XSLT, Teil 3

Udo Kelter

02.05.2019

Zusammenfassung dieses Lehrmoduls

Auch in XML-Datenbestéinden hat man das Problem der Verbund-
bildung, also der Bildung neuer Elemente, die Daten aus verschiedenen
Quellen enthalten. In XSLT miissen solche Verbunde praktisch von
Hand berechnet werden. Hierzu kann man XSLT-Variablen einset-
zen. Dieses Lehrmodul stellt weitere XSLT-Kommandos, das XSLT-
Variablenkonzept und dessen Einsatz bei der Verbundbildung vor.

Vorausgesetzte Lehrmodule:

obligatorisch: - XPath
- XSLT, Teil 1 (Stichworte)
- XSLT, Teil 2 (Stichworte)

Stoffumfang in Vorlesungsdoppelstunden: 1.0

XSLT, Teil 3 2

Inhaltsverzeichnis
1 Ausgabe- und Steuerkommandos| 3
[1.1 Versuch einer Systematik und Ubersicht] 3
[1.2 Das Kommando xsl:copy-of] 4
(ifl. ... 5
1.4 Das Kommando xsl:choosel . 5
1.6 Das Kommando xsl:attributel| . 8
1.7 Das Kommando xsl:element]| 9
2 Variablenl 10
2.1 Wertangabe inselect| 10
2.2 Wertangabe in innerer Schablone| 00 11
2.3 Verbundbildung mit Variablen| B]
2.4 Weiterverarbeitung des Verbundergebnlssesl PR)
13 Mehrere Ein- und Ausgabedateien| 15
8.2 Die XSLT-Funktion document(...0|. 16
Index] 18
(©2019 Udo Kelter Stand: 02.05.2019

Dieser Text darf fiir nichtkommerzielle Nutzungen als Ganzes und unveréndert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Verdnderung und Uberfiihrung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist iiber http://kltr.de erreichbar.

XSLT, Teil 3 3

1 Ausgabe- und Steuerkommandos

hier nur punktuell und informell dargestellt, Details (insb. weitere
Parameter) und genaue Definition s. XSLT-Standard
Gemeinsamkeiten:

- sind entweder Steuerkommandos oder erzeugen direkt irgendwelche
Teile des Ausgabebaums

- treten in Schablonen auf

- haben oft einen Inhalt, der wiederum eine Schablone darstellt,
m.a.W. kéonnen Ausgabekommandos geschachtelt werden

- werden als Element mit Typ xsl:..... notiert

1.1 Versuch einer Systematik und Ubersicht
1. Steuerkommandos
xsl:for-each iteriert iiber eine Knotenmenge und ruft fiir jeden
Knoten die innere Schablone auf

xsl:apply-templates iteriert iiber eine Knotenmenge und wendet
die jeweils zutreffende Transformationsregel an

xsl:if bedingter Aufruf einer inneren Schablone
xsl:choose verallgemeinertes if; mehrere nacheinander zu te-

stende Bedingungen,
gef. eine otherwise-Alternative

2. Ausgabekommandos, die Knoten verschiedener Typen durch Kopie-
ren vom Eingabebaum in den Ausgabebaum erzeugen:

xsl:copy kopiert einen Knoten des Eingabebaums (den Kon-
textknoten, kein select-Parameter); Typ des Kno-
tens ist beliebig

xsl:copy-of select=’ XPath-Ausdruck ’
kopiert beliebig viele Teilbaume des Eingabebaums,
Wurzeln der Teilbdume geméft XPath-Ausdruck

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 3 4

3. Ausgabekommandos, die Elementknoten erzeugen:

< L direkte Angabe der 6ffnenden und schlieffenden tags

xsl:element erzeugt einen Elementknoten; der Typ wird als Pa-
rameter angegeben und kann dynamisch berechnet
werden

gef. auch xsl:copy und xsl:copy-of
. Ausgabekommandos, die Textknoten erzeugen
direkte Angabe von Text

xsl:text erzeugt den angegebenen Text; spezielle Moglich-
keiten zur Behandlung von Leerraum

xsl:value-of konvertiert einzelne Eingabeknoten oder ganze Teil-
bédume in textuelle Darstellung

ggf. auch xsl:copy und xsl:copy-of
. Ausgabekommandos, die Attributknoten erzeugen

xxx=’...> direkte Angabe von Attributname und Wert im 6ff-
nenden tags; nur moglich, wenn auch das Element
direkt angegeben wird

gef. variable Inhalte mit Attributwertschablonen

xsl:attribute erzeugt einen Attributknoten; Attributname und
Wert werden in Parametern angegeben und kénnen
dynamisch berechnet werden

ggf. auch xsl:copy und xsl:copy-of

1.2 Das Kommando xsl:copy-of
Syntax:

<xsl:copy-of select=’ ...\ ’ />

— keine innere Schablone

(©2019 Udo Kelter

Stand: 02.05.2019

XSLT, Teil 3 5

- Wenn der select-Parameter einen XPath-Ausdruck enthalt, wer-
den alle Treffer ausgegeben. Ausgegeben wird zu jedem Treffer eine
komplette Kopie des Teilbaums, dessen Wurzel dieser Treffer ist.

1.3 Das Kommando xsl:if
Schema:

<xsl:if test=’ boolean-expression ’ >
<!-- innere Schablone -->
</xsl:if>

Merkmale:

- hat einen Parameter test, der einen Booleschen Ausdruck enthélt
(Vorsicht mit < -Zeichen! miissen umcodiert / vermieden werden)

- Inhalt: innere Schablone

- kein “else”-Zweig moglich
Wirkung;:

1. der im Parameter test enthaltene Booleschen Ausdruck wird aus-
gewertet

2. bei positivem Testergebnis wird die innere Schablone ausgefiihrt
Kontextknoten fiir die innere Schablone: der gleiche (!) wie der der
aufrufenden Schablone

1.4 Das Kommando xsl:choose

entspricht einer case- / switch-Verzweigung
Schema:

<xsl:choose>
<xsl:when test=’ boolean-expression ’ >
<!-- Content: template -->
</xsl:when>

©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 3 6

<xsl:otherwise>
<!-- Content: template -->
</xsl:otherwise>
</xsl:choose>

1.5 Attributwertschablonen

Problem, falls Attributwerte keinen festen Wert erhalten, sondern be-

rechnet werden sollen:

— keine inneren Elemente erlaubt

- daher Ausgabekommandos als <xsl:... select=’ ... > />
Element nicht direkt im Inhalt eines Attributs erlaubt

direkte Angabe des Werts nur brauchbar, wenn der Wert immer gleich
ist

Beispiel: die Telefonliste aus LM XSLT2 soll in folgende Form um-
gewandelt werden:

<Telefonliste>
<Eintrag name=’Meier’ land=’0049’ vorwahl=’0271’
nummer=>891234° />
<Eintrag name=’Schmitz’ land=’0049’ vorwahl=’0228’
nummer=>870887° />
</Telefonliste>

Attribut land kann direkt mit festem Wert angegeben werden:

<xsl:template match=’ Eintrag ’>
<Eintrag land=’0049° vorwahl=’7?77?777> />
</xsl:template>

Die Werte der anderen Attribute hdngen von anderen Knoten des Ein-
gabebaums ab;
z.B. Wert von nummer ist Kopie des Inhalts des Elements Telnr

xsl:value-of kann man nicht benutzen:

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 3 7

<Eintrag
vorwahl=’<xsl:value-of select=" Telnr/@vorwahl " />’
nummer =’<xsl:value-of select=" Telnr " />’

/>
</xsl:template>

ist falsch, weil
syntaktisch betrachtet: < ist in Attributwerten nicht erlaubt

umcodieren des < mit < nitzt nichts: dann wird das < “wortlich”
genommen und kein Kommando interpretiert

von der Struktur des Transformationsdokuments her betrachtet: das
Kommando miifste in der Schablone ein Kindelement des Attributs sein
- generell nicht erlaubt

Attributwertschablonen:

Attributwertschablone = Ausdruck, der Knotenliste liefert, in ge-
schweiften Klammern

Syntax: { Ausdruck }

Ausgabe: textuelle Darstellung des ersten (!) Knotens der Liste

Beispiel:
<xsl:template match=’ Eintrag ’ >
<Eintrag name =’{ name }’
land =20049°
vorwahl =’{ Telnr/Qvorwahl }’
nummer =’{ Telnr }’ />

</xsl:template>

Beispiel 2: nur 1 Attribut mit kompletter Telefonnummer geméaf
Muster “[0049] 0271-7402611"

<xsl:template match=’ Eintrag ’ >
<Eintrag name=’{ name }’
telefonnr=>[0049] { Telnr/@vorwahl }-{ Telnr }’ />
</xsl:template>

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 3 8

d.h. Attributwert wird durch mehrere Attributwertschablonen und feste
Texte erzeugt

1.6 Das Kommando xsl:attribute

Anzuwenden, wenn auch der Name des auszugebenden Attributs berech-
net werden soll oder wenn der Attributwert ziemlich komplex ist
Merkmale und Wirkung;:

- xsl:attribute-Anweisung mufl vor Anweisungen ausgefiihrt wer-
den, die den Inhalt des Elements erzeugen

- hat einen Parameter name, der den Namen des zu erzeugenden
Attributs angibt

- innere Schablone: berechnet Wert des Attributs
Wert: Konkatenation aller erzeugten Text-Knoten

Beispiel 1: In einer Lehrveranstaltungsbeschreibung alle Durchfiih-
rungen in einem einzigen Attribut zusammenfassen;

BSp:<DURCHFUEHRUNG semester=’Meier:2007s; Koch:2008w;’ />
Losung:

<xsl:template match=’> DURCHFUEHRUNG ’ />
<xsl:template match=’ DURCHFUEHRUNG[1] ’> >

<DURCHFUEHRUNGEN>
<xsl:attribute name=’semester’>
<xsl:for-each select=’ ../DURCHFUEHRUNG °’> >

<xsl:value-of select=’ @dozentId ’> />:
<xsl:value-of select=’ @semester ’ />;
</xsl:for-each>
</xsl:attribute>
</DURCHFUEHRUNGEN>
</xsl:template>

Beispiel 2: xsl:attribute-Schablone, die Elemente und einen Kom-
mentar enthélt

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 3 9

<xsl:template match=" / " >
<alles>
<xsl:attribute name="x">
<l-- test -->
123abc456
</xsl:attribute>
</alles>
</xsl:template>

ergibt:
<alles x="
 123abc456
 />

1.7 Das Kommando xsl:element

Anzuwenden, wenn auch der Name des auszugebenden Elements berech-
net werden soll
Merkmale und Wirkung:

- xsl:element-Anweisung statt 6ffnendem und schliefenden Tag
- Parameter name gibt Namen des zu erzeugenden Elements an

- Parameter namespace deklariert Namensraumbezeichner fiir dieses
Element

- innere Schablone: erzeugt Kinder des Elements

Beispiel (um des Beispiels willen): DURCHFUEHRUNG-Elemente
bilden, die die dozentld im Elementnamen enthalten

<xsl:template match=’ DURCHFUEHRUNG ’ >
<xsl:element
name=’DURCHFUEHRUNGvon{ @dozentId }’>
<xsl:attribute name=’semester’>
<xsl:value-of select=’ Q@semester ’> />
</xsl:attribute>
</xsl:element>
</xsl:template>

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 3 10

2 Variablen

- Variable = im Prinzip Paar (Name, Wert)

- werden u.a. bendétigt, um Gruppierungen / Aggregationen und
Verbunde zu berechnen

- konnen in verschiedenen Kontexten benutzt werden (Suchbedingun-
gen in Pfaden, Ausgabeanweisungen usw.)

— sehr viele Sonderfélle und Verhaltensvarianten — eher schlecht ver-
standlich

- in XSLT Version 2 deutlich besser als in XSLT Version 1

- ¢ind als top-level-Element zuléssig, aber auch als Anweisung inner-
halb von Schablonen

- finale Wertzuweisung bei der Deklaration, keine erneute Wertzuwei-
sung erlaubt!

Deklaration:

<xsl:variable name=’...°
select=> ...\ ’ >
<!-- Content: template -->
</xsl:variable>

- Attribut name mufs syntaktisch korrekten Namen enthalten

- Angabe des Werts entweder im Attribut select oder durch eine
innere Schablone

Benutzung in der Form $variablenname
2.1 Wertangabe in select

select muft Ausdruck enthalten, der

1. eine Zeichenkette,
2. eine Zahl,

©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 3 11

3. einen Booleschen Wert oder
4. eine Knotenmenge liefert

falls Knotenmenge: Knoten kénnen als Ausgangspunkt von Navigatio-
nen dienen. Beispiele:

<xsl:value-of select=’ $variablenname / lokalerPfad ’> />
<element attribut=’{ $variablenname / lokalerPfad }’ />

Vorsicht: viele automatische Konversionen!
Beispiele:

<xsl:variable name=’nl’ select=’2+3’ />
<xsl:variable name=’n2’ select=’"2+3"’ />
<xsl:variable name=’n3’ select=’$ni1+3%4’> />
<xsl:variable name=’n4’ select="’xxyyzz’" />
<xsl:variable name=’n5’ select="’’" />
<xsl:variable name=’n6’ select=’1>2’ />
<xsl:variable name=’n7’ select=’//@semester’ />

<xsl:template match=> / ’> <out ni1=’{$n1}’ n2=’{$n2}’
n3="{$n3}’ n4=’{$n4}’ n5=’{$nb}’ n6=’{$n6}’ />
</xsl:template>

liefert:

<out nl1="5" n2="2+3" n3="17" n4="xxyyzz" nb="" n6="false" />

2.2 Wertangabe in innerer Schablone

Beispiele:
<xsl:variable name=’n8’ >

Dies ist ein fetter Text.
</xsl:variable>

<xsl:variable name=’n9’ >
<xsl:for-each select=’//@semester’ >
<xsl:value-of select=’.’ />
<xsl:text>..</xsl:text>

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 3 12

</xsl:for-each>
</xsl:variable>

Ergebnistyp: result tree fragment
Nutzungsmoglichkeiten eines result tree fragments:
- Ausgabe mit xsl:value-of: konvertiert zu einem Textknoten

- Ausgabe mit <xsl:copy-of select=’$xxx’ />: als komplette Ko-
pie mit allen inneren Knoten

- konnen nicht als weitere Eingabe, Startpunkt von Navigationen o.4.
benutzt werden (in XSLT 1.0)

2.3 Verbundbildung mit Variablen

- Nachimplementierung eines Verbunds von Hand unter Benutzung
von Variablen

- Bestimmung der Verbundpartner mit einem XPath-Ausdruck

Beispiel:

- wie bisher Lehrveranstaltungsdaten, die eine dozentId als “Fremd-
schliissel” auf die Personendaten enthalten

— zuséatzliche Personendaten

<FBINFO>
<PERSONEN>
<PERSON persId=’Kelter’ nachname=’Kelter’
vornameInit=’U.’> fachgr=’PI’ />
</PERSONEN>
<LEHRVERANSTALTUNG>

<VERANTWORTLICHER dozentId=’Kelter’ />

</LEHRVERANSTALTUNG>
</FBINFO>

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 3 13

Aufgabe: Im Element VERANTWORTLICHER sollen innen der Name, In-
itialen und Fachgruppenzugehorigkeit eingetragen werden, Beispiel:

<FBINFO>
<LEHRVERANSTALTUNG>

<VERANTWORTLICHER dozentId=’Kelter’ >
Kelter, Udo (PI)
</VERANTWORTLICHER>

</LEHRVERANSTALTUNG>
</FBINFO>

Losungsstrategie: Verbund manuell wie folgt in drei Schritten imple-
mentieren

1. eine Variable mit dem Fremdschliisselwert anlegen (dzId)

2. die Variable nutzen, um in der “Zielrelation des Fremdschliissels”
den zugehorigen Eintrag zu lokalisieren —
in zweiter Variable (dzElem) Referenz auf diesen Eintrag speichern

3. von der Referenz in der zweiten Variablen aus zu den auszugebenden
Daten navigieren

Losungsausschnitt:

<xsl:template match=’ VERANTWORTLICHER ’ >
<!-- Schritt 1 -->
<xsl:variable name=’dzId’ select=’ @dozentId ’> />
<!-- Schritt 2 -->
<xsl:variable name=’dzElem’ select=
> // PERSON [@persId = $dzId] °> />
<!-- Schritt 3 -->
<VERANTWORTLICHER dozentId=’{ $dzId }’ >
<xsl:value-of select=’ $dzElem / @nachname ’ />,
<xsl:value-of select=’ $dzElem / @vornamelnit ’> />
(<xsl:value-of select=’ $dzElem / @fachgr ’> />)
</VERANTWORTLICHER>
</xsl:template>

©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 3 14

Anmerkungen:

in Schritt 2 ist intuitiv naheliegend, aber falsch:
select=’ // PERSON [@persId = @dozentId] ’

Kontextknoten der Pfade @persId und @dozentId ist ein PERSON-
Element, dort gibt es kein Attribut @dozentId!

im absoluten Pfad ’//PERSON [..]’ ist die Position des aktuellen
Vergleichs-Attributs @dozentId ohne die Variable @dzId mit den
bisher eingefiihrten Konzepten nicht rekonstruierbar

Variable dzElem enthélt i.a. eine Menge von Referenzen auf Knoten
im Eingabebaum, weil mit select=’ pfad ’ gesetzt;
wenn Daten korrekt, max. 1 Element.

von dort aus weiternavigieren,
Beispiel: $dzElem / @nachname

Variable dzElem ist verzichtbar (verbessert aber die Lesbarkeit): je-
des Auftreten von $dzElem in Schritt 3 kann ersetzt werden durch
select=> // PERSON [@persId = $dzId] ’

in Schritt 3 wére dozentId=’{ @dozentId }’ ebenfalls richtig,
dozentId=’$dzId’ wire falsch, das wiirde $dzId wortlich ausgeben

Effizienzproblem: Implementierung des Pfadausdrucks // PERSON
[@persId = $dzId]

kann am einfachsten durch lineare Suche implementiert werden -
sehr ineffizient

konnte durch einen automatisch angelegten Sekundérindex beschleu-
nigt werden

Optimierung der Ausfiihrung von Transformationen sehr komplex -
entfillt / nicht voraussetzbar

— manueller Einsatz von Sekundarindexen

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 3 15

2.4 Weiterverarbeitung des Verbundergebnisses

Beispiele:

- weiterer Verbund, z.B. @fachgr ist Referenz auf Daten der Fach-
gruppe, Ergdnzung von Merkmalen der Fachgruppe

- Suche nach allen Lehrveranstaltungen einer bestimmten Fachgruppe

moglich, fithrt aber zu sehr komplizierten (fehleranfélligen) Losungen
besser: temporiare XML-Datei

3 Mehrere Ein- und Ausgabedateien

bisher: genau 1 Ein- und Ausgabedatei - oft zu restriktiv
Beispiele:

— aus der FBINFO-Datei sollen fiir jede Lehrveranstaltung eine separate
HTML-Datei erzeugt werden

- Eingabedaten sollen auf mehrere XML-Dateien verteilt werden, z.B.
pro Fachgruppe eine separate XML-Datei

3.1 Das Kommando xsl:document

Schema:

<xsl:document
method=".."
href=".."
encoding=".."

<!-- innere Schablone -->
</xsl:document>

- erst ab XSLT 1.1 verfiigbar

- erzeugt eine XML-/HTML-/Text-Datei geméf Angabe in @method
(Angaben wie in xsl:output-Elementen)

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 3 16

- Name der Ausgabedatei in @href

- bei method="xml": alle Merkmale in der XML-Deklaration kénnen
durch weitere Attribute angegeben werden, Beispiel:
encoding="150-8859-1"

Beispiel (Losungsausschnitt):

<xsl:template match=’ LEHRVERANSTALTUNG ’ >
<xsl:document
method="html"
href="{LEHRVERANSTALTUNGSKUERZEL}.html"

>
<html>
<head> </head>
<body> </body>
</html>

</xsl:document>
</xsl:template>

dazu passendes “Hauptprogramm?:

<xsl:template match=’ FBINFO ’ >

<xsl:apply-templates select=’> LEHRVERANSTALTUNG °’> />
</xsl:template>

3.2 Die XSLT-Funktion document(...)

Schnittstelle (stark vereinfacht; vollstéandige Spezifikation s. https:
//www.w3.org/TR/xs1lt-10/#document:

node-set document (uri:string)

- im Argument uri wird eine XML-Datei angegeben
- die Datei wird eingelesen zu einem eigenen Syntaxbaum

- zuriickgegeben wird eine Referenz auf die Dokumentwurzel dieses
Syntaxbaums

- vor dort kann (wie bei einer Variablen) mit einem relativen Pfad-
ausdruck weiternavigiert werden

(©2019 Udo Kelter Stand: 02.05.2019

https://www.w3.org/TR/xslt-10/#document
https://www.w3.org/TR/xslt-10/#document

XSLT, Teil 3 17

Beispiel:

<xsl:output method="text" />
<xsl:template match=" / ">
<xsl:document method="xml" href="/tmp/test.xml" >
<a>
<b x="1">eins
<b x="2">zwei
<b x="3">drei

</xsl:document>

<xsl:variable name="doc"
select=" document(’/tmp/test.xml’) " />

<xsl:value-of select=’ $doc / a / b
<xsl:value-of select=’ $doc / a / b
</xsl:template>

[ex=2] > />
[ex=3] * />

- diese Transformation erzeugt (bei beliebiger Eingabe) die Text-
Ausgabe “zweidrei”

- das Kommando xsl:document erzeugt die Datei /tmp/test.xml

- diese Datei kann sofort danach wieder eingelesen werden, die Doku-
mentwurzel wird hier einer Variablen zugewiesen

Nutzung von document(...):

- aufsammeln von Daten aus verschiedenen Quellen

- Vorverarbeitung der Eingabedaten mit xsl:document, z.B. Ver-
bundbildung,
danach Wiedereinlesen dieser Daten mit document(. . .)

Literatur

[XPAT| Kelter, U.: Lehrmodul “XPATH”; 2009
[XSLT| Kelter, U.: Lehrmodul “XSLT, Teil 1 (Stichworte)”; 2009

©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 3 18

[XSLT2| Kelter, U.: Lehrmodul “XSLT, Teil 2 (Stichworte)”; 2009

(©2019 Udo Kelter Stand: 02.05.2019

	Ausgabe- und Steuerkommandos
	Versuch einer Systematik und Übersicht
	Das Kommando xsl:copy-of
	Das Kommando xsl:if
	Das Kommando xsl:choose
	Attributwertschablonen
	Das Kommando xsl:attribute
	Das Kommando xsl:element

	Variablen
	Wertangabe in select
	Wertangabe in innerer Schablone
	Verbundbildung mit Variablen
	Weiterverarbeitung des Verbundergebnisses

	Mehrere Ein- und Ausgabedateien
	Das Kommando xsl:document
	Die XSLT-Funktion document(...)
	Literatur
	Index

