Folien zum Lehrmodul

Zustandsautomaten

Lernziele:

— die wichtigsten Erweiterungen der Zustandsautomaten ge-
geniiber grundlegenden Zustandsiibergangsdiagrammen ken-
nen

— einfache Zustandsautomaten entwickeln kénnen (Ubungen!);
hierzu Notationsformen der UML beherrschen

| Inhaltsverzeichnis

Inhaltsverzeichnis

1 Motivation und Einordnung

1.1 Steuerungsmodelle in der UML 2.% 7
1.2 Herkunft der Konzepte von Zustandsautomaten 9
1.3 Verhaltens- vs. Protokollzustandsautomaten. 10
2 Zustinde 11
3 Transitionen 15
3.1 Allgemeine Form einer Transition 17
3.2 Arten von Triggerno oo 19
3.3 Guardso e e 25
4 Pseudozustinde und Transitionspfade 29
4.1 Pseudozustidnde und Transitionspfade 31
4.2 Pseudozustand Kreuzung (junction) 33

4.3 Pseudozustand Auswahlknoten (choice pseudo state) 35

Inhaltsverzeichnis

4.4 Pseudozustand Startzustand (initial pseudostate) 36
4.5 Pseudozustand Terminator (terminate pseudostate) 37
4.6 Pseudozustand Gabelung (fork) 38
4.7 Pseudozustand Vereinigung (join) 39
Zusammengesetzte Zustinde 40
5.1 Zusammengesetzte Zustinde mit nur einer Region 43
5.2 Historien o 47

5.2.1 Pseudozustand flache Historie (shallow history) 49

5.2.2 Pseudozustand tiefe Historie (deep history) 51
5.3 Regionen oL 52

| Motivation und Einordnung

1 Motivation und Einordnung

Die Grundformen von ZUD (endliche Automaten) und Petri-
Netzen sind

— Kernkonzepte zur Beschreibung von sequentiellen und/oder
parallelen Steuerungen / Algorithmen

— mit einer sehr klaren Semantik + theoretischem Fundament

| Motivation und Einordnung

°]

haben aber Nachteile hinsichtlich der Modellierung realer
Systeme:

— keine Bertiicksichtigung von Daten und datenabhéngigen
Steuerungen

— keine Abstraktionshierarchien, durch die komplexere Model-
le strukturiert und besser verstehbar / entwickelbar werden

daher: diverse Erweiterungen

— bessere Modellierungsfihigkeiten

— Verlust der klaren semantischen Grundlage, viele interessie-
rende Eigenschaften nicht mehr entscheidbar

| Motivation und Einordnung / Steuerungsmodelle in der UML 2.*

1.1 Steuerungsmodelle in der UML 2.*

(nach vielen Irrungen und Umwegen iiber die UML 1.* ...)

1. Zustandsautomaten (state machines): endlichen Automa-
ten (Mealy- und Moore-A.) + weitere Zutaten

— Modell = gerichteter Graph
— Knoten modellieren Zusténde;

kinnen “Tokens” beinhalten / puffern;

in beschrinktem Umfang parallele Teilzustdnde moglich
— Kanten modellieren Zustandsiiberginge

hierbei komplizierte Fallunterscheidungen moglich
Kante ist i.d.R. mit einem Ereignis beschriftet

| Motivation und Einordnung / Steuerungsmodelle in der UML 2.*

2. Aktivitatsdiagramme: ~Programmablaufplan + Petri-
Netz

— Modell = gerichteter Graph,

— Knoten: modellieren Verarbeitungsschritte / Funk-
tionen, aktive Systemteile

— Kanten: modellieren Kontroll- und Datenfliisse,
transportieren Daten- oder Kontrolltoken zwischen Ak-
tionen, beinhalten Ablaufsteuerung

viele gemeinsame Diagrammelemente in beiden Diagrammty-
pen, insb. bei der Ablaufsteuerung
aber teilweise verschiedene Bedeutung, Verwechslungsgefahr!

| Motivation und Einordnung / Herkunft der Konzepte von Zustandsautomaten

1.2 Herkunft der Konzepte von Zustandsau-
tomaten

Zustandsautomaten beinhalten diverse schon erlernte bzw. an-
diskutierte Konzepte (werden hier nur kurz wiederholt)

von Zustandsiibergangsdiagrammen:

— Zusténde mit internen Aktionen

— Zustandsiibergéinge mit Ereignissen, bedingten Transitionen
und Aktionen

von Petri-Netzen:

— Plétze als Tokenpuffer
— Transitionen mit mehreren Eingangs- oder Ausgangsplitzen

| Motivation und Einordnung / Verhaltens- vs. Protokollzustandsautomaten 10

1.3 Verhaltens- vs. Protokollzustandsautoma-
ten

Verhaltenszustandsautomat (behavioral state machine)

— mit Aktionen / Verhalten an Transitionen
(s. Lehrmodul ZUD)

Protokollzustandsautomat (protocol state machine):

— ohne Aktionen / Verhalten an Transitionen

— Konzentration auf Zustandsiibergéinge, Darstellung der Vor-
und Nachbedingungen fiir Zustandsiibergéinge

— Darstellung von Invarianten in Zusténden

beide Arten mit gleichen Grundlagen, aber diversen Detailun-
terschieden; Protokollzustandsautomaten werden hier nicht de-
tailliert behandelt

| Zusténde

2 Zustiande

Allgemeine Form eines Zustands:

Zustandsname

entry / Verhalten

exit / Verhalten

do / Verhalten

Trigger [Guard] / Verhalten
Trigger [Guard] / defer

| Zusténde 12

Ausfithrungsmodell fiir Zustandsiiberginge:

A. Verhalten bei “Betreten” (Aktivierung) eines Zu-
stands:

1. Zustand wird aktiv, wenn eine hereinkommende Transition
durchlaufen wird

2. sofort nach der Aktivierung wird das Eintrittsverhalten (ent-
ry / ...) ausgefiihrt
wird nie abgebrochen; wihrenddessen ankommende Ereignis-
se werden in einer FIFO-Schlange gepuffert

3. sofort danach wird das Zustandsverhalten (do / ...) gestartet

| Zusténde 13

B. Verhalten bei Verlassen eines Zustands:
1. Zustand wird verlassen, wenn ein Ereignis eintritt, das zum
Durchlaufen einer herausgehenden Transition fithrt

2. falls das Eintrittsverhalten des aktuellen Zustands noch nicht
abgearbeitet ist, wird dies erst komplett abgearbeitet

3. falls das Zustandsverhalten ablduft, wird es abgebrochen
4. danach wird das Austrittsverhalten (exzit / ...) ausgefiihrt

5. erst danach ist der Zustand inaktiv.

| Zusténde

C. Interne Transitionen in einem Zustand
(Trigger [Guard] / ...):

— Wirkung analog zum allgemeinen Fall einer Transition, die
einen Zustandswechsel bewirkt,
aber kein Durchlaufen des Fin- und Austrittsverhaltens

— Aktion defer fithrt in bestimmten Situationen zu einer
spéiteren Verarbeitung des Triggers (Details spéter)

| Transitionen 15

3 Transitionen

Denkweise ist stark von kommunizierenden Objekten (um nicht
zu sagen GUI-Programmierung...) beeinfluft:

— Ereignisse (Trigger) sind i.d.R. Operationsaufrufe gemif der
Schnittstelle des Typs des Objekts

Aufrufe konnen von anderen Objekten kommen, aber auch
vom gleichen Objekt

Verhalten an Transitionen fehlt hiaufig, weil meist das Ver-
halten im Zielzustand ablduft

(also Zuordnung der Aktionen wie bei Moore-Automaten)

Vorteil: man kann iiber verschiedene Transitionen das glei-
che Verhalten auslosen

| Transitionen

Ereignisverarbeitung in der UML 2.*:

— sehr komplexes Verarbeitungsmodell

— diverse Details offen (semantic variation points), um ver-
schiedene Applikationsbereiche mit gegensétzlichen Anfor-
derungen bedienen zu kénnen — problematisch

Transitionen / Allgemeine Form einer Transition 17

3.1 Allgemeine Form einer Transition

allgemeine Form einer Transition bei einem Verhaltenszustands-
automaten:

[71 } Trigger [Guard] / Verhalten { 79]

allgemeine Form einer Transition bei einem Protokollzustands-
automaten (ProtocolTransition):

‘ 71 } [Guard] Operation / [Nachbedingung] 79

Transitionen / Allgemeine Form einer Transition 18

Besonderheiten von Protokollzustandsautomaten:

— nur Operationsaufrufe als Trigger
— Notationsreihenfolge Guard — Trigger /Operation vertauscht

— keine Aktionen (Implementierung von Verhalten), sondern
nur Nachbedingungen (Wirkung des Verhaltens)

— Guard in beiden Fillen gleich

kompaktere Notation bei mehreren Transitionen mit glei-
chem Ausgangszustand, Guard, Verhalten und Zielzustand:

- nur ein Pfeil,

- unterschiedliche Trigger mit Kommata getrennt angeben

Transitionen / Arten von Triggern

19

3.2 Arten von Triggern

hier fiir Verhaltens-ZA, analog fiir Protokoll-ZA

Transitionen / Arten von Triggern 20 |

1. SignalTrigger: Empfang eines externen Ereignisses; Darstel-
lung:

[71 } Signal [Guard] / Verhalten { 79]

Situation:
- Objekt / System ist in Zustand Z1,
- empfingt externes Ereignis,

- im Guard genannte Bedingungen sind erfiillt;
— Objekt / System geht in Zustand Z2 iiber.

gut geeignet fiir kommunizierende Objekte in verteilten Sy-
stemen geeignet (asynchrone Aufrufe)

Transitionen / Arten von Triggern 21 |

2. CallTrigger: Aufruf einer Operation des Objekts; Darstel-
lung:

[71 } Operation [Guard] / Verhalten { 79]

Situation:
- Objekt / System ist in Zustand Z1,
- empfingt Aufruf der genannten Operation

- im Guard genannte Bedingungen sind erfiillt;
— Objekt / System geht in Zustand Z2 iiber.

Schreibweise z.T. in der Form operation()

Parameter der Operation kénnen zusétzlich angegeben wer-
den und im Guard und in den Aktionen benutzt werden.

Transitionen / Arten von Triggern 22 |

3. ChangeTrigger: Zustandsénderung; Darstellung:

[71 } [Guard] / Verhalten { 79]

Situation:

- Objekt / System ist in Zustand Z1,

- eine der im Guard genannten Variablen &ndert ihren Wert,
- Guard evaluiert anschlielend zu WAHR,

— Objekt / System geht in Zustand Z2 iiber.

Kein expliziter Trigger, Trigger wird sozusagen implizit
durch Wertédnderungen generiert

Transitionen / Arten von Triggern 23 |

4. TimeTrigger: absolute oder relative Zeitangaben erlaubt

[71 } after (3 sec/min/...) / Verhalten { 79]
[71 } 11.11.2011,11:11/ Verhalten { 79]

Trigger wird implizit durch Zeitablauf nach Betreten des Zu-
stands Z1 bzw. Erreichen des absoluten Zeitpunkts generiert

Transitionen / Guards 24|

5. AnyTrigger: fiir nicht explizit genannte, restliche Trigger

' 71 } all / Verhalten { 79]

Zitat UML Superstructure, 2006, Abschnitt 13.3.1:

“A transition trigger associated with AnyReceiveEvent
specifies that the transition is to be triggered by the re-
ceipt of any message that is not explicitly referenced in
another transition from the same vertex.”

“Any AnyReceiveEvent is denoted by the string ‘all’
used as the trigger.”

Kommentar iiberfliissig. Woanders heifit das else oder
otherwise und ist klar verstdndlich

Transitionen / Guards 25

3.3 Guards

Guards kénnen beliebige Bedingungen enthalten, miissen zu je-
dem Zeitpunkt eindeutig auswertbar sein

Transitionen / Guards 26 |

Mehrere Guards fiir den gleichen Trigger:
zu einem Zustand Z1 koénnen zum gleichen Trigger mehrere
Transitionen mit i.a. unterschiedlichen Guards vorhanden sein

Frage 1: diirfen 2 oder mehr Guards den gleichen Fall abdecken?

Antwort: ja, Auswahl der Transition dann zuféllig

Frage 2: miissen die Guards alle Fille abdecken?

Antwort: nicht unbedingt — s. folgende Folie

Transitionen / Guards 27

Interpretation nicht abgedeckter Fille:

1. irrelevant: eingetroffenes Ereignis bewirkt keine Zustands-
dnderung und wird ignoriert

entspricht der Notationskonvention in ZUD!

2. schwerer Fehler:
eingetroffenes Ereignis hitte eigentlich gar nicht kommen
diirfen und kann nicht sinnvoll verarbeitet werden;
System ist in einem inkonsistenten Zustand und wird be-
endet / Objekt wird aufgelsst (“Panik”) oder Ubergang zu
einer Standard-Fehlerbehandlung

— projektspezifische Konvention!

Transitionen / Guards 28 |

3. “bitte warten”:
eingetroffenes Ereignis ist im Prinzip OK, kommt aber zu
unpassender Zeit und soll spéter verarbeitet werden
hierzu explizite Aktionsangabe/defer
Nur an internen Transitionen erlaubt!
Effekt: aufgeschobenes Ereignis kommt in einen event pool
zu diesem Objekt / System und l6st ggf. spéter eine Tran-
sition aus, nachdem sich der Zustand und/oder in Guards
benutzte Variablen geéindert haben
viele Details offen, z.B. Strategie, wie aus mehreren aufge-
schobenen Ereignissen das néchste abzuarbeitende gew&hlt
wird (— gefdhrliches Konzept)

| Pseudozustinde und Transitionspfade 29 |

4 Pseudozustinde und Transitions-
pfade

Steuerung / “Ablauflogik” des Zustandsautomaten bisher nur
in den Transitionen und den Triggern

Pseudozustidnde: erweitern die Moglichkeiten, Zustandsiiber-
gange zu steuern

imitiert bekannte Kontrollstrukturen aus Programmiersprachen
(viel neue Syntax, konzeptuell wenig Neues)

| Pseudozustinde und Transitionspfade

Beispiel: Alternativen

anzeigen

ausgewdahlt

[rot] /./‘\[grﬁn] l....
alles alles
rot grin

fertig fertig
[erfolgreich] [Fehler]
/ gratulieren / Fehlermeldung

|Pseudozustﬁnde und Transitionspfade / Pseudozustéinde und Transitionspfade 31

4.1 Pseudozustinde und Transitionspfade
Merkmale von Pseudozusténden:

— sind zwar Knoten im Zustandsnetzwerk, reprisentieren aber
keinen Zustand!
d.h. dort kann kein Token parken
(Vorsicht: deswegen ist der Endzustand iiberraschenderweise
kein Pseudozustand!)

— haben ein- und ausgehende Transitionen mit teilweise un-
vollstindigen Beschriftungen

— bilden Transitionspfade,
z.B. von “Auswahl anzeigen” nach “alles rot”

Pseudozustinde und Transitionspfade / Pseudozustinde und Transitionspfade 32

Transitionspfade:

beginnen und enden in “echten” Zustéinden (also Knoten, die
keinen Pseudozustand reprisentieren)

konnen beliebig lang sein

kénnen unterschiedliche Pseudozustinde als Etappen haben

die kompletten Pfade werden in einem Schritt (“atomar”)
durchlaufen, inkl. der Priifung aller Guards und Ausfithrung
aller Aktionen an den Transitionen

nur Transitionspfade, auf denen alle Guards erfiillt sind,
konnen durchlaufen werden

es ist zulissig, dal mehrere Pfade durchlaufbar sind! dann
wird ein erlaubter Pfad zufillig ausgewéhlt

|Pseudozustﬁnde und Transitionspfade / Pseudozustand Kreuzung (junction) 33

4.2 Pseudozustand Kreuzung (junction)

— Darstellung als schwarzer Kreis (wie Startkno-
ten, aber geringfiigig kleiner)

— eine oder mehrere hereinkommende Transitio-
nen

— eine oder mehrere herausgehende Transitionen

— einer der ausgehenden Transitionen darf else als Guard ha-
ben; ist erfiillt, wenn die Guards aller anderen ausgehenden
Transitionen nicht erfiillt sind

Pseudozustinde und Transitionspfade / Pseudozustand Kreuzung (junction) 34|

— alle Guards werden ausgewertet, bevor irgendwelche Aktio-
nen ausgefiihrt werden (“static conditional branch”)

— Aktionen werden erst nach Durchlaufen aller Verzweigungen
ausgefiihrt
tiickisch! entspricht nicht der Lesereihenfolge — Aktionen
moglichst an die letzten Transitionen der (Teil-) Pfade

— erlauben kompakte Darstellung #dhnlicher Transitionen in
Transitionspfaden (s.o. Beispiel)

Pseudozustéinde und Transitionspfade / Pseudozustand Auswahlknoten (choice pseudo state) 35|

4.3 Pseudozustand ~ Auswahlknoten (choice
pseudo state)

— stellt eine bedingte Verzweigung dar
— Guards wie bei einer Kreuzung, inkl.
else-Konstrukt

— Aktionen an eingehenden Transitionen werden ausgefiihrt,
bevor nachfolgende Guards ausgewertet werden !!
(UML-Diktion: “dynamic conditional branch”)

— kann zu sehr komplizierten Ablauflogiken fithren
das ist der Hauptunterschied zu einer Kreuzung

— Raute kann innen einen Variablennamen enthalten, auf den
sich die Test in den Guards beziehen (syntaktischer Zucker...)

|Pseudozustﬁnde und Transitionspfade / Pseudozustand Startzustand (initial pseudostate) 36

4.4 Pseudozustand Startzustand (initial pseu-
dostate)

® — nur einmal erlaubt (pro Region, s.u.)
— nur eine ausgehende Transition erlaubt

— diese darf eine Aktion haben, aber keinen Trigger
oder Guard

|Pseudozustﬁnde und Transitionspfade / Pseudozustand Terminator (terminate pseudostate) 37|

4.5 Pseudozustand Terminator (terminate
pseudostate)

>< — stellt Loschung des Objekts / Systems dar
= kein Austrittsverhalten aus dem Zustand mehr (an-
ders als beim Endzustand)

Pseudozustdnde und Transitionspfade / Pseudozustand Gabelung (fork) 38

4.6 Pseudozustand Gabelung (fork)

_—~7 — Notation wie Petri-Netz-Transition mit genau ei-
2 2 nem Eingangsplatz

~

— ausgehende Transitionen (bzw. Transitionspfadsegmente)
1. diirfen keine Guards oder Aktionen haben

2. miissen in unterschiedlichen Regionen (s.u.) eines zusam-
mengesetzten Zustands enden

— keine allgemeinen Petri-Netze hiermit darstellbar

|Pseudozustﬁnde und Transitionspfade / Pseudozustand Vereinigung (join) 39

4.7 Pseudozustand Vereinigung (join)

~ — Notation wie Petri-Netz-Transition mit genau ei-
>l nem Ausgangsplatz

7

— ankommende Transitionen (bzw. Transitionspfadsegmente)
1. diirfen keine Guards oder Aktionen haben

2. miissen in unterschiedlichen Regionen (s.u.) eines zusam-
mengesetzten Zustands starten

| Zusammengesetzte Zustinde 40

5 Zusammengesetzte Zustinde

Begriff zusammengesetzter Zustand fait zwei vollig verschiedene
Dinge zusammen:

1. baumartige Zustandshierarchien wie in Lehrmodul ZUD
dargestellt:

ein “nichtelementarer” Zustand (innerer Konten des Zu-
standsbaums) hat mehrere Unterzustéinde und das System
befindet sich immer in genau einem der Unterzustéinde

2. autarke Teilzustéinde wie in Petri-Netzen', die durch ei-
gene Tokens reprasentiert werden

lalso zusammengesetzte Zustinde im wortlichen Sinn, der Gesamtzu-
stand des Systems setzt sich aus den Teilzustédnden zusammen

| Zusammengesetzte Zustinde

autarke Teilzustdnde werden als Regionen reprisentiert

Beispiel:

| Geld erhalten |
p

.ﬁ(Fahrschein drucken)ﬁ

Zusammengesetzte Zustinde 42

zusammengesetzter Zustand hat i.a.:

— eine oder mehrere Regionen

— Parallelitdt = Zahl der Regionen, ist statisch erkennbar
— Strukturen im Vergleich zu Petrinetzen eingeschrankt
pro Region mehrere Unterzustinde, darunter i.a. einen Start-
zustand

Darstellung;:

— durch Schachtelung der “Zeichenflichen”

— Zustandsname oft nicht innen, sondern als Reiter oben auf
den Rechteck

— Trennung der Regionen durch gestrichelte Linie
— gef. oben eigener Abschnitt mit entry / exit / do-Angaben

| Zusammengesetzte Zustinde / Zusammengesetzte Zustéinde mit nur einer Region 43

5.1 Zusammengesetzte Zustinde mit nur ei-
ner Region

Betreten eines zusammengesetzten Zustands:

1. direkter Ubergang in einen Unterzustand (Ezplicit Entry):
Transitionspfeil iiberquert Grenze der Zeichenfliche und en-
det an einem Unterzustand

unschon, widerspricht dem information hiding iiber die De-
tails des zusammengesetzten Zustands

| Zusammengesetzte Zustinde / Zusammengesetzte Zustéinde mit nur einer Region 44 |

2. Default Entry: Transitionspfeil endet an der Grenze der Zei-
chenfliache

— &—()

Ubergang zum inneren Startzustand und von dort aus spon-
tan weiter...

Frage: immer innerer Startzustand vorhanden?

Antwort: Nein — UML-Diktion: semantic variation point>

2 Auf Deutsch: niemand weiB, wie es weitergeht....

| Zusammengesetzte Zustinde / Zusammengesetzte Zustéinde mit nur einer Region 45 |

3. Transition von innen endet an der Grenze der Zeichenfliche

(Z b

Ubergang zum inneren Startzustand und von dort aus spon-
tan weiter;

kein Durchlaufen des Aus- und Eintrittsverhaltens

| Zusammengesetzte Zustinde / Zusammengesetzte Zustéinde mit nur einer Region 46

Verlassen eines zusammengesetzten Zustands:

1. ein Endzustand wird erreicht:
sofern auflen eine triggerlose Transition vorhanden, wird die-
se ausgelost

2. eine “duflere” Transition, die fiir den gesamten zusammen-
gesetzten Zustand gilt (d.h. der Transitionspfeil beginnt am
Rand der Zeichenfldche), feuert

3. direkter Ubergang aus einem Unterzustand nach auien (ana-
log zum Ezplicit Entry): Transitionspfeil iberquert Grenze
der Zeichenfliche und endet auflerhalb

bei allen Varianten, den zusammengesetzten Zustand zu verlas-
sen, wird das Austrittsverhalten ausgeldst

|Zusammengesetzte Zusténde / Historien 47

5.2 Historien

Motivation:
(@]
Beispiel einer
Zustandshierarchie 71
o 72 9
?7?
71.Y4

System ist in einem speziellen Unterzustand
Beispiel: Unterzustand Z1.Y4 des zusammeng. Zustands Z1

irgendein Trigger fithrt zum Verlassen des Zustands Z1

spéter gewiinscht: Riickkehr zum gleichen Unterzustand, von
dem aus der zusg. Zustand (Z1) zuletzt verlassen wurde

|Zusammengesetzte Zusténde / Historien 48 |

Geht nicht mit bisherigen Mitteln, weil dieser Unterzustand
nicht statisch festliegt

— man brauchte ein “Gedéchtnis”, das sich fiir jeden zusam-
mengesetzten Zustand merkt, in welchem Unterzustand man das
letzte Mal war

Losung des Problems in der UML: mit Historienzustédnden

Historien / Pseudozustand flache Historie (shallow history) 49 |

5.2.1 Pseudozustand flache Historie (shallow history)

®

Beispiel:

dargestellt als Kreis mit “H” in der Mitte

nur als Unterzustand eines zusammengesetzten Zu-
stands erlaubt

0 oder 1 ausgehende zu Transition erlaubt

keine von innen ankommende Transition erlaubt

Historien / Pseudozustand tiefe Historie (deep history) 50

Verhalten beim Betreten des Zustands Z1 iiber den Historien-
Knoten:

1. wenn das System wvorher schon einmal im Zustand Z1 war:
seinerzeit aktiven Zustand auf dieser Verfeinerungsebene be-
treten

2. andernfalls, wenn vom Historien-Knoten eine Transition zu
einem Zustand ausgeht: in den Zielzustand dieser Transition
(default shallow history state) iibergehen

3. andernfalls, wenn Startknoten auf dieser Verfeinerungsebene
vorhanden: dort ausgehender Transition folgen

4. andernfalls: fehlerhaftes Modell oder unklare Situation

|Zusammengesetzte Zusténde / Regionen 51

5.2.2 Pseudozustand tiefe Historie (deep history)

@ — dargestellt als Kreis mit “H*” in der Mitte
— alles wie bei flacher Historie, bis auf folgenden Unter-
schied

Verhalten, wenn der iiber den Historien-Knoten erreichte Ziel-
knoten selbst wieder zusammengesetzt ist:

— flache Historie: Zielknoten wird neu betreten (iiber den lo-
kalen Startzustand)

— tiefe Historie: dort zuletzt aktiver Unterzustand wird betre-
ten usw. rekursiv abwérts

— fiir jeden Verfeinerungsschritt mufl der zuletzt aktive Zu-
stand bekannt sein

|Zusammengesetzte Zusténde / Regionen 52

5.3 Regionen
Betreten eines Zustands mit mehreren Regionen:

1. default entry: Transition endet am Rand des Zustands

Wirkung: pro Region wird der Startzustand aktiviert

|Zusammengesetzte Zusténde / Regionen 53 |

2. explicit entry: eine oder mehrere Transitionen (die von auflen
aus einer Gabelung stammen) iiberqueren den Rand des zu-
sammengesetzten Zustands und enden in inneren Zustédnden
(pro Region max. 1)

Wirkung: die direkt angesteuerten Zustéinde werden aktiv;
in Regionen, in denen keine Transition endet, wird der Start-
zustand aktiviert

|Zusammengesetzte Zusténde / Regionen 54

Verlassen eines Zustands mit Regionen:

1. wenn in allen Regionen der Endzustand erreicht und aufien
eine triggerlose Transition vorhanden ist: diese feuern

Regionen, die schon den Endzustand erreicht haben, warten
darauf, daf alle anderen Regionen ebenfalls den Endzustand
erreichen und ignorieren wihrenddessen alle Trigger

2. wenn eine Transition fiir den zusammengesetzten Zustand
feuert: alle internen Zusténde werden sofort inaktiv

3. wenn eine Transition fiir einen Unterzustand, die auflerhalb
des zusammengesetzten Zustands endet, feuert: alle inter-
nen Zustinde werden sofort inaktiv, d.h. auch alle anderen
Regionen werden abgebrochen

