
Zustandsautomaten (Stichworte)

Udo Kelter

11.01.2013

Zusammenfassung dieses Lehrmoduls

Zustandsautomaten sind erweiterte Formen von endlichen Automaten
bzw. einfachen Zustandsübergangsdiagrammen. Die UML 2.0 definiert
zwei Arten von Zustandsautomaten: Verhaltenszustandsautomaten und
Protokollzustandsautomaten. Beide basieren auf den gleichen Grundla-
gen, weisen aber diverse Detailunterschiede auf. Dieses Lehrmodul stellt
vor allem die Besonderheiten von Verhaltenszustandsautomaten vor:
spezielle Arten von Triggern, Pseudozustände und Transitionspfade
sowie zusammengesetzte Zustände.

Vorausgesetzte Lehrmodule:
obligatorisch: - Zustandsübergangsdiagramme

- Petri-Netze

Stoffumfang in Vorlesungsdoppelstunden: 1.0

1

Zustandsautomaten (Stichworte) 2

Inhaltsverzeichnis
1 Motivation und Einordnung 3

1.1 Steuerungsmodelle in der UML 2.* 3
1.2 Herkunft der Konzepte von Zustandsautomaten 4
1.3 Verhaltens- vs. Protokollzustandsautomaten 4

2 Zustände 5

3 Transitionen 6
3.1 Allgemeine Form einer Transition 7
3.2 Arten von Triggern . 8
3.3 Guards . 9

4 Pseudozustände und Transitionspfade 11
4.1 Pseudozustände und Transitionspfade 11
4.2 Pseudozustand Kreuzung (junction) 12
4.3 Pseudozustand Auswahlknoten (choice pseudo state) 13
4.4 Pseudozustand Startzustand (initial pseudostate) 13
4.5 Pseudozustand Terminator (terminate pseudostate) 13
4.6 Pseudozustand Gabelung (fork) 14
4.7 Pseudozustand Vereinigung (join) 14

5 Zusammengesetzte Zustände 14
5.1 Zusammengesetzte Zustände mit nur einer Region 16
5.2 Historien . 17

5.2.1 Pseudozustand flache Historie (shallow history) 18
5.2.2 Pseudozustand tiefe Historie (deep history) 19

5.3 Regionen . 19

Literatur . 20
Index . 20

c©2013 Udo Kelter Stand: 11.01.2013
Dieser Text darf für nichtkommerzielle Nutzungen als Ganzes und unverändert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Veränderung und Überführung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist über http://kltr.de erreichbar.

Zustandsautomaten (Stichworte) 3

1 Motivation und Einordnung

Die Grundformen von ZÜD (endliche Automaten) und Petri-Netzen
sind

- Kernkonzepte zur Beschreibung von sequentiellen und/oder paralle-
len Steuerungen / Algorithmen

- mit einer sehr klaren Semantik + theoretischem Fundament

... haben aber Nachteile hinsichtlich der Modellierung realer Syste-
me:

- keine Berücksichtigung von Daten und datenabhängigen Steuerungen

- keine Abstraktionshierarchien, durch die komplexere Modelle struk-
turiert und besser verstehbar / entwickelbar werden

daher: diverse Erweiterungen
→ bessere Modellierungsfähigkeiten
→ Verlust der klaren semantischen Grundlage, viele interessierende
Eigenschaften nicht mehr entscheidbar

1.1 Steuerungsmodelle in der UML 2.*

(nach vielen Irrungen und Umwegen über die UML 1.* ...)

1. Zustandsautomaten (state machines): endlichen Automaten
(Mealy- und Moore-A.) + weitere Zutaten

- Modell = gerichteter Graph

- Knoten modellieren Zustände;
können “Tokens” beinhalten / puffern;
in beschränktem Umfang parallele Teilzustände möglich

- Kanten modellieren Zustandsübergänge
hierbei komplizierte Fallunterscheidungen möglich
Kante ist i.d.R. mit einem Ereignis beschriftet

2. Aktivitätsdiagramme: ∼Programmablaufplan + Petri-Netz

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 4

- Modell = gerichteter Graph,
- Knoten: modellieren Verarbeitungsschritte / Funktionen,

aktive Systemteile
- Kanten: modellieren Kontroll- und Datenflüsse, transpor-

tieren Daten- oder Kontrolltoken zwischen Aktionen, beinhalten
Ablaufsteuerung

viele gemeinsame Diagrammelemente in beiden Diagrammtypen, insb.
bei der Ablaufsteuerung
aber teilweise verschiedene Bedeutung, Verwechslungsgefahr!

1.2 Herkunft der Konzepte von Zustandsautomaten

Zustandsautomaten beinhalten diverse schon erlernte bzw. andiskutierte
Konzepte (werden hier nur kurz wiederholt)

von Zustandsübergangsdiagrammen:

- Zustände mit internen Aktionen
- Zustandsübergänge mit Ereignissen, bedingten Transitionen und

Aktionen

von Petri-Netzen:

- Plätze als Tokenpuffer
- Transitionen mit mehreren Eingangs- oder Ausgangsplätzen

1.3 Verhaltens- vs. Protokollzustandsautomaten

Verhaltenszustandsautomat (behavioral state machine)

- mit Aktionen / Verhalten an Transitionen
(s. Lehrmodul ZÜD)

Protokollzustandsautomat (protocol state machine):

- ohne Aktionen / Verhalten an Transitionen
- Konzentration auf Zustandsübergänge, Darstellung der Vor- und

Nachbedingungen für Zustandsübergänge

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 5

- Darstellung von Invarianten in Zuständen

beide Arten mit gleichen Grundlagen, aber diversen Detailunterschieden;
Protokollzustandsautomaten werden hier nicht detailliert behandelt

2 Zustände

Allgemeine Form eines Zustands:

Zustandsname

exit / Verhalten

entry / Verhalten

do / Verhalten

Trigger [Guard] / Verhalten

Trigger [Guard] / defer

Ausführungsmodell für Zustandsübergänge:

A. Verhalten bei “Betreten” (Aktivierung) eines Zustands:

1. Zustand wird aktiv, wenn eine hereinkommende Transition durch-
laufen wird

2. sofort nach der Aktivierung wird das Eintrittsverhalten (entry / ...)
ausgeführt
wird nie abgebrochen; währenddessen ankommende Ereignisse werden
in einer FIFO-Schlange gepuffert

3. sofort danach wird das Zustandsverhalten (do / ...) gestartet

B. Verhalten bei Verlassen eines Zustands:

1. Zustand wird verlassen, wenn ein Ereignis eintritt, das zum Durch-
laufen einer herausgehenden Transition führt

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 6

2. falls das Eintrittsverhalten des aktuellen Zustands noch nicht abge-
arbeitet ist, wird dies erst komplett abgearbeitet

3. falls das Zustandsverhalten abläuft, wird es abgebrochen
4. danach wird das Austrittsverhalten (exit / ...) ausgeführt
5. erst danach ist der Zustand inaktiv.

C. Interne Transitionen in einem Zustand
(Trigger [Guard] / ...):

- Wirkung analog zum allgemeinen Fall einer Transition, die einen
Zustandswechsel bewirkt,
aber kein Durchlaufen des Ein- und Austrittsverhaltens

- Aktion defer führt in bestimmten Situationen zu einer späteren
Verarbeitung des Triggers (Details später)

3 Transitionen

Denkweise ist stark von kommunizierenden Objekten (um nicht zu
sagen GUI-Programmierung...) beeinflußt:

- Ereignisse (Trigger) sind i.d.R. Operationsaufrufe gemäß der Schnitt-
stelle des Typs des Objekts

- Aufrufe können von anderen Objekten kommen, aber auch vom
gleichen Objekt

- Verhalten an Transitionen fehlt häufig, weil meist das Verhalten im
Zielzustand abläuft
(also Zuordnung der Aktionen wie bei Moore-Automaten)
Vorteil: man kann über verschiedene Transitionen das gleiche Ver-
halten auslösen

Ereignisverarbeitung in der UML 2.*:

- sehr komplexes Verarbeitungsmodell

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 7

- diverse Details offen (semantic variation points), um verschiedene
Applikationsbereiche mit gegensätzlichen Anforderungen bedienen
zu können – problematisch

3.1 Allgemeine Form einer Transition

allgemeine Form einer Transition bei einem Verhaltenszustandsautoma-
ten:

Trigger [Guard] / Verhalten
Z1 Z2

allgemeine Form einer Transition bei einem Protokollzustandsauto-
maten (ProtocolTransition):

Z1
[Guard] Operation / [Nachbedingung]

Z2

Besonderheiten von Protokollzustandsautomaten:

- nur Operationsaufrufe als Trigger

- Notationsreihenfolge Guard – Trigger/Operation vertauscht

- keine Aktionen (Implementierung von Verhalten), sondern nur Nach-
bedingungen (Wirkung des Verhaltens)

- Guard in beiden Fällen gleich

kompaktere Notation bei mehreren Transitionen mit gleichem
Ausgangszustand, Guard, Verhalten und Zielzustand:
- nur ein Pfeil,
- unterschiedliche Trigger mit Kommata getrennt angeben

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 8

3.2 Arten von Triggern

hier für Verhaltens-ZA, analog für Protokoll-ZA

1. SignalTrigger: Empfang eines externen Ereignisses; Darstellung:

Signal [Guard] / Verhalten
Z1 Z2

Situation:
- Objekt / System ist in Zustand Z1,
- empfängt externes Ereignis,
- im Guard genannte Bedingungen sind erfüllt;
→ Objekt / System geht in Zustand Z2 über.
gut geeignet für kommunizierende Objekte in verteilten Systemen
geeignet (asynchrone Aufrufe)

2. CallTrigger: Aufruf einer Operation des Objekts; Darstellung:

Z2Z1
Operation [Guard] / Verhalten

Situation:
- Objekt / System ist in Zustand Z1,
- empfängt Aufruf der genannten Operation
- im Guard genannte Bedingungen sind erfüllt;
→ Objekt / System geht in Zustand Z2 über.

Schreibweise z.T. in der Form operation()
Parameter der Operation können zusätzlich angegeben werden und
im Guard und in den Aktionen benutzt werden.

3. ChangeTrigger: Zustandsänderung; Darstellung:

Z1 Z2
[Guard] / Verhalten

Situation:

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 9

- Objekt / System ist in Zustand Z1,
- eine der im Guard genannten Variablen ändert ihren Wert,
- Guard evaluiert anschließend zu WAHR,
→ Objekt / System geht in Zustand Z2 über.

Kein expliziter Trigger, Trigger wird sozusagen implizit durch Wer-
tänderungen generiert

4. TimeTrigger: absolute oder relative Zeitangaben erlaubt

Z1 Z2
after (3 sec/min/...) / Verhalten

Z1 Z2
11.11.2011,11:11 / Verhalten

Trigger wird implizit durch Zeitablauf nach Betreten des Zustands
Z1 bzw. Erreichen des absoluten Zeitpunkts generiert

5. AnyTrigger: für nicht explizit genannte, restliche Trigger

Z1 Z2
all / Verhalten

Zitat UML Superstructure, 2006, Abschnitt 13.3.1:

“A transition trigger associated with AnyReceiveEvent speci-
fies that the transition is to be triggered by the receipt of any
message that is not explicitly referenced in another transition
from the same vertex.”
“Any AnyReceiveEvent is denoted by the string ‘all’ used as
the trigger.”

Kommentar überflüssig. Woanders heißt das else oder otherwise
und ist klar verständlich

3.3 Guards

Guards können beliebige Bedingungen enthalten, müssen zu jedem
Zeitpunkt eindeutig auswertbar sein

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 10

Mehrere Guards für den gleichen Trigger:
zu einem Zustand Z1 können zum gleichen Trigger mehrere Transitionen
mit i.a. unterschiedlichen Guards vorhanden sein

Frage 1: dürfen 2 oder mehr Guards den gleichen Fall abdecken?
Antwort: ja, Auswahl der Transition dann zufällig

Frage 2: müssen die Guards alle Fälle abdecken?
Antwort: nicht unbedingt → s. folgende Folie

Interpretation nicht abgedeckter Fälle:

1. irrelevant: eingetroffenes Ereignis bewirkt keine Zustandsänderung
und wird ignoriert

entspricht der Notationskonvention in ZÜD!

2. schwerer Fehler:
eingetroffenes Ereignis hätte eigentlich gar nicht kommen dürfen und
kann nicht sinnvoll verarbeitet werden;
System ist in einem inkonsistenten Zustand und wird beendet /
Objekt wird aufgelöst (“Panik”) oder Übergang zu einer Standard-
Fehlerbehandlung
→ projektspezifische Konvention!

3. “bitte warten” :
eingetroffenes Ereignis ist im Prinzip OK, kommt aber zu unpassen-
der Zeit und soll später verarbeitet werden

hierzu explizite Aktionsangabe/defer
Nur an internen Transitionen erlaubt!
Effekt: aufgeschobenes Ereignis kommt in einen event pool zu

diesem Objekt / System und löst ggf. später eine Transition aus,
nachdem sich der Zustand und/oder in Guards benutzte Variablen
geändert haben

viele Details offen, z.B. Strategie, wie aus mehreren aufgescho-
benen Ereignissen das nächste abzuarbeitende gewählt wird (→ ge-
fährliches Konzept)

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 11

4 Pseudozustände und Transitionspfade

Steuerung / “Ablauflogik” des Zustandsautomaten bisher nur in den
Transitionen und den Triggern

Pseudozustände: erweitern die Möglichkeiten, Zustandsübergänge zu
steuern

imitiert bekannte Kontrollstrukturen aus Programmiersprachen (viel
neue Syntax, konzeptuell wenig Neues)

Beispiel:

alles

rot

alles

grün

....

[Fehler]
/ Fehlermeldung

[erfolgreich]
/ gratulieren

Alternativen

anzeigen

fertigfertig

[rot] /.... [grün] /....

ausgewählt

4.1 Pseudozustände und Transitionspfade

Merkmale von Pseudozuständen:

- sind zwar Knoten im Zustandsnetzwerk, repräsentieren aber keinen
Zustand!
d.h. dort kann kein Token parken
(Vorsicht: deswegen ist der Endzustand überraschenderweise kein
Pseudozustand!)

- haben ein- und ausgehende Transitionen mit teilweise unvollständi-
gen Beschriftungen

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 12

- bilden Transitionspfade,
z.B. von “Auswahl anzeigen” nach “alles rot”

Transitionspfade:

- beginnen und enden in “echten” Zuständen (also Knoten, die keinen
Pseudozustand repräsentieren)

- können beliebig lang sein
- können unterschiedliche Pseudozustände als Etappen haben
- die kompletten Pfade werden in einem Schritt (“atomar”) durchlau-

fen, inkl. der Prüfung aller Guards und Ausführung aller Aktionen
an den Transitionen

- nur Transitionspfade, auf denen alle Guards erfüllt sind, können
durchlaufen werden

- es ist zulässig, daß mehrere Pfade durchlaufbar sind! dann wird ein
erlaubter Pfad zufällig ausgewählt

4.2 Pseudozustand Kreuzung (junction)

- Darstellung als schwarzer Kreis (wie Startknoten, aber
geringfügig kleiner)

- eine oder mehrere hereinkommende Transitionen
- eine oder mehrere herausgehende Transitionen

- einer der ausgehenden Transitionen darf else als Guard haben; ist
erfüllt, wenn die Guards aller anderen ausgehenden Transitionen
nicht erfüllt sind

- alle Guards werden ausgewertet, bevor irgendwelche Aktionen aus-
geführt werden (“static conditional branch”)

- Aktionen werden erst nach Durchlaufen aller Verzweigungen ausge-
führt
tückisch! entspricht nicht der Lesereihenfolge → Aktionen möglichst
an die letzten Transitionen der (Teil-) Pfade

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 13

- erlauben kompakte Darstellung ähnlicher Transitionen in Transiti-
onspfaden (s.o. Beispiel)

4.3 Pseudozustand Auswahlknoten (choice pseudo state)

A

- stellt eine bedingte Verzweigung dar
- Guards wie bei einer Kreuzung, inkl. else-

Konstrukt

- Aktionen an eingehenden Transitionen werden ausgeführt, bevor
nachfolgende Guards ausgewertet werden !!
(UML-Diktion: “dynamic conditional branch”)
→ kann zu sehr komplizierten Ablauflogiken führen
das ist der Hauptunterschied zu einer Kreuzung

- Raute kann innen einen Variablennamen enthalten, auf den sich die
Test in den Guards beziehen (syntaktischer Zucker...)

4.4 Pseudozustand Startzustand (initial pseudostate)

- nur einmal erlaubt (pro Region, s.u.)
- nur eine ausgehende Transition erlaubt
- diese darf eine Aktion haben, aber keinen Trigger oder

Guard

4.5 Pseudozustand Terminator (terminate pseudostate)

- stellt Löschung des Objekts / Systems dar
- kein Austrittsverhalten aus dem Zustand mehr (anders als

beim Endzustand)

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 14

4.6 Pseudozustand Gabelung (fork)

- Notation wie Petri-Netz-Transition mit genau einem
Eingangsplatz

- ausgehende Transitionen (bzw. Transitionspfadsegmente)

1. dürfen keine Guards oder Aktionen haben
2. müssen in unterschiedlichen Regionen (s.u.) eines zusammenge-

setzten Zustands enden

→ keine allgemeinen Petri-Netze hiermit darstellbar

4.7 Pseudozustand Vereinigung (join)

- Notation wie Petri-Netz-Transition mit genau einem
Ausgangsplatz

- ankommende Transitionen (bzw. Transitionspfadsegmente)

1. dürfen keine Guards oder Aktionen haben
2. müssen in unterschiedlichen Regionen (s.u.) eines zusammenge-

setzten Zustands starten

5 Zusammengesetzte Zustände

Begriff zusammengesetzter Zustand faßt zwei völlig verschiedene Dinge
zusammen:

1. baumartige Zustandshierarchien wie in Lehrmodul ZÜD darge-
stellt:

ein “nichtelementarer” Zustand (innerer Konten des Zustands-
baums) hat mehrere Unterzustände und das System befindet sich
immer in genau einem der Unterzustände

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 15

2. autarke Teilzustände wie in Petri-Netzen1, die durch eigene To-
kens repräsentiert werden

autarke Teilzustände werden als Regionen repräsentiert
Beispiel:

Geld erhalten

Fahrschein drucken

Wechselg.ausgeben

....
Quittung fragen

..[..]

.....

....

.....

zusammengesetzter Zustand hat i.a.:
- eine oder mehrere Regionen
→ Parallelität = Zahl der Regionen, ist statisch erkennbar
→ Strukturen im Vergleich zu Petrinetzen eingeschränkt

- pro Region mehrere Unterzustände, darunter i.a. einen Startzustand

Darstellung:
- durch Schachtelung der “Zeichenflächen”
- Zustandsname oft nicht innen, sondern als Reiter oben auf den

Rechteck
- Trennung der Regionen durch gestrichelte Linie
- ggf. oben eigener Abschnitt mit entry / exit / do-Angaben

1also zusammengesetzte Zustände im wörtlichen Sinn, der Gesamtzustand des
Systems setzt sich aus den Teilzuständen zusammen

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 16

5.1 Zusammengesetzte Zustände mit nur einer Region

Betreten eines zusammengesetzten Zustands:

1. direkter Übergang in einen Unterzustand (Explicit Entry): Transi-
tionspfeil überquert Grenze der Zeichenfläche und endet an einem
Unterzustand

....
....

Z

unschön, widerspricht dem information hiding über die Details des
zusammengesetzten Zustands

2. Default Entry: Transitionspfeil endet an der Grenze der Zeichenfläche

....

Z

Übergang zum inneren Startzustand und von dort aus spontan wei-
ter...
Frage: immer innerer Startzustand vorhanden?
Antwort: Nein → UML-Diktion: semantic variation point2

3. Transition von innen endet an der Grenze der Zeichenfläche

....

Z

Übergang zum inneren Startzustand und von dort aus spontan wei-
ter;
kein Durchlaufen des Aus- und Eintrittsverhaltens

2Auf Deutsch: niemand weiß, wie es weitergeht....

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 17

Verlassen eines zusammengesetzten Zustands:

1. ein Endzustand wird erreicht:
sofern außen eine triggerlose Transition vorhanden, wird diese aus-
gelöst

2. eine “äußere” Transition, die für den gesamten zusammengesetz-
ten Zustand gilt (d.h. der Transitionspfeil beginnt am Rand der
Zeichenfläche), feuert

3. direkter Übergang aus einem Unterzustand nach außen (analog zum
Explicit Entry): Transitionspfeil überquert Grenze der Zeichenfläche
und endet außerhalb

bei allen Varianten, den zusammengesetzten Zustand zu verlassen,
wird das Austrittsverhalten ausgelöst

5.2 Historien

Motivation:

Beispiel einer
Zustandshierarchie

Z1
Z2

Z1.Y4
???

- System ist in einem speziellen Unterzustand
Beispiel: Unterzustand Z1.Y4 des zusammeng. Zustands Z1

- irgendein Trigger führt zum Verlassen des Zustands Z1

- später gewünscht: Rückkehr zum gleichen Unterzustand, von dem
aus der zusg. Zustand (Z1) zuletzt verlassen wurde

Geht nicht mit bisherigen Mitteln, weil dieser Unterzustand nicht
statisch festliegt

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 18

→ man bräuchte ein “Gedächtnis”, das sich für jeden zusammenge-
setzten Zustand merkt, in welchem Unterzustand man das letzte Mal
war

Lösung des Problems in der UML: mit Historienzuständen

5.2.1 Pseudozustand flache Historie (shallow history)

H

- dargestellt als Kreis mit “H” in der Mitte
- nur als Unterzustand eines zusammengesetzten Zustands

erlaubt
- 0 oder 1 ausgehende zu Transition erlaubt
- keine von innen ankommende Transition erlaubt

Beispiel:

H

....

Z1
Z2

....

Verhalten beim Betreten des Zustands Z1 über den Historien-
Knoten:

1. wenn das System vorher schon einmal im Zustand Z1 war: seinerzeit
aktiven Zustand auf dieser Verfeinerungsebene betreten

2. andernfalls, wenn vom Historien-Knoten eine Transition zu einem
Zustand ausgeht: in den Zielzustand dieser Transition (default shal-
low history state) übergehen

3. andernfalls, wenn Startknoten auf dieser Verfeinerungsebene vor-
handen: dort ausgehender Transition folgen

4. andernfalls: fehlerhaftes Modell oder unklare Situation

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 19

5.2.2 Pseudozustand tiefe Historie (deep history)

H*
- dargestellt als Kreis mit “H*” in der Mitte
- alles wie bei flacher Historie, bis auf folgenden Unterschied

Verhalten, wenn der über den Historien-Knoten erreichte Zielknoten
selbst wieder zusammengesetzt ist:

- flache Historie: Zielknoten wird neu betreten (über den lokalen
Startzustand)

- tiefe Historie: dort zuletzt aktiver Unterzustand wird betreten usw.
rekursiv abwärts
→ für jeden Verfeinerungsschritt muß der zuletzt aktive Zustand
bekannt sein

5.3 Regionen

Betreten eines Zustands mit mehreren Regionen:

1. default entry: Transition endet am Rand des Zustands

Z2

Z1

Wirkung: pro Region wird der Startzustand aktiviert
2. explicit entry: eine oder mehrere Transitionen (die von außen aus

einer Gabelung stammen) überqueren den Rand des zusammenge-
setzten Zustands und enden in inneren Zuständen (pro Region max.
1)

Z2

Z1

c©2013 Udo Kelter Stand: 11.01.2013

Zustandsautomaten (Stichworte) 20

Wirkung: die direkt angesteuerten Zustände werden aktiv; in
Regionen, in denen keine Transition endet, wird der Startzustand
aktiviert

Verlassen eines Zustands mit Regionen:

1. wenn in allen Regionen der Endzustand erreicht und außen eine
triggerlose Transition vorhanden ist: diese feuern

Regionen, die schon den Endzustand erreicht haben, warten dar-
auf, daß alle anderen Regionen ebenfalls den Endzustand erreichen
und ignorieren währenddessen alle Trigger

2. wenn eine Transition für den zusammengesetzten Zustand feuert:
alle internen Zustände werden sofort inaktiv

3. wenn eine Transition für einen Unterzustand, die außerhalb des
zusammengesetzten Zustands endet, feuert: alle internen Zustän-
de werden sofort inaktiv, d.h. auch alle anderen Regionen werden
abgebrochen

Literatur

[PN] Kelter, U.: Lehrmodul “Petri-Netze”; 2003
[ZUED] Kelter, U.: Lehrmodul “Zustandsübergangsdiagramme”; 2003

c©2013 Udo Kelter Stand: 11.01.2013

	Motivation und Einordnung
	Steuerungsmodelle in der UML 2.*
	Herkunft der Konzepte von Zustandsautomaten
	Verhaltens- vs. Protokollzustandsautomaten

	Zustände
	Transitionen
	Allgemeine Form einer Transition
	Arten von Triggern
	Guards

	Pseudozustände und Transitionspfade
	Pseudozustände und Transitionspfade
	Pseudozustand Kreuzung (junction)
	Pseudozustand Auswahlknoten (choice pseudo state)
	Pseudozustand Startzustand (initial pseudostate)
	Pseudozustand Terminator (terminate pseudostate)
	Pseudozustand Gabelung (fork)
	Pseudozustand Vereinigung (join)

	Zusammengesetzte Zustände
	Zusammengesetzte Zustände mit nur einer Region
	Historien
	Pseudozustand flache Historie (shallow history)
	Pseudozustand tiefe Historie (deep history)

	Regionen
	Literatur
	Index

