl:for-each>
</xsl:variable>

Ergebnistyp: result tree fragment

l Variablen / Wertangabe in innerer Schablone 31 ‘

Nutzungsmoglichkeiten eines result tree fragments:

— Ausgabe mit xsl:value-of: konvertiert zu einem Textknoten

— Ausgabe mit <xsl:copy-of select=’$xxx’ />: als komplette
Kopie mit allen inneren Knoten

— konnen nicht als weitere Eingabe, Startpunkt von Navigationen
o0.4. benutzt werden (in XSLT 1.0)

l Variablen / Verbundbildung mit Variablen 32 ‘

2.3 Verbundbildung mit Variablen

— Nachimplementierung eines Verbunds von Hand unter Benut-
zung von Variablen

— Bestimmung der Verbundpartner mit einem XPath-Ausdruck
Beispiel:

— wie bisher Lehrveranstaltungsdaten, die eine dozentId als
“Fremdschliissel” auf die Personendaten enthalten

— zuséatzliche Personendaten

Variablen / Verbundbildung mit Variablen

33

<FBINFO>
<PERSONEN>
<PERSON persId=’Kelter’ nachname=’Kelter’
vornameInit=’U.’> fachgr=’PI’ />
</PERSONEN>
<LEHRVERANSTALTUNG>

<VERANTWORTLICHER dozentId=’Kelter’ />

</LEHRVERANSTALTUNG>
</FBINFO>

l Variablen / Verbundbildung mit Variablen 34 ‘

Aufgabe: Im Element VERANTWORTLICHER sollen innen der Na-
me, Initialen und Fachgruppenzugehorigkeit eingetragen werden,
Beispiel:

<FBINFO>
<LEHRVERANSTALTUNG>
<VERANTWORTLICHER dozentId=’Kelter’ >
Kelter, Udo (PI)

</VERANTWORTLICHER>

</LEHRVERANSTALTUNG>
</FBINFO>

l Variablen / Verbundbildung mit Variablen 35 ‘

Losungsstrategie: Verbund manuell wie folgt in drei Schritten
implementieren

1.

eine Variable mit dem Fremdschliisselwert anlegen (dzId)

2. die Variable nutzen, um in der “Zielrelation des Fremdschliis-

sels” den zugehorigen Eintrag zu lokalisieren —

in zweiter Variable (dzElem) Referenz auf diesen Eintrag spei-
chern

von der Referenz in der zweiten Variablen aus zu den auszuge-
benden Daten navigieren

l Variablen / Verbundbildung mit Variablen 36

Losungsausschnitt:

<xsl:template match=’ VERANTWORTLICHER ’> >
<!-- Schritt 1 -->
<xsl:variable name=’dzId’ select=’ @dozentId ’ />
<!-- Schritt 2 -->
<xsl:variable name=’dzElem’ select=
> // PERSON [@persId = $dzId] ’ />
<!-- Schritt 3 -->
<VERANTWORTLICHER dozentId=’{ $dzId }’ >
<xsl:value-of select=’ $dzElem / @nachname ’ />,
<xsl:value-of select=’ $dzElem / @vornameInit ’ />
(<xsl:value-of select=’ $dzElem / @fachgr ’> />)
</VERANTWORTLICHER>
</xsl:template>

l Variablen / Verbundbildung mit Variablen 37

Anmerkungen:

— in Schritt 2 ist intuitiv naheliegend, aber falsch:
select=’> // PERSON [@persId = @dozentId] °

Kontextknoten der Pfade @persId und @dozentId ist ein
PERSON-Element, dort gibt es kein Attribut @dozentId!

im absoluten Pfad >//PERSON [..]’ ist die Position des aktu-
ellen Vergleichs-Attributs @dozentId ohne die Variable @dzId
mit den bisher eingefiihrten Konzepten nicht rekonstruierbar

- Variable dzElem enthélt i.a. eine Menge von Referenzen auf
Knoten im Eingabebaum, weil mit select=> pfad ’ gesetzt;
wenn Daten korrekt, max. 1 Element.

— von dort aus weiternavigieren,
Beispiel: $dzElem / @nachname

l Variablen / Verbundbildung mit Variablen 38 ‘

- Variable dzElem ist verzichtbar (verbessert aber die Lesbarkeit):
jedes Auftreten von $dzElem in Schritt 3 kann ersetzt werden

durch
select=’> // PERSON [@persId = $dzId] °
— in Schritt 3 wire dozentId=’{ @dozentId }’ ebenfalls richtig,

— dozentId=’$dzId’ wire falsch, das wiirde $dzId wortlich aus-
geben

l Variablen / Verbundbildung mit Variablen 39 ‘

Effizienzproblem: Implementierung des Pfadausdrucks //
PERSON [@persId = $dzId]

— kann am einfachsten durch lineare Suche implementiert werden
— sehr ineffizient

— konnte durch einen automatisch angelegten Sekundérindex be-
schleunigt werden

Optimierung der Ausfithrung von Transformationen sehr kom-
plex - entfillt / nicht voraussetzbar

— manueller Einsatz von Sekundéarindexen

l Variablen / Weiterverarbeitung des Verbundergebnisses 40 ‘

2.4 Weiterverarbeitung des Verbundergebnis-
ses

Beispiele:
— weiterer Verbund, z.B. @fachgr ist Referenz auf Daten der

Fachgruppe, Ergdnzung von Merkmalen der Fachgruppe

— Suche nach allen Lehrveranstaltungen einer bestimmten Fach-
gruppe

moglich, fithrt aber zu sehr komplizierten (fehleranfilligen) Losun-
gen

besser: temporire XML-Datei

l Mehrere Ein- und Ausgabedateien 41 ‘

3 Mehrere Ein- und Ausgabedateien

bisher: genau 1 Ein- und Ausgabedatei - oft zu restriktiv

Beispiele:

— aus der FBINFO-Datei sollen fiir jede Lehrveranstaltung eine
separate HTML-Datei erzeugt werden

- FEingabedaten sollen auf mehrere XML-Dateien verteilt werden,
z.B. pro Fachgruppe eine separate XML-Datei

l Mehrere Ein- und Ausgabedateien / Das Kommando xsl:document 42

3.1 Das Kommando xsl:document

Schema.:

<xsl:document
method=".."
href=".."
encoding=".."

<!-- innere Schablone -->
</xsl:document>

- erst ab XSLT 1.1 verfiigbar

- erzeugt eine XML-/HTML-/Text-Datei gemé&f Angabe in
@method (Angaben wie in xsl:output-Elementen)

— Name der Ausgabedatei in @href

l Mehrere Ein- und Ausgabedateien / Das Kommando xsl:document 43 ‘

bei method="xml": alle Merkmale in der XML-Deklaration
kénnen durch weitere Attribute angegeben werden, Beispiel:
encoding="IS0-8859-1"

Beispiel (Losungsausschnitt):

<xsl:template match=’ LEHRVERANSTALTUNG °’> >
<xsl:document
method="html"

href="{LEHRVERANSTALTUNGSKUERZEL}.html"

>
<html>
<head> </head>
<body> </body>
</html>

</xsl:document>
</xsl:template>

l Mehrere Ein- und Ausgabedateien / Das Kommando xsl:document

44

dazu passendes “Hauptprogramm?:

<xsl:template match=’ FBINFO > >
<xsl:apply-templates select=’ LEHRVERANSTALTUNG °’> />
</xsl:template>

l Mehrere Ein- und Ausgabedateien / Die XSLT-Funktion document(...)

3.2 Die XSLT-Funktion document(...)

45

Schnittstelle (stark vereinfacht; vollstindige Spezifikation s. https:
//www.w3.org/TR/xs1t-10/#document):

node-set document (uri:string)

— im Argument uri wird eine XML-Datei angegeben
die Datei wird eingelesen zu einem eigenen Syntaxbaum

zuriickgegeben wird eine Referenz auf die Dokumentwurzel
dieses Syntaxbaums

vor dort kann (wie bei einer Variablen) mit einem relativen
Pfadausdruck weiternavigiert werden

https://www.w3.org/TR/xslt-10/#document
https://www.w3.org/TR/xslt-10/#document

l Mehrere Ein- und Ausgabedateien / Die XSLT-Funktion document(...) 46

Beispiel:

<xsl:output method="text" />
<xsl:template match=" / ">
<xsl:document method="xml" href="/tmp/test.xml" >
<a>
<b x="1">eins
<b x="2">zwei
<b x="3">drei

</xsl:document>

<xsl:variable name="doc"
select=" document(’/tmp/test.xml’) " />

<xsl:value-of select=’ $doc / a / b [@x=2] ’ />
<xsl:value-of select=’ $doc / a / b [@x=3] ’ />
</xsl:template>

l Mehrere Ein- und Ausgabedateien / Die XSLT-Funktion document(...) 47 ‘

- diese Transformation erzeugt (bei beliebiger Eingabe) die Text-
Ausgabe “zweidrei”

- das Kommando xsl:document erzeugt die Datei
/tmp/test.xml

— diese Datei kann sofort danach wieder eingelesen werden, die
Dokumentwurzel wird hier einer Variablen zugewiesen

l Mehrere Ein- und Ausgabedateien / Die XSLT-Funktion document(...) 48

Nutzung von document(...) :

- aufsammeln von Daten aus verschiedenen Quellen

— Vorverarbeitung der Eingabedaten mit xsl:document , z.B.
Verbundbildung,
danach Wiedereinlesen dieser Daten mit document(...)

	Ausgabe- und Steuerkommandos
	Versuch einer Systematik und Übersicht
	Das Kommando xsl:copy-of
	Das Kommando xsl:if
	Das Kommando xsl:choose
	Attributwertschablonen
	Das Kommando xsl:attribute
	Das Kommando xsl:element

	Variablen
	Wertangabe in select
	Wertangabe in innerer Schablone
	Verbundbildung mit Variablen
	Weiterverarbeitung des Verbundergebnisses

	Mehrere Ein- und Ausgabedateien
	Das Kommando xsl:document
	Die XSLT-Funktion document(...)

