
Folien zum Lehrmodul

Zustandsautomaten



Lernziele:

- die wichtigsten Erweiterungen der Zustandsautomaten ge-
genüber grundlegenden Zustandsübergangsdiagrammen ken-
nen

- einfache Zustandsautomaten entwickeln können (Übungen!);
hierzu Notationsformen der UML beherrschen



Inhaltsverzeichnis 3

Inhaltsverzeichnis

1 Motivation und Einordnung 5

1.1 Steuerungsmodelle in der UML 2.* . . . . . . . . . . . . . . . . . 7

1.2 Herkunft der Konzepte von Zustandsautomaten . . . . . . . . . 9

1.3 Verhaltens- vs. Protokollzustandsautomaten . . . . . . . . . . . . 10

2 Zustände 11

3 Transitionen 15

3.1 Allgemeine Form einer Transition . . . . . . . . . . . . . . . . . 17

3.2 Arten von Triggern . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Guards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Pseudozustände und Transitionspfade 29

4.1 Pseudozustände und Transitionspfade . . . . . . . . . . . . . . . 31

4.2 Pseudozustand Kreuzung (junction) . . . . . . . . . . . . . . . . 33

4.3 Pseudozustand Auswahlknoten (choice pseudo state) . . . . . . 35



Inhaltsverzeichnis 4

4.4 Pseudozustand Startzustand (initial pseudostate) . . . . . . . . 36

4.5 Pseudozustand Terminator (terminate pseudostate) . . . . . . . 37

4.6 Pseudozustand Gabelung (fork) . . . . . . . . . . . . . . . . . . 38

4.7 Pseudozustand Vereinigung (join) . . . . . . . . . . . . . . . . . 39

5 Zusammengesetzte Zustände 40

5.1 Zusammengesetzte Zustände mit nur einer Region . . . . . . . . 43

5.2 Historien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Pseudozustand flache Historie (shallow history) . . . . . 49

5.2.2 Pseudozustand tiefe Historie (deep history) . . . . . . . . 51

5.3 Regionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



Motivation und Einordnung 5

1 Motivation und Einordnung

Die Grundformen von ZÜD (endliche Automaten) und Petri-
Netzen sind

- Kernkonzepte zur Beschreibung von sequentiellen und/oder
parallelen Steuerungen / Algorithmen

- mit einer sehr klaren Semantik + theoretischem Fundament



Motivation und Einordnung 6

... haben aber Nachteile hinsichtlich der Modellierung realer
Systeme:

- keine Berücksichtigung von Daten und datenabhängigen
Steuerungen

- keine Abstraktionshierarchien, durch die komplexere Model-
le strukturiert und besser verstehbar / entwickelbar werden

daher: diverse Erweiterungen
→ bessere Modellierungsfähigkeiten
→ Verlust der klaren semantischen Grundlage, viele interessie-
rende Eigenschaften nicht mehr entscheidbar



Motivation und Einordnung / Steuerungsmodelle in der UML 2.* 7

1.1 Steuerungsmodelle in der UML 2.*

(nach vielen Irrungen und Umwegen über die UML 1.* ...)

1. Zustandsautomaten (state machines): endlichen Automa-
ten (Mealy- und Moore-A.) + weitere Zutaten

- Modell = gerichteter Graph

- Knoten modellieren Zustände;
können “Tokens” beinhalten / puffern;
in beschränktem Umfang parallele Teilzustände möglich

- Kanten modellieren Zustandsübergänge
hierbei komplizierte Fallunterscheidungen möglich
Kante ist i.d.R. mit einem Ereignis beschriftet



Motivation und Einordnung / Steuerungsmodelle in der UML 2.* 8

2. Aktivitätsdiagramme: ∼Programmablaufplan + Petri-
Netz

- Modell = gerichteter Graph,

- Knoten: modellieren Verarbeitungsschritte / Funk-
tionen, aktive Systemteile

- Kanten: modellieren Kontroll- und Datenflüsse,
transportieren Daten- oder Kontrolltoken zwischen Ak-
tionen, beinhalten Ablaufsteuerung

viele gemeinsame Diagrammelemente in beiden Diagrammty-
pen, insb. bei der Ablaufsteuerung
aber teilweise verschiedene Bedeutung, Verwechslungsgefahr!



Motivation und Einordnung / Herkunft der Konzepte von Zustandsautomaten 9

1.2 Herkunft der Konzepte von Zustandsau-
tomaten

Zustandsautomaten beinhalten diverse schon erlernte bzw. an-
diskutierte Konzepte (werden hier nur kurz wiederholt)

von Zustandsübergangsdiagrammen:

- Zustände mit internen Aktionen

- Zustandsübergänge mit Ereignissen, bedingten Transitionen
und Aktionen

von Petri-Netzen:

- Plätze als Tokenpuffer

- Transitionen mit mehreren Eingangs- oder Ausgangsplätzen



Motivation und Einordnung / Verhaltens- vs. Protokollzustandsautomaten 10

1.3 Verhaltens- vs. Protokollzustandsautoma-
ten

Verhaltenszustandsautomat (behavioral state machine)

- mit Aktionen / Verhalten an Transitionen
(s. Lehrmodul ZÜD)

Protokollzustandsautomat (protocol state machine):

- ohne Aktionen / Verhalten an Transitionen
- Konzentration auf Zustandsübergänge, Darstellung der Vor-

und Nachbedingungen für Zustandsübergänge
- Darstellung von Invarianten in Zuständen

beide Arten mit gleichen Grundlagen, aber diversen Detailun-
terschieden; Protokollzustandsautomaten werden hier nicht de-
tailliert behandelt



Zustände 11

2 Zustände

Allgemeine Form eines Zustands:

Zustandsname

exit / Verhalten

entry / Verhalten

do / Verhalten

Trigger [Guard] / Verhalten

Trigger [Guard] / defer



Zustände 12

Ausführungsmodell für Zustandsübergänge:

A. Verhalten bei “Betreten” (Aktivierung) eines Zu-
stands:

1. Zustand wird aktiv, wenn eine hereinkommende Transition
durchlaufen wird

2. sofort nach der Aktivierung wird das Eintrittsverhalten (ent-
ry / ...) ausgeführt

wird nie abgebrochen; währenddessen ankommende Ereignis-
se werden in einer FIFO-Schlange gepuffert

3. sofort danach wird das Zustandsverhalten (do / ...) gestartet



Zustände 13

B. Verhalten bei Verlassen eines Zustands:

1. Zustand wird verlassen, wenn ein Ereignis eintritt, das zum
Durchlaufen einer herausgehenden Transition führt

2. falls das Eintrittsverhalten des aktuellen Zustands noch nicht
abgearbeitet ist, wird dies erst komplett abgearbeitet

3. falls das Zustandsverhalten abläuft, wird es abgebrochen

4. danach wird das Austrittsverhalten (exit / ...) ausgeführt

5. erst danach ist der Zustand inaktiv.



Zustände 14

C. Interne Transitionen in einem Zustand
(Trigger [Guard] / ...):

- Wirkung analog zum allgemeinen Fall einer Transition, die
einen Zustandswechsel bewirkt,

aber kein Durchlaufen des Ein- und Austrittsverhaltens

- Aktion defer führt in bestimmten Situationen zu einer
späteren Verarbeitung des Triggers (Details später)



Transitionen 15

3 Transitionen

Denkweise ist stark von kommunizierenden Objekten (um nicht
zu sagen GUI-Programmierung...) beeinflußt:

- Ereignisse (Trigger) sind i.d.R. Operationsaufrufe gemäß der
Schnittstelle des Typs des Objekts

- Aufrufe können von anderen Objekten kommen, aber auch
vom gleichen Objekt

- Verhalten an Transitionen fehlt häufig, weil meist das Ver-
halten im Zielzustand abläuft

(also Zuordnung der Aktionen wie bei Moore-Automaten)

Vorteil: man kann über verschiedene Transitionen das glei-
che Verhalten auslösen



Transitionen 16

Ereignisverarbeitung in der UML 2.*:

- sehr komplexes Verarbeitungsmodell

- diverse Details offen (semantic variation points), um ver-
schiedene Applikationsbereiche mit gegensätzlichen Anfor-
derungen bedienen zu können – problematisch



Transitionen / Allgemeine Form einer Transition 17

3.1 Allgemeine Form einer Transition

allgemeine Form einer Transition bei einem Verhaltenszustands-
automaten:

Trigger [Guard] / Verhalten
Z1 Z2

allgemeine Form einer Transition bei einem Protokollzustands-
automaten (ProtocolTransition):

Z1
[Guard] Operation / [Nachbedingung]

Z2



Transitionen / Allgemeine Form einer Transition 18

Besonderheiten von Protokollzustandsautomaten:

- nur Operationsaufrufe als Trigger

- Notationsreihenfolge Guard – Trigger/Operation vertauscht

- keine Aktionen (Implementierung von Verhalten), sondern
nur Nachbedingungen (Wirkung des Verhaltens)

- Guard in beiden Fällen gleich

kompaktere Notation bei mehreren Transitionen mit glei-
chem Ausgangszustand, Guard, Verhalten und Zielzustand:
- nur ein Pfeil,
- unterschiedliche Trigger mit Kommata getrennt angeben



Transitionen / Arten von Triggern 19

3.2 Arten von Triggern

hier für Verhaltens-ZA, analog für Protokoll-ZA



Transitionen / Arten von Triggern 20

1. SignalTrigger: Empfang eines externen Ereignisses; Darstel-
lung:

Signal [Guard] / Verhalten
Z1 Z2

Situation:

- Objekt / System ist in Zustand Z1,

- empfängt externes Ereignis,

- im Guard genannte Bedingungen sind erfüllt;

→ Objekt / System geht in Zustand Z2 über.

gut geeignet für kommunizierende Objekte in verteilten Sy-
stemen geeignet (asynchrone Aufrufe)



Transitionen / Arten von Triggern 21

2. CallTrigger: Aufruf einer Operation des Objekts; Darstel-
lung:

Z2Z1
Operation [Guard] / Verhalten

Situation:

- Objekt / System ist in Zustand Z1,

- empfängt Aufruf der genannten Operation

- im Guard genannte Bedingungen sind erfüllt;

→ Objekt / System geht in Zustand Z2 über.

Schreibweise z.T. in der Form operation()

Parameter der Operation können zusätzlich angegeben wer-
den und im Guard und in den Aktionen benutzt werden.



Transitionen / Arten von Triggern 22

3. ChangeTrigger: Zustandsänderung; Darstellung:

Z1 Z2
[Guard] / Verhalten

Situation:

- Objekt / System ist in Zustand Z1,

- eine der im Guard genannten Variablen ändert ihren Wert,

- Guard evaluiert anschließend zu WAHR,

→ Objekt / System geht in Zustand Z2 über.

Kein expliziter Trigger, Trigger wird sozusagen implizit
durch Wertänderungen generiert



Transitionen / Arten von Triggern 23

4. TimeTrigger: absolute oder relative Zeitangaben erlaubt

Z1 Z2
after (3 sec/min/...) / Verhalten

Z1 Z2
11.11.2011,11:11 / Verhalten

Trigger wird implizit durch Zeitablauf nach Betreten des Zu-
stands Z1 bzw. Erreichen des absoluten Zeitpunkts generiert



Transitionen / Guards 24

5. AnyTrigger: für nicht explizit genannte, restliche Trigger

Z1 Z2
all / Verhalten

Zitat UML Superstructure, 2006, Abschnitt 13.3.1:

“A transition trigger associated with AnyReceiveEvent
specifies that the transition is to be triggered by the re-
ceipt of any message that is not explicitly referenced in
another transition from the same vertex.”

“Any AnyReceiveEvent is denoted by the string ‘all’
used as the trigger.”

Kommentar überflüssig. Woanders heißt das else oder
otherwise und ist klar verständlich



Transitionen / Guards 25

3.3 Guards

Guards können beliebige Bedingungen enthalten, müssen zu je-
dem Zeitpunkt eindeutig auswertbar sein



Transitionen / Guards 26

Mehrere Guards für den gleichen Trigger:
zu einem Zustand Z1 können zum gleichen Trigger mehrere
Transitionen mit i.a. unterschiedlichen Guards vorhanden sein

Frage 1: dürfen 2 oder mehr Guards den gleichen Fall abdecken?

Antwort: ja, Auswahl der Transition dann zufällig

Frage 2: müssen die Guards alle Fälle abdecken?

Antwort: nicht unbedingt → s. folgende Folie



Transitionen / Guards 27

Interpretation nicht abgedeckter Fälle:

1. irrelevant: eingetroffenes Ereignis bewirkt keine Zustands-
änderung und wird ignoriert

entspricht der Notationskonvention in ZÜD!

2. schwerer Fehler:
eingetroffenes Ereignis hätte eigentlich gar nicht kommen
dürfen und kann nicht sinnvoll verarbeitet werden;
System ist in einem inkonsistenten Zustand und wird be-
endet / Objekt wird aufgelöst (“Panik”) oder Übergang zu
einer Standard-Fehlerbehandlung

→ projektspezifische Konvention!



Transitionen / Guards 28

3. “bitte warten”:
eingetroffenes Ereignis ist im Prinzip OK, kommt aber zu
unpassender Zeit und soll später verarbeitet werden

hierzu explizite Aktionsangabe ..../defer

Nur an internen Transitionen erlaubt!

Effekt: aufgeschobenes Ereignis kommt in einen event pool
zu diesem Objekt / System und löst ggf. später eine Tran-
sition aus, nachdem sich der Zustand und/oder in Guards
benutzte Variablen geändert haben

viele Details offen, z.B. Strategie, wie aus mehreren aufge-
schobenen Ereignissen das nächste abzuarbeitende gewählt
wird (→ gefährliches Konzept)



Pseudozustände und Transitionspfade 29

4 Pseudozustände und Transitions-
pfade

Steuerung / “Ablauflogik” des Zustandsautomaten bisher nur
in den Transitionen und den Triggern

Pseudozustände: erweitern die Möglichkeiten, Zustandsüber-
gänge zu steuern

imitiert bekannte Kontrollstrukturen aus Programmiersprachen
(viel neue Syntax, konzeptuell wenig Neues)



Pseudozustände und Transitionspfade 30

Beispiel:

alles

rot

alles

grün

.... ....

[Fehler]
/ Fehlermeldung

[erfolgreich]
/ gratulieren

Alternativen

anzeigen

fertigfertig

[rot] /.... [grün] /....

ausgewählt



Pseudozustände und Transitionspfade / Pseudozustände und Transitionspfade 31

4.1 Pseudozustände und Transitionspfade

Merkmale von Pseudozuständen:

- sind zwar Knoten im Zustandsnetzwerk, repräsentieren aber
keinen Zustand!
d.h. dort kann kein Token parken
(Vorsicht: deswegen ist der Endzustand überraschenderweise
kein Pseudozustand!)

- haben ein- und ausgehende Transitionen mit teilweise un-
vollständigen Beschriftungen

- bilden Transitionspfade,
z.B. von “Auswahl anzeigen” nach “alles rot”



Pseudozustände und Transitionspfade / Pseudozustände und Transitionspfade 32

Transitionspfade:

- beginnen und enden in “echten” Zuständen (also Knoten, die
keinen Pseudozustand repräsentieren)

- können beliebig lang sein

- können unterschiedliche Pseudozustände als Etappen haben

- die kompletten Pfade werden in einem Schritt (“atomar”)
durchlaufen, inkl. der Prüfung aller Guards und Ausführung
aller Aktionen an den Transitionen

- nur Transitionspfade, auf denen alle Guards erfüllt sind,
können durchlaufen werden

- es ist zulässig, daß mehrere Pfade durchlaufbar sind! dann
wird ein erlaubter Pfad zufällig ausgewählt



Pseudozustände und Transitionspfade / Pseudozustand Kreuzung (junction) 33

4.2 Pseudozustand Kreuzung (junction)

- Darstellung als schwarzer Kreis (wie Startkno-
ten, aber geringfügig kleiner)

- eine oder mehrere hereinkommende Transitio-
nen

- eine oder mehrere herausgehende Transitionen

- einer der ausgehenden Transitionen darf else als Guard ha-
ben; ist erfüllt, wenn die Guards aller anderen ausgehenden
Transitionen nicht erfüllt sind



Pseudozustände und Transitionspfade / Pseudozustand Kreuzung (junction) 34

- alle Guards werden ausgewertet, bevor irgendwelche Aktio-
nen ausgeführt werden (“static conditional branch”)

- Aktionen werden erst nach Durchlaufen aller Verzweigungen
ausgeführt

tückisch! entspricht nicht der Lesereihenfolge → Aktionen
möglichst an die letzten Transitionen der (Teil-) Pfade

- erlauben kompakte Darstellung ähnlicher Transitionen in
Transitionspfaden (s.o. Beispiel)



Pseudozustände und Transitionspfade / Pseudozustand Auswahlknoten (choice pseudo state) 35

4.3 Pseudozustand Auswahlknoten (choice
pseudo state)

A

- stellt eine bedingte Verzweigung dar
- Guards wie bei einer Kreuzung, inkl.

else-Konstrukt

- Aktionen an eingehenden Transitionen werden ausgeführt,
bevor nachfolgende Guards ausgewertet werden !!
(UML-Diktion: “dynamic conditional branch” )
→ kann zu sehr komplizierten Ablauflogiken führen
das ist der Hauptunterschied zu einer Kreuzung

- Raute kann innen einen Variablennamen enthalten, auf den
sich die Test in den Guards beziehen (syntaktischer Zucker...)



Pseudozustände und Transitionspfade / Pseudozustand Startzustand (initial pseudostate) 36

4.4 Pseudozustand Startzustand (initial pseu-

dostate)

- nur einmal erlaubt (pro Region, s.u.)
- nur eine ausgehende Transition erlaubt

- diese darf eine Aktion haben, aber keinen Trigger
oder Guard



Pseudozustände und Transitionspfade / Pseudozustand Terminator (terminate pseudostate) 37

4.5 Pseudozustand Terminator (terminate

pseudostate)

- stellt Löschung des Objekts / Systems dar
- kein Austrittsverhalten aus dem Zustand mehr (an-

ders als beim Endzustand)



Pseudozustände und Transitionspfade / Pseudozustand Gabelung (fork) 38

4.6 Pseudozustand Gabelung (fork)

- Notation wie Petri-Netz-Transition mit genau ei-
nem Eingangsplatz

- ausgehende Transitionen (bzw. Transitionspfadsegmente)

1. dürfen keine Guards oder Aktionen haben

2. müssen in unterschiedlichen Regionen (s.u.) eines zusam-
mengesetzten Zustands enden

→ keine allgemeinen Petri-Netze hiermit darstellbar



Pseudozustände und Transitionspfade / Pseudozustand Vereinigung (join) 39

4.7 Pseudozustand Vereinigung (join)

- Notation wie Petri-Netz-Transition mit genau ei-
nem Ausgangsplatz

- ankommende Transitionen (bzw. Transitionspfadsegmente)

1. dürfen keine Guards oder Aktionen haben

2. müssen in unterschiedlichen Regionen (s.u.) eines zusam-
mengesetzten Zustands starten



Zusammengesetzte Zustände 40

5 Zusammengesetzte Zustände

Begriff zusammengesetzter Zustand faßt zwei völlig verschiedene
Dinge zusammen:

1. baumartige Zustandshierarchien wie in Lehrmodul ZÜD
dargestellt:

ein “nichtelementarer” Zustand (innerer Konten des Zu-
standsbaums) hat mehrere Unterzustände und das System
befindet sich immer in genau einem der Unterzustände

2. autarke Teilzustände wie in Petri-Netzen1, die durch ei-
gene Tokens repräsentiert werden

1also zusammengesetzte Zustände im wörtlichen Sinn, der Gesamtzu-

stand des Systems setzt sich aus den Teilzuständen zusammen



Zusammengesetzte Zustände 41

autarke Teilzustände werden als Regionen repräsentiert

Beispiel:

Geld erhalten

Fahrschein drucken

Wechselg.ausgeben

....
Quittung fragen

..[..]

.....

....

.....



Zusammengesetzte Zustände 42

zusammengesetzter Zustand hat i.a.:

- eine oder mehrere Regionen
→ Parallelität = Zahl der Regionen, ist statisch erkennbar
→ Strukturen im Vergleich zu Petrinetzen eingeschränkt

- pro Region mehrere Unterzustände, darunter i.a. einen Start-
zustand

Darstellung:

- durch Schachtelung der “Zeichenflächen”
- Zustandsname oft nicht innen, sondern als Reiter oben auf

den Rechteck
- Trennung der Regionen durch gestrichelte Linie
- ggf. oben eigener Abschnitt mit entry / exit / do-Angaben



Zusammengesetzte Zustände / Zusammengesetzte Zustände mit nur einer Region 43

5.1 Zusammengesetzte Zustände mit nur ei-
ner Region

Betreten eines zusammengesetzten Zustands:

1. direkter Übergang in einen Unterzustand (Explicit Entry):
Transitionspfeil überquert Grenze der Zeichenfläche und en-
det an einem Unterzustand

....
....

Z

unschön, widerspricht dem information hiding über die De-
tails des zusammengesetzten Zustands



Zusammengesetzte Zustände / Zusammengesetzte Zustände mit nur einer Region 44

2. Default Entry: Transitionspfeil endet an der Grenze der Zei-
chenfläche

....

Z

Übergang zum inneren Startzustand und von dort aus spon-
tan weiter...

Frage: immer innerer Startzustand vorhanden?
Antwort: Nein → UML-Diktion: semantic variation point2

2Auf Deutsch: niemand weiß, wie es weitergeht....



Zusammengesetzte Zustände / Zusammengesetzte Zustände mit nur einer Region 45

3. Transition von innen endet an der Grenze der Zeichenfläche

....

Z

Übergang zum inneren Startzustand und von dort aus spon-
tan weiter;

kein Durchlaufen des Aus- und Eintrittsverhaltens



Zusammengesetzte Zustände / Zusammengesetzte Zustände mit nur einer Region 46

Verlassen eines zusammengesetzten Zustands:

1. ein Endzustand wird erreicht:
sofern außen eine triggerlose Transition vorhanden, wird die-
se ausgelöst

2. eine “äußere” Transition, die für den gesamten zusammen-
gesetzten Zustand gilt (d.h. der Transitionspfeil beginnt am
Rand der Zeichenfläche), feuert

3. direkter Übergang aus einem Unterzustand nach außen (ana-
log zum Explicit Entry): Transitionspfeil überquert Grenze
der Zeichenfläche und endet außerhalb

bei allen Varianten, den zusammengesetzten Zustand zu verlas-
sen, wird das Austrittsverhalten ausgelöst



Zusammengesetzte Zustände / Historien 47

5.2 Historien

Motivation:

Beispiel einer
Zustandshierarchie Z1

Z2

Z1.Y4
???

- System ist in einem speziellen Unterzustand
Beispiel: Unterzustand Z1.Y4 des zusammeng. Zustands Z1

- irgendein Trigger führt zum Verlassen des Zustands Z1

- später gewünscht: Rückkehr zum gleichen Unterzustand, von
dem aus der zusg. Zustand (Z1) zuletzt verlassen wurde



Zusammengesetzte Zustände / Historien 48

Geht nicht mit bisherigen Mitteln, weil dieser Unterzustand
nicht statisch festliegt

→ man bräuchte ein “Gedächtnis”, das sich für jeden zusam-
mengesetzten Zustand merkt, in welchem Unterzustand man das
letzte Mal war

Lösung des Problems in der UML: mit Historienzuständen



Historien / Pseudozustand flache Historie (shallow history) 49

5.2.1 Pseudozustand flache Historie (shallow history)

H
- dargestellt als Kreis mit “H” in der Mitte
- nur als Unterzustand eines zusammengesetzten Zu-

stands erlaubt
- 0 oder 1 ausgehende zu Transition erlaubt
- keine von innen ankommende Transition erlaubt

Beispiel:

H

....

Z1
Z2

....



Historien / Pseudozustand tiefe Historie (deep history) 50

Verhalten beim Betreten des Zustands Z1 über den Historien-
Knoten:

1. wenn das System vorher schon einmal im Zustand Z1 war:
seinerzeit aktiven Zustand auf dieser Verfeinerungsebene be-
treten

2. andernfalls, wenn vom Historien-Knoten eine Transition zu
einem Zustand ausgeht: in den Zielzustand dieser Transition
(default shallow history state) übergehen

3. andernfalls, wenn Startknoten auf dieser Verfeinerungsebene
vorhanden: dort ausgehender Transition folgen

4. andernfalls: fehlerhaftes Modell oder unklare Situation



Zusammengesetzte Zustände / Regionen 51

5.2.2 Pseudozustand tiefe Historie (deep history)

H*
- dargestellt als Kreis mit “H*” in der Mitte
- alles wie bei flacher Historie, bis auf folgenden Unter-

schied

Verhalten, wenn der über den Historien-Knoten erreichte Ziel-
knoten selbst wieder zusammengesetzt ist:

- flache Historie: Zielknoten wird neu betreten (über den lo-
kalen Startzustand)

- tiefe Historie: dort zuletzt aktiver Unterzustand wird betre-
ten usw. rekursiv abwärts

→ für jeden Verfeinerungsschritt muß der zuletzt aktive Zu-
stand bekannt sein



Zusammengesetzte Zustände / Regionen 52

5.3 Regionen

Betreten eines Zustands mit mehreren Regionen:

1. default entry: Transition endet am Rand des Zustands

Z2

Z1

Wirkung: pro Region wird der Startzustand aktiviert



Zusammengesetzte Zustände / Regionen 53

2. explicit entry: eine oder mehrere Transitionen (die von außen
aus einer Gabelung stammen) überqueren den Rand des zu-
sammengesetzten Zustands und enden in inneren Zuständen
(pro Region max. 1)

Z2

Z1

Wirkung: die direkt angesteuerten Zustände werden aktiv;
in Regionen, in denen keine Transition endet, wird der Start-
zustand aktiviert



Zusammengesetzte Zustände / Regionen 54

Verlassen eines Zustands mit Regionen:

1. wenn in allen Regionen der Endzustand erreicht und außen
eine triggerlose Transition vorhanden ist: diese feuern

Regionen, die schon den Endzustand erreicht haben, warten
darauf, daß alle anderen Regionen ebenfalls den Endzustand
erreichen und ignorieren währenddessen alle Trigger

2. wenn eine Transition für den zusammengesetzten Zustand
feuert: alle internen Zustände werden sofort inaktiv

3. wenn eine Transition für einen Unterzustand, die außerhalb
des zusammengesetzten Zustands endet, feuert: alle inter-
nen Zustände werden sofort inaktiv, d.h. auch alle anderen
Regionen werden abgebrochen


