
Folien zum Lehrmodul

XSLT, Teil 4

Lernziele:

- Verbund mit Sekundärindex berechnen können
- Verbundbildung nach dem Prinzip der “Anreicherung” von

Elementen einsetzen können
- Duplikateliminierung und Gruppierung mit Hilfe eines Sekun-

därindex realisieren können

Inhaltsverzeichnis 3

Inhaltsverzeichnis
1 Sekundärindexe 4

1.1 Anlegen eines Sekundärindexes . 5
1.2 Benutzen eines Sekundärindexes 7

2 Verbundbildung mit Index 9
2.1 Verbundbildung als “Anreicherung” eines Elements 12

3 Gruppierung und Aggregation mit Index 16
3.1 Gruppierung und Duplikateliminierung 17
3.2 Bewertung von Indexen . 24

4 Softwaretechnische Beurteilung von XSLT 25

Sekundärindexe 4

1 Sekundärindexe

allgemein: Sekundärindex = Index, der einem Sekundärschlüssel-
wert eine Trefferliste zuordnet
“Trefferliste” im Kontext von XSLT: Menge von Knoten des Ein-
gabebaums

Sekundärindexe / Anlegen eines Sekundärindexes 5

1.1 Anlegen eines Sekundärindexes

XSLT-Kommando xsl:key

<!-- Category: top-level-element -->
<xsl:key name =’qname’

match=’pattern’
use =’expression’ />

- Parameter name: Name des Sekundärindex;
es können beliebig viele angelegt werden, die später durch ihren
Namen identifiziert werden

- Parameter match: Typen der Knoten, die indexiert werden
sollen (wie Parameter match in Transformationsregeln)

- Parameter use: Ausdruck, der zu einem Knoten dessen Sekun-
därschlüsselwert berechnet

Sekundärindexe / Anlegen eines Sekundärindexes 6

Effekt der Ausführung eines xsl:key-Kommandos:

1. bestimme alle Knoten im Eingabebaum, die zu match passen

2. für jeden dieser Knoten: berechne den zugehörigen Sekundär-
schlüsselwert gemäß Parameter use
– kann aus mehreren Datenwerten mit Textfunktionen wie con-
cat(..), substring(...) usw. konstruiert werden
– Textfunktionen: s. XPath-Standard, 4.2 String Functions

3. bestimme zu jedem aufgetretenen Sekundärschlüsselwert die
Trefferliste, also die Liste der Knoten mit diesem Sekundär-
schlüsselwert

Sekundärindexe / Benutzen eines Sekundärindexes 7

1.2 Benutzen eines Sekundärindexes

Abruf der Trefferliste für einen Sekundärschlüsselwert mit der
Funktion:

key (SIName: string, SSWert: object) : node-set

- 1. Parameter: Bezeichner des Sekundärindexes
- 2. Parameter: Sekundärschlüsselwert
- Rückgabe: Trefferliste, also Liste von Referenzen auf Knoten

des Eingabebaums

Funktion key hätte besser getNodesForKeyValue o.ä. geheißen

Sekundärindexe / Benutzen eines Sekundärindexes 8

Beispiel 1: zeige alle Lehrveranstaltungen in einem bestimmten
Semester an:

<xsl:key name =’LVproSemester’
match=’ DURCHFUEHRUNG ’
use =’ @semester ’ />

<xsl:template match=’ / ’>
<xsl:for-each

select=’ key("LVproSemester", "2006s") ’ >
<xsl:value-of select=’ @semester ’ />
<xsl:value-of select=’ @dozentId ’ />
<xsl:value-of select=’ .. / LEHRVERANSTALTUNGSNAME ’ />

</xsl:for-each>
</xsl:template>

Verbundbildung mit Index 9

2 Verbundbildung mit Index

Beispiel 2: (gleiche Aufgabe wie früher bei der Verbundbildung
mit Variablen)

<xsl:key name =’personendaten’
match=’ PERSON ’
use =’ @persId ’ />

<xsl:template match=’ VERANTWORTLICHER ’ >
<VERANTWORTLICHER dozentId=’{ @dozentId }’ >

<xsl:value-of select=’ key("personendaten", @dozentId) /
@nachname’ />,

<xsl:value-of select=’ key("personendaten", @dozentId) /
@vornameInit’ /> ...

</VERANTWORTLICHER>
</xsl:template>

Verbundbildung mit Index 10

Lästig / platzraubend: das key("personendaten", @dozentId) in
jedem xsl:value-of; Abhilfe: Einsatz einer Variablen:

<xsl:key s.o. />

<xsl:template match=’ VERANTWORTLICHER ’ >

<xsl:variable name="VA"
select=’ key("personendaten", @dozentId)’ />

<VERANTWORTLICHER dozentId=’{ @dozentId }’ >
<xsl:value-of select=’ $VA / @nachname ’ />,
<xsl:value-of select=’ $VA / @vornameInit ’ /> ...

</VERANTWORTLICHER>
</xsl:template>

Verbundbildung mit Index 11

Alternative Abhilfe: Wechsel des Kontextknotens durch
xsl:for-each (innerhalb des xsl:for-each kann nicht mehr auf
den VERANTWORTLICHER-Knoten und dessen Attribute / Kinder
zugegriffen werden!):

<xsl:key s.o. />

<xsl:template match=’ VERANTWORTLICHER ’ >
<VERANTWORTLICHER dozentId=’{ @dozentId }’ >

<xsl:for-each select=’ key("personendaten", @dozentId) ’ >
<xsl:value-of select=’ @nachname ’ />,
<xsl:value-of select=’ @vornameInit ’ /> ...

</xsl:for-each>

</VERANTWORTLICHER>
</xsl:template>

Verbundbildung mit Index / Verbundbildung als “Anreicherung” eines Elements 12

2.1 Verbundbildung als “Anreicherung” eines
Elements

Typische Anforderung:

- vorhandenes (ggf. komplexes) Element enthält eine oder meh-
rere Referenzen auf andere Elemente (= Verbundpartner)

- Daten von den Verbundpartnern sollen zu diesem Element
“hinzukopiert” werden (um alles lokal zu haben und ggf. in
einer Pipeline weiterzuverarbeiten)

- das Element soll also komplett in die Ausgabe kopiert werden,
ergänzt um zusätzliche Daten

Beispiel: Personendaten von VERANTWORTLICHER im vorigen Bei-
spiel

Verbundbildung mit Index / Verbundbildung als “Anreicherung” eines Elements 13

Lösungsschema (X = Typ des Elements):

a. für jedes Referenzattribut (bzw. einen entsprechenden Schlüs-
selwert) einen passenden Sekundärindex auf die Zielelemente
anlegen

b. generell identische Transformationsregel benutzen
c. spezielle Transformationsregel für X, die folgendes kopiert:

1. die Attribute von X
2. die “hinzukopierten” Attribute von den Verbundpartnern
3. die Kinder von X
4. Kinder der Verbundpartner

Verbundbildung mit Index / Verbundbildung als “Anreicherung” eines Elements 14

<xsl:include href="identisch.xslt" />

<xsl:key name =’personendaten’ />

<xsl:template match=’ VERANTWORTLICHER ’ >
<xsl:copy>

<!-- 1. lokale Attribute kopieren -->
<xsl:apply-templates select=’ @* ’ />

<!-- 2. entfernte Attribute kopieren -->
<xsl:apply-templates select=’

key("personendaten", @dozentId) / @* ’ />

<!-- 3. lokale Kinder kopieren -->
<xsl:apply-templates select=" node() " />
....

</xsl:copy>
</xsl:template>

Verbundbildung mit Index / Verbundbildung als “Anreicherung” eines Elements 15

Erläuterungen:

- <xsl:apply-templates select=’ node() | @* ’ /> aus
der identischen Transformation geht nicht als 1. Schritt, weil
zuerst alle Attribute in der Ausgabe erzeugt werden müssen
(vor den children)

- Alternativen zu ... / @* in Schritt 2:

1. .. / @nameEinesAttributs
2. .. / @* [name(.)=’fachgr’ or name(.)=’nachname’

]
Textfunktion name() liefert Namen (Typ) eines Element-
oder Attributknotens

Gruppierung und Aggregation mit Index 16

3 Gruppierung und Aggregation mit In-
dex

Beispiele mit Zählung / Summierung:
- Zahl der Module:

<xsl:value-of select=
’ count(key("LVproSemester", "2006s")) ’ />

- Gesamtzahl der LP:
<xsl:value-of select=

’ sum(key("LVproSemester", "2006s") / .. /
LEISTUNGSPUNKTE / @anzahl) ’ />

Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung 17

3.1 Gruppierung und Duplikateliminierung

Beispielaufgabe: zeige pro Semester die dort stattfindenden Lehr-
veranstaltungen
Problem:

- die Semesterkürzel treten in den Attributen
//DURCHFUEHRUNG/@semester mehrfach auf

- ausgegeben werden soll nur 1 Eintrag pro auftretendem Daten-
wert (Semesterkürzel)

Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung 18

- die wesentliche Arbeit, insb. die Duplikateliminierung, wird im
Prinzip beim Anlegen eines Sekundärindexes geleistet:

<xsl:key name =’semkrzl2semester’
match=’DURCHFUEHRUNG/@semester’
use =’.’ />

Dieser SI enthält pro Wert, der in den Attributen @semester
auftritt, einen Eintrag;
die zug. Trefferliste enthält Referenzen auf alle Attribut-Knoten
in der Eingabe, wo dieser Wert vorkommt.

- Problem: es gibt keinen Iterator für SI! (der über alle Trefferli-
sten in dem SI iteriert)

Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung 19

Ersatzkonstruktion für einen Iterator: Variable, die pro auftreten-
den Wert genau 1 Referenz auf diesen Wert enthält

<xsl:variable name=’alleVerschiedenenSemkrzl’
select=’ // DURCHFUEHRUNG / @semester

[generate-id(.) =
generate-id(key("semkrzl2semester", .) [1])

] ’ />

- alle @semester-Knoten werden durchsucht
- selektiert werden die Knoten, die in der zug. Trefferliste (key(

’semkrzl2semester’, .)) auf Platz eins ([1]) stehen
- Um Referenzen auf Konten in der Eingabe vergleichen zu kön-

nen, müssen die Referenzen erst in einen String umgewandelt
werden; hierzu: generate-id()

Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung 20

Im Endeffekt enthält die Variable alleVerschiedenenSemkrzl für
jeden Wert, der in der Eingabe vorkommt, genau eine Referenz
auf einen @semester-Knoten in der Eingabe, in dem dieser Wert
steht.

Testfrage: warum funktioniert die folgende Lösung ohne
generate-id() nicht?

<xsl:variable name=’alleVerschiedenenSemkrzl’
select=’ // DURCHFUEHRUNG / @semester

[. =
key("semkrzl2semester", .) [1]

] ’ />

Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung 21

Antwort: Diese Lösung eliminiert die Duplikate nicht!
In dem Gleichheitsvergleich werden hier die textuellen Werte der
Knoten verglichen, und nicht die Referenzen auf die Knoten im
Eingaben.
Die textuellen Werte der Knoten sind bei allen Einträgen in der
Trefferliste definitionsgemäß gleich!

Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung 22

Nutzung der “eindeutige-Werte-Variablen”:

1. Ausgabe der Anzahl der verschiedenen Werte:

<xsl:value-of
select=’ count($alleVerschiedenenSemkrzl)’ />

Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung 23

2. in einer for-each-Anweisung, die über die Gruppen iteriert;
z.B. pro Semester (also pro Gruppe) eine Liste aller Lehrver-
anstaltungen in diesem Semester ausgeben:

<!-- Iteration über alle Gruppen -->
<xsl:for-each select=’ $alleVerschiedenenSemkrzl ’ >

<xsl:sort select=’ . ’ />
.....

<!-- Iteration innerhalb einer Gruppe,
Bearbeitung der Knoten zum aktuellen Wert -->

<xsl:variable name=’aktuelleGruppe’
select=’ key("semkrzl2semester" , .) ’ />

<xsl:for-each select=’ $aktuelleGruppe ’ >
....

</xsl:for-each>
</xsl:for-each>

Gruppierung und Aggregation mit Index / Bewertung von Indexen 24

3.2 Bewertung von Indexen
- wesentlich effizienter als viele direkte Abfragen, wenn der gleiche

Datenbestand wiederholt durchsucht werden muß
- günstig für Verbundbildung oder Gruppierung / Aggregation

Softwaretechnische Beurteilung von XSLT 25

4 Softwaretechnische Beurteilung von
XSLT

Vorteile von XSLT:

- bei sehr einfachen Web-Applikationen: nur 1 Sprache
Indiz, daß pures XSLT sinnvoll ist: man kommt mit wenigen
“kleinen” Transformationen (50 - 200 Zeilen) aus

- grundlegende Operatoren (Selektionen, Projektion, Verbund)
schematisch mit Standard-Mustern sicher implementierbar

Softwaretechnische Beurteilung von XSLT 26

Nachteile von XSLT:

- Lesbarkeit / linguistische Qualität der XSLT-Programme: de-
saströs, Fehlerquelle erster Güte
... man könnte auch Java-Programme als Syntaxbaum in XML
codiert darstellen!

- kein vernünftiges Modulkonzept
- ungeeignet für komplexere Algorithmen / Applikationen

→ beschränken auf reine Abfragezwecke
sinnvolle Trennung zwischen Datenextraktion – Fachlogik (in
richtiger Programmiersprache!) anstreben

	Sekundärindexe
	Anlegen eines Sekundärindexes
	Benutzen eines Sekundärindexes

	Verbundbildung mit Index
	Verbundbildung als ``Anreicherung'' eines Elements

	Gruppierung und Aggregation mit Index
	Gruppierung und Duplikateliminierung
	Bewertung von Indexen

	Softwaretechnische Beurteilung von XSLT

