
XSLT, Teil 4

Udo Kelter

02.05.2019

Zusammenfassung dieses Lehrmoduls

Die Berechnung von Verbunden mit Variablen ist relativ ineffizient; als
effizientere Alternative bieten sich manuell verwaltete Sekundärindexe
an. Dieses Lehrmodul stellt XSLT-Sekundärindexe vor. Mit diesen kann
man auch Gruppierungen anhand von in der Eingabe vorkommenden
Datenwerten realisieren.

Vorausgesetzte Lehrmodule:
obligatorisch: - XPath

- XSLT, Teil 1 (Stichworte)
- XSLT, Teil 2 (Stichworte)
- XSLT, Teil 3 (Stichworte)

Stoffumfang in Vorlesungsdoppelstunden: 0.5

1

XSLT, Teil 4 2

Inhaltsverzeichnis
1 Sekundärindexe 3

1.1 Anlegen eines Sekundärindexes 3
1.2 Benutzen eines Sekundärindexes 4

2 Verbundbildung mit Index 4
2.1 Verbundbildung als “Anreicherung” eines Elements 5

3 Gruppierung und Aggregation mit Index 7
3.1 Duplikateliminierung . 7
3.2 Bewertung von Indexen . 9

4 Softwaretechnische Beurteilung von XSLT 9

Literatur . 10

c©2019 Udo Kelter Stand: 02.05.2019
Dieser Text darf für nichtkommerzielle Nutzungen als Ganzes und unverändert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Veränderung und Überführung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist über http://kltr.de erreichbar.

XSLT, Teil 4 3

1 Sekundärindexe

allgemein: Sekundärindex = Index, der einem Sekundärschlüsselwert
eine Trefferliste zuordnet
“Trefferliste” im Kontext von XSLT: Menge von Knoten des Eingabe-
baums

1.1 Anlegen eines Sekundärindexes

XSLT-Kommando xsl:key

<!-- Category: top-level-element -->
<xsl:key name =’qname’

match=’pattern’
use =’expression’ />

- Parameter name: Name des Sekundärindex;
es können beliebig viele angelegt werden, die später durch ihren
Namen identifiziert werden

- Parameter match: Typen der Knoten, die indexiert werden sollen
(wie Parameter match in Transformationsregeln)

- Parameter use: Ausdruck, der zu einem Knoten dessen Sekundär-
schlüsselwert berechnet

Effekt der Ausführung eines xsl:key-Kommandos:

1. bestimme alle Knoten im Eingabebaum, die zu match passen

2. für jeden dieser Knoten: berechne den zugehörigen Sekundärschlüs-
selwert gemäß Parameter use
– kann aus mehreren Datenwerten mit Textfunktionen wie con-
cat(..), substring(...) usw. konstruiert werden
– Textfunktionen: s. XPath-Standard, 4.2 String Functions

3. bestimme zu jedem aufgetretenen Sekundärschlüsselwert die Treffer-
liste, also die Liste der Knoten mit diesem Sekundärschlüsselwert

c©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 4

1.2 Benutzen eines Sekundärindexes

Abruf der Trefferliste für einen Sekundärschlüsselwert mit der Funktion:

key (SIName: string, SSWert: object) : node-set

- 1. Parameter: Bezeichner des Sekundärindexes
- 2. Parameter: Sekundärschlüsselwert
- Rückgabe: Trefferliste, also Liste von Referenzen auf Knoten des

Eingabebaums

Funktion key hätte besser getNodesForKeyValue o.ä. geheißen

Beispiel 1: zeige alle Lehrveranstaltungen in einem bestimmten Se-
mester an:

<xsl:key name =’LVproSemester’
match=’ DURCHFUEHRUNG ’
use =’ @semester ’ />

<xsl:template match=’ / ’>
<xsl:for-each

select=’ key("LVproSemester", "2006s") ’ >
<xsl:value-of select=’ @semester ’ />
<xsl:value-of select=’ @dozentId ’ />
<xsl:value-of select=’ .. / LEHRVERANSTALTUNGSNAME ’ />

</xsl:for-each>
</xsl:template>

2 Verbundbildung mit Index

Beispiel 2: wie oben (Verbundbildung mit Variablen)

<xsl:key name =’personendaten’
match=’PERSON’
use =’@persId’ />

<xsl:template match=’ VERANTWORTLICHER ’ >

c©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 5

<VERANTWORTLICHER dozentId=’{ @dozentId }’ >

<xsl:for-each select=’ key("personendaten", @dozentId) ’ >
<xsl:value-of select=’@nachname’ />,
<xsl:value-of select=’@vornameInit’ /> ...

</xsl:for-each>

</VERANTWORTLICHER>
</xsl:template>

alternative Lösung mit einer Variablen statt xsl:for-each:

<xsl:key name =’personendaten’
match=’PERSON’
use =’@persId’ />

<xsl:template match=’ VERANTWORTLICHER ’ >

<xsl:variable name="V"
select=’ key("personendaten", @dozentId)’ />

<VERANTWORTLICHER dozentId=’{ @dozentId }’ >
<xsl:value-of select=’ $V / @nachname ’ />,
<xsl:value-of select=’ $V / @vornameInit ’ /> ...

</VERANTWORTLICHER>

</xsl:template>

2.1 Verbundbildung als “Anreicherung” eines Elements

Typische Anforderung:

- vorhandenes (ggf. komplexes) Element enthält eine oder mehrere
Referenzen auf andere Elemente (= Verbundpartner)

- Daten von den Verbundpartnern sollen zu diesem Element “hinzu-
kopiert” werden (um alles lokal zu haben und ggf. in einer Pipeline
weiterzuverarbeiten)

- das Element soll also komplett in die Ausgabe kopiert werden, er-
gänzt um zusätzliche Daten

c©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 6

Beispiel: Personendaten von VERANTWORTLICHER im vorigen Beispiel

Lösungsschema (X = Typ des Elements):

a. für jedes Referenzattribut (bzw. einen entsprechenden Schlüsselwert)
einen passenden Sekundärindex auf die Zielelemente anlegen

b. generell identische Transformationsregel benutzen
c. spezielle Transformationsregel für X, die folgendes kopiert:

1. die Attribute von X
2. die “hinzukopierten” Attribute von den Verbundpartnern
3. die Kinder von X
4. Kinder der Verbundpartner

<xsl:key name =’personendaten’ />

<xsl:include href="identisch.xslt" />

<xsl:template match=’ VERANTWORTLICHER ’ >
<xsl:copy>

<!-- 1. lokale Attribute kopieren -->
<xsl:apply-templates select=’ @* ’ />

<!-- 2. entfernte Attribute kopieren -->
<xsl:apply-templates select=’

key("personendaten", @dozentId) / @* ’ />

<!-- 3. lokale Kinder kopieren -->
<xsl:apply-templates select=" node() " />
....

</xsl:copy>
</xsl:template>

Erläuterungen:

- <xsl:apply-templates select=’ node() | @* ’ /> aus der iden-
tischen Transformation geht nicht als 1. Schritt, weil zuerst alle
Attribute in der Ausgabe erzeugt werden müssen (vor den children)

c©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 7

- Alternativen zu ... / @* in Schritt 2:

1. .. / @nameEinesAttributs
2. .. / @* [name(.)=’fachgr’ or name(.)=’nachname’]

Textfunktion name() liefert Namen (Typ) eines Element- oder
Attributknotens

3 Gruppierung und Aggregation mit Index

Beispiele mit Zählung / Summierung:

Zahl der Module:
<xsl:value-of select=

’ count(key("LVproSemester", "2006s")) ’ />

Gesamtzahl der LP:
<xsl:value-of select=

’ sum(key("LVproSemester", "2006s") / .. /
LEISTUNGSPUNKTE / @anzahl) ’ />

3.1 Duplikateliminierung

Beispielaufgabe: zeige pro Semester die dort stattfindenden Lehrveran-
staltungen
Problem:

- die Semesterkürzel treten in den Attributen
//DURCHFUEHRUNG/@semester mehrfach auf

- ausgegeben werden soll nur 1 Eintrag pro auftretendem Datenwert
(Semesterkürzel)

- die wesentliche Arbeit, insb, die Duplikateliminierung, wird im Prin-
zip beim Anlegen eines Sekundärindexes geleistet:

<xsl:key name =’semkrzl2semester’
match=’DURCHFUEHRUNG/@semester’
use =’.’ />

c©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 8

Dieser SI enthält pro Wert, der in den Attributen @semester auf-
tritt, einen Eintrag; die zug. Trefferliste enthält Referenzen auf alle
Attribut-Knoten in der Eingabe, wo dieser Wert vorkommt.

- Problem: es gibt keinen Iterator für SI! (der über alle Trefferlisten
in dem SI iteriert)

Ersatzkonstruktion für einen Iterator:

<xsl:variable name=’alleVerschiedenenSemkrzl’
select=’ //DURCHFUEHRUNG/@semester

[generate-id(.) =
generate-id(key("semkrzl2semester", .) [1])

]’ />

- alle @semester-Knoten werden erneut durchsucht
- selektiert werden die Knoten, die in der zug. Trefferliste (key(

’semkrzl2semester’, .)) auf Platz eins ([1]) stehen
- Um Referenzen auf Konten in der Eingabe vergleichen zu können,

müssen die Referenzen erst in einen String umgewandelt werden;
hierzu: generate-id()

Im Endeffekt enthält die Variable alleVerschiedenenSemkrzl für je-
den Wert, der in der Eingabe vorkommt, genau eine Referenz auf einen
@semester-Knoten in der Eingabe, in dem dieser Wert steht.

Testfrage: warum funktioniert die folgende Lösung ohne generate-id()
nicht?

<xsl:variable name=’alleVerschiedenenSemkrzl’
select=’ //DURCHFUEHRUNG/@semester

[. =
key("semkrzl2semester", .) [1]

]’ />

Antwort: Diese Lösung eliminiert die Duplikate nicht!
In dem Gleichheitsvergleich werden hier die textuellen Werte der Knoten
verglichen, und nicht die Referenzen auf die Knoten im Eingaben.

c©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 9

Die textuellen Werte der Knoten sind bei allen Einträgen in der Tref-
ferliste definitionsgemäß gleich!

Nutzung der “eindeutige-Werte-Variablen”:

1. Ausgabe der Anzahl der verschiedenen Werte:

<xsl:value-of select=’count($alleVerschiedenenSemkrzl)’ />

2. Als Iterator-Menge in for-each-Anweisungen, z.B. pro Semester
eine Liste aller Lehrveranstaltungen in diesem Semester ausgeben:

<xsl:for-each select=’$alleVerschiedenenSemkrzl’ >
<xsl:sort select=’.’ />
.....

<!-- zug. Gruppe von Knoten zum aktuellen Wert -->
<xsl:variable name=’aktuelleGruppe’

select=’ key("semkrzl2semester" , .) ’ />
....

3.2 Bewertung von Indexen

- wesentlich effizienter als viele direkte Abfragen, wenn der gleiche
Datenbestand wiederholt durchsucht werden muß

- günstig für Verbundbildung oder Gruppierung / Aggregation
- unverständliche Namen von Kommando / Funktion

4 Softwaretechnische Beurteilung von XSLT

Vorteile von XSLT:

- bei sehr einfachen Web-Applikationen: nur 1 Sprache
Indiz, daß pures XSLT sinnvoll ist: man kommt mit wenigen “klei-
nen” Transformationen (50 - 200 Zeilen) aus

- grundlegende Operatoren (Selektionen, Projektion, Verbund) sche-
matisch mit Standard-Mustern sicher implementierbar

c©2019 Udo Kelter Stand: 02.05.2019

XSLT, Teil 4 10

Nachteile von XSLT:

- Lesbarkeit / linguistische Qualität der XSLT-Programme: desaströs,
Fehlerquelle erster Güte
... man könnte auch Java-Programme als Syntaxbaum in XML
codiert darstellen!

- kein vernünftiges Modulkonzept

- ungeeignet für komplexere Algorithmen / Applikationen
→ beschränken auf reine Abfragezwecke
sinnvolle Trennung zwischen Datenextraktion – Fachlogik (in richti-
ger Programmiersprache!) anstreben

Literatur

[XPAT] Kelter, U.: Lehrmodul “XPATH”; 2009
[XSLT] Kelter, U.: Lehrmodul “XSLT, Teil 1 (Stichworte)”; 2009
[XSLT2] Kelter, U.: Lehrmodul “XSLT, Teil 2 (Stichworte)”; 2009
[XSLT3] Kelter, U.: Lehrmodul “XSLT, Teil 3”; 2009

c©2019 Udo Kelter Stand: 02.05.2019

	Sekundärindexe
	Anlegen eines Sekundärindexes
	Benutzen eines Sekundärindexes

	Verbundbildung mit Index
	Verbundbildung als ``Anreicherung'' eines Elements

	Gruppierung und Aggregation mit Index
	Duplikateliminierung
	Bewertung von Indexen

	Softwaretechnische Beurteilung von XSLT
	Literatur

