Folien zum Lehrmodul

XSLT, Teil 4

Lernziele:

— Verbund mit Sekundérindex berechnen konnen

— Verbundbildung nach dem Prinzip der “Anreicherung”’ von
Elementen einsetzen kénnen

— Duplikateliminierung und Gruppierung mit Hilfe eines Sekun-
dérindex realisieren kdnnen

[1nhaltsverzeichnis

Inhaltsverzeichnis

l1__Sekundarindexel

|1.1 Anlegen eines Sekundarindexes|.,

|2 Verbundbildung mit Index|
12.1 Verbundbildung als “Anreicherung” eines Elements|

|3 Gruppierung und Aggregation mit Index|

|3.1 Gruppierung und Duplikateliminierung

13.2 Bewertung von Indexen|o 0000

|4 Softwaretechnische Beurteilung von XSLT|

12

16
17
24

25

l Sekundérindexe 4

1 Sekundarindexe

allgemein: Sekundérindex = Index, der einem Sekundérschliissel-
wert eine Trefferliste zuordnet

“Trefferliste” im Kontext von XSLT: Menge von Knoten des Ein-
gabebaums

Sekundérindexe / Anlegen eines Sekundéarindexes 5

1.1 Anlegen eines Sekundarindexes

XSLT-Kommando xsl:key

<!-- Category: top-level-element -->
<xsl:key name =’gname’
match=’pattern’
use =’expression’ />

— Parameter name: Name des Sekundéarindex;
es konnen beliebig viele angelegt werden, die spéater durch ihren
Namen identifiziert werden

— Parameter match: Typen der Knoten, die indexiert werden
sollen (wie Parameter match in Transformationsregeln)

— Parameter use: Ausdruck, der zu einem Knoten dessen Sekun-
darschliisselwert berechnet

Sekundérindexe / Anlegen eines Sekundéarindexes 6 ‘

Effekt der Ausfithrung eines xsl:key-Kommandos:
1. bestimme alle Knoten im Eingabebaum, die zu match passen

2. fiir jeden dieser Knoten: berechne den zugehorigen Sekundér-
schliisselwert geméft Parameter use
— kann aus mehreren Datenwerten mit Textfunktionen wie con-
cat(..), substring(...) usw. konstruiert werden
— Textfunktionen: s. XPath-Standard, 4.2 String Functions

3. bestimme zu jedem aufgetretenen Sekundérschliisselwert die
Trefferliste, also die Liste der Knoten mit diesem Sekundér-
schliisselwert

Sekundérindexe / Benutzen eines Sekundirindexes 7 ‘

1.2 Benutzen eines Sekundarindexes

Abruf der Trefferliste fiir einen Sekundarschliisselwert mit der
Funktion:

key (SIName: string, SSWert: object) : node-set

— 1. Parameter: Bezeichner des Sekundarindexes
— 2. Parameter: Sekundéarschliisselwert

— Riickgabe: Trefferliste, also Liste von Referenzen auf Knoten
des Eingabebaums

Funktion key hétte besser getNodesForKeyValue 0.4. geheifien

Sekundérindexe / Benutzen eines Sekundirindexes 8

Beispiel 1: zeige alle Lehrveranstaltungen in einem bestimmten
Semester an:

<xsl:key name =’LVproSemester’
match=’ DURCHFUEHRUNG °’
use =’ @semester ’ />

<xsl:template match=’> / ’>
<xsl:for-each
select=’ key("LVproSemester", "2006s") ’> >
<xsl:value-of select=’ @semester ’> />
<xsl:value-of select=’ @dozentId ’> />
<xsl:value-of select=’ .. / LEHRVERANSTALTUNGSNAME > />
</xsl:for-each>
</xsl:template>

l Verbundbildung mit Index 9

2 Verbundbildung mit Index

Beispiel 2: (gleiche Aufgabe wie frither bei der Verbundbildung
mit Variablen)

<xsl:key name =’personendaten’
match=> PERSON ’
use =’ QpersId °’ />

<xsl:template match=’ VERANTWORTLICHER °’> >
<VERANTWORTLICHER dozentId=’{ @dozentId }’ >
<xsl:value-of select=’ key("personendaten", @dozentId) /
@nachname’ />,
<xsl:value-of select=’ key("personendaten", Q@dozentId) /
@vornameInit’ />
</VERANTWORTLICHER>
</xsl:template>

l Verbundbildung mit Index

10‘

Léstig / platzraubend: das key("personendaten", @dozentId) in

jedem xsl:value-of; Abhilfe: Einsatz einer Variablen:

<xsl:key s.o. />
<xsl:template match=’ VERANTWORTLICHER °’> >

<xsl:variable name="VA"
select=> key("personendaten", @dozentId)’ />

<VERANTWORTLICHER dozentId=’{ @dozentId }’> >
<xsl:value-of select=’ $VA / @nachname ’> />,
<xsl:value-of select=’ $VA / @vornamelnit ’> /> ...
</VERANTWORTLICHER>
</xsl:template>

l Verbundbildung mit Index 11 ‘

Alternative Abhilfe: Wechsel des Kontextknotens durch
xsl:for-each (innerhalb des xsl:for-each kann nicht mehr auf
den VERANTWORTLICHER-Knoten und dessen Attribute / Kinder
zugegriffen werden!):

<xsl:key s.o. />

<xsl:template match=’ VERANTWORTLICHER °’> >
<VERANTWORTLICHER dozentId=’{ @dozentId }’ >

<xsl:for-each select=’ key("personendaten", @dozentId) ’> >
<xsl:value-of select=’ @nachname ’> />,
<xsl:value-of select=’ Q@vornameIlnit ’> /> ...
</xsl:for-each>

</VERANTWORTLICHER>
</xsl:template>

Verbundbildung mit Index / Verbundbildung als “Anreicherung” eines Elements 12

2.1 Verbundbildung als ‘“Anreicherung” eines
Elements

Typische Anforderung:

— vorhandenes (ggf. komplexes) Element enthélt eine oder meh-
rere Referenzen auf andere Elemente (= Verbundpartner)

— Daten von den Verbundpartnern sollen zu diesem Element
“hinzukopiert” werden (um alles lokal zu haben und ggf. in
einer Pipeline weiterzuverarbeiten)

— das Element soll also komplett in die Ausgabe kopiert werden,
ergdnzt um zusétzliche Daten

Beispiel: Personendaten von VERANTWORTLICHER im vorigen Bei-
spiel

Verbundbildung mit Index / Verbundbildung als “Anreicherung” eines Elements 13 ‘

Losungsschema (X = Typ des Elements):

a. fiir jedes Referenzattribut (bzw. einen entsprechenden Schliis-

selwert) einen passenden Sekundirindex auf die Zielelemente
anlegen

b. generell identische Transformationsregel benutzen
c. spezielle Transformationsregel fiir X, die folgendes kopiert:

1.

die Attribute von X

2. die “hinzukopierten” Attribute von den Verbundpartnern
3.
4. Kinder der Verbundpartner

die Kinder von X

Verbundbildung mit Index / Verbundbildung als “Anreicherung” eines Elements

14

<xsl:include href="identisch.xslt" />
<xsl:key name =’personendaten’ />

<xsl:template match=’ VERANTWORTLICHER ’> >
<xsl:copy>

<!-- 1. lokale Attribute kopieren -->
<xsl:apply-templates select=’ @* > />

<!-- 2. entfernte Attribute kopieren -->
<xsl:apply-templates select=’
key("personendaten", @dozentId) / @x ’ />

<!-- 3. lokale Kinder kopieren -->
<xsl:apply-templates select=" node() " />
</xsl:copy>
</xsl:template>

Verbundbildung mit Index / Verbundbildung als “Anreicherung” eines Elements 15

Erlauterungen:

— <xsl:apply-templates select=’ node() | @* ’> /> aus
der identischen Transformation geht nicht als 1. Schritt, weil
zuerst alle Attribute in der Ausgabe erzeugt werden miissen
(vor den children)

— Alternativen zu ... / @* in Schritt 2:

1. .. / @nameEinesAttributs
2. .. / @ [name(.)=’fachgr’ or name(.)=’nachname’

]
Textfunktion name () liefert Namen (Typ) eines Element-
oder Attributknotens

Gruppierung und Aggregation mit Index 16 ‘

3 Gruppierung und Aggregation mit In-
dex

Beispiele mit Zéhlung / Summierung;:
— Zahl der Module:
<xsl:value-of select=
> count(key("LVproSemester", "2006s")) ’ />
- Gesamtzahl der LP:
<xsl:value-of select=

> sum(key("LVproSemester", "2006s") / .. /
LEISTUNGSPUNKTE / @anzahl) />

Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung 17 ‘

3.1 Gruppierung und Duplikateliminierung

Beispielaufgabe: zeige pro Semester die dort stattfindenden Lehr-
veranstaltungen

Problem:

— die Semesterkiirzel treten in den Attributen
//DURCHFUEHRUNG/@semester mehrfach auf

— ausgegeben werden soll nur I Eintrag pro auftretendem Daten-
wert (Semesterkiirzel)

l Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung 18 ‘

— die wesentliche Arbeit, insb. die Duplikateliminierung, wird im
Prinzip beim Anlegen eines Sekundéarindexes geleistet:

<xsl:key name =’semkrzl2semester’
match=’DURCHFUEHRUNG/@semester’
use =’.° />

Dieser SI enthélt pro Wert, der in den Attributen @semester
auftritt, einen Eintrag,

die zug. Trefferliste enthélt Referenzen auf alle Attribut-Knoten
in der Eingabe, wo dieser Wert vorkommt.

- Problem: es gibt keinen Iterator fiir SI! (der iiber alle Trefferli-
sten in dem SI iteriert)

l Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung 19 ‘

Ersatzkonstruktion fiir einen Iterator: Variable, die pro auftreten-
den Wert genau 1 Referenz auf diesen Wert enthélt

<xsl:variable name=’alleVerschiedenenSemkrzl’
select=’ // DURCHFUEHRUNG / @semester
[generate-id(.) =
generate-id(key("semkrzl2semester", .) [1])
1 />

— alle @semester-Knoten werden durchsucht

— selektiert werden die Knoten, die in der zug. Trefferliste (key(
’semkrzl2semester’, .)) auf Platz eins ([1]) stehen

— Um Referenzen auf Konten in der Eingabe vergleichen zu kon-
nen, miissen die Referenzen erst in einen String umgewandelt
werden; hierzu: generate-id()

l Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung 20 ‘

Im Endeffekt enthélt die Variable alleVerschiedenenSemkrzl fiir
jeden Wert, der in der Eingabe vorkommt, genau eine Referenz
auf einen @semester-Knoten in der Eingabe, in dem dieser Wert
steht.

Testfrage: warum funktioniert die folgende Losung ohne
generate-id() nicht?

<xsl:variable name=’alleVerschiedenenSemkrzl’
select=’ // DURCHFUEHRUNG / @semester
[.=
key("semkrzl2semester", .) [1]
1 />

Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung 21 ‘

Antwort: Diese Losung eliminiert die Duplikate nicht!

In dem Gleichheitsvergleich werden hier die textuellen Werte der
Knoten verglichen, und nicht die Referenzen auf die Knoten im
Eingaben.

Die textuellen Werte der Knoten sind bei allen Eintrégen in der
Trefferliste definitionsgeméfs gleich!

l Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung

22

Nutzung der “eindeutige-Werte-Variablen”:

1. Ausgabe der Anzahl der verschiedenen Werte:

<xsl:value-of
select=’ count($alleVerschiedenenSemkrzl)’ />

l Gruppierung und Aggregation mit Index / Gruppierung und Duplikateliminierung

]

2. in einer for-each-Anweisung, die iiber die Gruppen iteriert;
z.B. pro Semester (also pro Gruppe) eine Liste aller Lehrver-

anstaltungen in diesem Semester ausgeben:

<!-- Iteration iiber alle Gruppen -->

<xsl:for-each select=’ $alleVerschiedenenSemkrzl ’ >

<xsl:sort select=’ . ’ />

<!-- Tteration innerhalb einer Gruppe,

Bearbeitung der Knoten zum aktuellen Wert -->

<xsl:variable name=’aktuelleGruppe’
select=’ key("semkrzl2semester" , .) ’> />
<xsl:for-each select=’ $aktuelleGruppe ’> >

</xsl:for-each>
</xsl:for-each>

Gruppierung und Aggregation mit Index / Bewertung von Indexen 24 ‘

3.2 Bewertung von Indexen

— wesentlich effizienter als viele direkte Abfragen, wenn der gleiche
Datenbestand wiederholt durchsucht werden mufs

- gilinstig fiir Verbundbildung oder Gruppierung / Aggregation

l Softwaretechnische Beurteilung von XSLT 25 ‘

4 Softwaretechnische Beurteilung von
XSLT

Vorteile von XSLT:

— Dbei sehr einfachen Web-Applikationen: nur 1 Sprache

Indiz, dafs pures XSLT sinnvoll ist: man kommt mit wenigen
“kleinen” Transformationen (50 - 200 Zeilen) aus

- grundlegende Operatoren (Selektionen, Projektion, Verbund)
schematisch mit Standard-Mustern sicher implementierbar

l Softwaretechnische Beurteilung von XSLT 26 ‘

Nachteile von XSLT:

- Lesbarkeit / linguistische Qualitét der XSLT-Programme: de-
sastros, Fehlerquelle erster Giite

... man kénnte auch Java-Programme als Syntaxbaum in XML
codiert darstellen!

— kein verniinftiges Modulkonzept

- ungeeignet fiir komplexere Algorithmen / Applikationen
— beschrianken auf reine Abfragezwecke

sinnvolle Trennung zwischen Datenextraktion — Fachlogik (in
richtiger Programmiersprache!) anstreben

	Sekundärindexe
	Anlegen eines Sekundärindexes
	Benutzen eines Sekundärindexes

	Verbundbildung mit Index
	Verbundbildung als ``Anreicherung'' eines Elements

	Gruppierung und Aggregation mit Index
	Gruppierung und Duplikateliminierung
	Bewertung von Indexen

	Softwaretechnische Beurteilung von XSLT

