XSLT, Teil 4

Udo Kelter

02.05.2019

Zusammenfassung dieses Lehrmoduls

Die Berechnung von Verbunden mit Variablen ist relativ ineffizient; als
effizientere Alternative bieten sich manuell verwaltete Sekundarindexe
an. Dieses Lehrmodul stellt XSLT-Sekundéarindexe vor. Mit diesen kann
man auch Gruppierungen anhand von in der Eingabe vorkommenden
Datenwerten realisieren.

Vorausgesetzte Lehrmodule:

obligatorisch: - XPath

- XSLT, Teil 1 (Stichworte)
XSLT, Teil 2 (Stichworte)
XSLT, Teil 3 (Stichworte)

Stoffumfang in Vorlesungsdoppelstunden: 0.5

XSLT, Teil 4 2

Inhaltsverzeichnis

i Sal Erindexd 3
I1.1 Anlegen eines Sekundarindexes| 3

12 Verbundbildung mit Index| 4
2.1 Verbundbildung als “Anreicherung” eines Elements| 5

[3__Gruppierung und Aggregation mit Index| 7
3.1 uplikateliminierun .. 7
3.2 Bewertung von Indexen| 9

4 Softwaretechnische Beurteilung von XSLT] 9

LitBratud o .10

(©2019 Udo Kelter Stand: 02.05.2019
Dieser Text darf fiir nichtkommerzielle Nutzungen als Ganzes und unverdndert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Verdnderung und Uberfiihrung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist iiber http://kltr.de erreichbar.

XSLT, Teil 4 3

1 Sekundarindexe

allgemein: Sekundéarindex = Index, der einem Sekundarschliisselwert
eine Trefferliste zuordnet

“Trefferliste” im Kontext von XSLT: Menge von Knoten des Eingabe-
baums

1.1 Anlegen eines Sekundarindexes

XSLT-Kommando xsl:key

<!-- Category: top-level-element -->
<xsl:key name =’qname’
match=’pattern’
use =’expression’ />

- Parameter name: Name des Sekundérindex;
es konnen beliebig viele angelegt werden, die spéter durch ihren
Namen identifiziert werden

- Parameter match: Typen der Knoten, die indexiert werden sollen
(wie Parameter match in Transformationsregeln)

- Parameter use: Ausdruck, der zu einem Knoten dessen Sekundér-
schliisselwert berechnet

Effekt der Ausfiihrung eines xsl:key-Kommandos:

1. bestimme alle Knoten im Eingabebaum, die zu match passen

2. fiir jeden dieser Knoten: berechne den zugehorigen Sekundérschliis-
selwert geméfs Parameter use
— kann aus mehreren Datenwerten mit Textfunktionen wie con-
cat(..), substring(...) usw. konstruiert werden
— Textfunktionen: s. XPath-Standard, 4.2 String Functions

3. bestimme zu jedem aufgetretenen Sekundérschliisselwert die Treffer-
liste, also die Liste der Knoten mit diesem Sekundé&rschliisselwert

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 4

1.2 Benutzen eines Sekundirindexes
Abruf der Trefferliste fiir einen Sekundarschliisselwert mit der Funktion:

key (SIName: string, SSWert: object) : node-set

- 1. Parameter: Bezeichner des Sekundarindexes
— 2. Parameter: Sekundarschliisselwert

- Riickgabe: Trefferliste, also Liste von Referenzen auf Knoten des
Eingabebaums

Funktion key héatte besser getNodesForKeyValue o0.4. geheifsen

Beispiel 1: zeige alle Lehrveranstaltungen in einem bestimmten Se-
mester an:

<xsl:key name =’LVproSemester’
match=’ DURCHFUEHRUNG °
use =’ Qsemester °’ />

<xsl:template match=’> / ’>
<xsl:for-each
select=’ key("LVproSemester", "2006s") ’ >
<xsl:value-of select=’ @semester ’> />
<xsl:value-of select=’ @dozentId ’> />
<xsl:value-of select=’> .. / LEHRVERANSTALTUNGSNAME °> />
</xsl:for-each>
</xsl:template>

2 Verbundbildung mit Index

Beispiel 2: wie oben (Verbundbildung mit Variablen)

<xsl:key name =’personendaten’
match="PERSON’
use =’QpersId’ />

<xsl:template match=’ VERANTWORTLICHER ’ >

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 5

<VERANTWORTLICHER dozentId=’{ @dozentId }’ >

<xsl:for-each select=’ key("personendaten", Q@dozentId) ’ >
<xsl:value-of select=’@nachname’ />,
<xsl:value-of select=’@vornamelnit’ /> ...

</xsl:for-each>

</VERANTWORTLICHER>
</xsl:template>

alternative Losung mit einer Variablen statt xsl:for-each:

<xsl:key name =’personendaten’
match="PERSON’
use =’Q@perslId’ />

<xsl:template match=’ VERANTWORTLICHER ’> >

<xsl:variable name="V"
select=’ key("personendaten", @dozentId)’ />

<VERANTWORTLICHER dozentId=’{ @dozentId }’ >
<xsl:value-of select=’ $V / @nachname ’ />,
<xsl:value-of select=’ $V / @vornamelnit ’ /> ...
</VERANTWORTLICHER>

</xsl:template>

2.1 Verbundbildung als “Anreicherung” eines Elements

Typische Anforderung:

- vorhandenes (ggf. komplexes) Element enthélt eine oder mehrere
Referenzen auf andere Elemente (= Verbundpartner)

- Daten von den Verbundpartnern sollen zu diesem Element “hinzu-
kopiert” werden (um alles lokal zu haben und ggf. in einer Pipeline
weiterzuverarbeiten)

- das Element soll also komplett in die Ausgabe kopiert werden, er-
géanzt um zuséatzliche Daten

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 6

Beispiel: Personendaten von VERANTWORTLICHER im vorigen Beispiel

Losungsschema (X = Typ des Elements):

a. fiir jedes Referenzattribut (bzw. einen entsprechenden Schliisselwert)
einen passenden Sekundérindex auf die Zielelemente anlegen

b. generell identische Transformationsregel benutzen
c. spezielle Transformationsregel fiir X, die folgendes kopiert:

1. die Attribute von X
2. die “hinzukopierten” Attribute von den Verbundpartnern
3. die Kinder von X
4. Kinder der Verbundpartner
<xsl:key name =’personendaten’ />

<xsl:include href="identisch.xslt" />

<xsl:template match=’ VERANTWORTLICHER ’> >
<xsl:copy>

<!-- 1. lokale Attribute kopieren -->
<xsl:apply-templates select=’> @ ’ />

<!-- 2. entfernte Attribute kopieren -->
<xsl:apply-templates select=’
key("personendaten", @dozentId) / @x ’ />

<!-- 3. lokale Kinder kopieren -->
<xsl:apply-templates select=" node() " />

</xsl:copy>
</xsl:template>
Erlauterungen:
- <xsl:apply-templates select=’ node() | @* ’> />ausderiden-

tischen Transformation geht nicht als 1. Schritt, weil zuerst alle
Attribute in der Ausgabe erzeugt werden miissen (vor den children)

©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 7

- Alternativen zu ... / @ in Schritt 2:
1. .. / OnameEinesdttributs
2. .. / @ [name(.)=’fachgr’ or name(.)=’nachname’]
Textfunktion name () liefert Namen (Typ) eines Element- oder
Attributknotens

3 Gruppierung und Aggregation mit Index

Beispiele mit Z&hlung / Summierung:

Zahl der Module:
<xsl:value-of select=
> count(key("LVproSemester", "2006s")) °> />

Gesamtzahl der LP:
<xsl:value-of select=

> sum(key("LVproSemester", "2006s") / .. /
LEISTUNGSPUNKTE / @anzahl) °’ />

3.1 Duplikateliminierung

Beispielaufgabe: zeige pro Semester die dort stattfindenden Lehrveran-
staltungen

Problem:

- die Semesterkiirzel treten in den Attributen
//DURCHFUEHRUNG/@semester mehrfach auf

- ausgegeben werden soll nur 1 Eintrag pro auftretendem Datenwert
(Semesterkiirzel)

- die wesentliche Arbeit, insb, die Duplikateliminierung, wird im Prin-
zip beim Anlegen eines Sekundérindexes geleistet:

<xsl:key name =’semkrzl2semester’

match=’DURCHFUEHRUNG/@semester’
use =’.° />

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 8

Dieser SI enthélt pro Wert, der in den Attributen @semester auf-
tritt, einen Fintrag; die zug. Trefferliste enthélt Referenzen auf alle
Attribut-Knoten in der Eingabe, wo dieser Wert vorkommt.

- Problem: es gibt keinen Iterator fiir SI! (der {iber alle Trefferlisten
in dem SI iteriert)

Ersatzkonstruktion fiir einen Iterator:

<xsl:variable name=’alleVerschiedenenSemkrzl’
select=’ //DURCHFUEHRUNG/@semester
[generate-id(.) =
generate-id(key("semkrzl2semester", .) [1])

1’ />

- alle @semester-Knoten werden erneut durchsucht

- selektiert werden die Knoten, die in der zug. Trefferliste (key(
’semkrzl2semester’, .)) auf Platz eins ([1]) stehen

- Um Referenzen auf Konten in der Eingabe vergleichen zu konnen,
miissen die Referenzen erst in einen String umgewandelt werden;
hierzu: generate-id()

Im Endeffekt enthélt die Variable alleVerschiedenenSemkrzl fiir je-
den Wert, der in der Eingabe vorkommt, genau eine Referenz auf einen
@semester-Knoten in der Eingabe, in dem dieser Wert steht.

Testfrage: warum funktioniert die folgende Losung ohne generate-id ()
nicht?

<xsl:variable name=’alleVerschiedenenSemkrzl’
select=’ //DURCHFUEHRUNG/@semester
[.=
key("semkrzl2semester", .) [1]
1> />

Antwort: Diese Losung eliminiert die Duplikate nicht!
In dem Gleichheitsvergleich werden hier die textuellen Werte der Knoten
verglichen, und nicht die Referenzen auf die Knoten im Eingaben.

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 9

Die textuellen Werte der Knoten sind bei allen Eintragen in der Tref-
ferliste definitionsgeméf gleich!

Nutzung der “eindeutige- Werte-Variablen”

1. Ausgabe der Anzahl der verschiedenen Werte:

<xsl:value-of select=’count($alleVerschiedenenSemkrzl)’ />

2. Als Iterator-Menge in for-each-Anweisungen, z.B. pro Semester
eine Liste aller Lehrveranstaltungen in diesem Semester ausgeben:

<xsl:for-each select=’$alleVerschiedenenSemkrzl’ >

<xsl:sort select=’.’ />
<!-- zug. Gruppe von Knoten zum aktuellen Wert -->
<xsl:variable name=’aktuelleGruppe’

select=’ key("semkrzl2semester" , .) > />

3.2 Bewertung von Indexen

- wesentlich effizienter als viele direkte Abfragen, wenn der gleiche
Datenbestand wiederholt durchsucht werden mufs

- glnstig fir Verbundbildung oder Gruppierung / Aggregation

- unverstidndliche Namen von Kommando / Funktion

4 Softwaretechnische Beurteilung von XSLT

Vorteile von XSLT:

- bei sehr einfachen Web-Applikationen: nur 1 Sprache

Indiz, dafs pures XSLT sinnvoll ist: man kommt mit wenigen “klei-
nen” Transformationen (50 - 200 Zeilen) aus

- grundlegende Operatoren (Selektionen, Projektion, Verbund) sche-
matisch mit Standard-Mustern sicher implementierbar

(©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 10

Nachteile von XSLT:

- Lesbarkeit / linguistische Qualitét der XSLT-Programme: desastros,
Fehlerquelle erster Giite

man koénnte auch Java-Programme als Syntaxbaum in XML
codiert darstellen!

- kein verniinftiges Modulkonzept

- ungeeignet fiir komplexere Algorithmen / Applikationen
— beschranken auf reine Abfragezwecke

sinnvolle Trennung zwischen Datenextraktion — Fachlogik (in richti-
ger Programmiersprache!) anstreben

Literatur

[XPAT| Kelter, U.: Lehrmodul “XPATH”; 2009

[XSLT| Kelter, U.: Lehrmodul “XSLT, Teil 1 (Stichworte)”; 2009
[XSLT2| Kelter, U.: Lehrmodul “XSLT, Teil 2 (Stichworte)”; 2009
[XSLT3| Kelter, U.: Lehrmodul “XSLT, Teil 3”; 2009

(©2019 Udo Kelter Stand: 02.05.2019

	Sekundärindexe
	Anlegen eines Sekundärindexes
	Benutzen eines Sekundärindexes

	Verbundbildung mit Index
	Verbundbildung als ``Anreicherung'' eines Elements

	Gruppierung und Aggregation mit Index
	Duplikateliminierung
	Bewertung von Indexen

	Softwaretechnische Beurteilung von XSLT
	Literatur

