
Zeitstempelverfahren

Udo Kelter

02.06.2001

Zusammenfassung dieses Lehrmoduls

Zeitstempelverfahren sind sog. validierende Concurrency-Control-Ver-
fahren, bei denen inkorrekte Verzahungen von Transaktionsausführun-
gen verhindert werden, indem abhängig von Validationstests einzelne
Transaktionen zurückgesetzt und neugestartet werden. Die Validati-
onstests werten die Zeitpunkte von Zugriffen zu Objekten aus. Dieses
Lehrmodul erläutert zunächst das Validationsprinzip und seine Vor-
und Nachteile. Weiter wird die Grundform der Zeitstempelverfah-
ren vorgestellt, ferner Techniken zur Erzeugung und Verwaltung von
Zeitstempeln. Eine Vereinigung der Vorteile von Sperr- und Zeit-
stempelverfahren ist in einigen kombinierten Verfahren gelungen, die
anschließend vorgestellt werden.

Vorausgesetzte Lehrmodule:
obligatorisch: - Transaktionen und die Integrität von Datenbanken

- Sperrverfahren
empfohlen: - Recovery

Stoffumfang in Vorlesungsdoppelstunden: 1.0

1

Zeitstempelverfahren 2

Inhaltsverzeichnis

c©2001 Udo Kelter Stand: 02.06.2001
Dieser Text darf für nichtkommerzielle Nutzungen als Ganzes und unverändert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Veränderung und Überführung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist über http://kltr.de erreichbar.

Zeitstempelverfahren 3

1 Validierende Verfahren

1.1 Verhinderung inkorrekter Verzahnungen durch
Neustart

Bei Sperrverfahren werden inkorrekte Verzahnungen dadurch verhin-
dert, daß einzelne Zugriffe von Transaktionen verzögert werden. Tech-
nisches Mittel zum Verzögern waren Sperren, auf deren Freigabe eine
Transaktion ggf. warten muß. Infolge des Wartens können Deadlocks
auftreten. Deadlocks können i.a. nicht durch präventive Maßnahmen
verhindert, sondern nur entdeckt und aufgelöst werden (s. [SPV]). Für
diesen Zweck sind zum einen Software-Komponenten innerhalb der
Concurrency-Control-Komponente vorzusehen, ferner Datenstruktu-
ren, die eine effiziente Deadlock-Erkennung ermöglichen (Wartegraph).
Außerdem müssen laufend vorbereitende Maßnahmen zur Deadlock-
Erkennung durchgeführt und im Falle eines Deadlocks gewisse Trans-
aktionen zurückgesetzt werden.

Die Maßnahmen zur Deadlock-Behandlung sind schon bei zentralen
Datenbanken aufwendig und natürlich unerwünscht. Bei verteilten Da-
tenbanken ist schon die Deadlock-Erkennung äußerst aufwendig: Der
Wartezyklus kann sich über verschiedene Rechner erstrecken, so daß zu
seiner Erkennung systemweite (und sehr teure) Kommunikation erfor-
derlich wird. Gesucht sind also deadlockfreie Verfahren, bei denen die
Transaktionen nicht vorab deklarieren müssen, zu welchen Objekten
sie insgesamt zugreifen werden. Dies ist die Hauptmotivation für sog.
validierende CC-Verfahren.

Die Grundidee dieser Verfahren besteht darin, überhaupt nicht zu
warten, sondern inkorrekte Verzahnungen durch Rücksetzen einzelner
Transaktionen zu verhindern. Diese Verfahren arbeiten nach folgendem
Prinzip:

- Alle Zugriffe werden, wenn überhaupt, dann sofort ausgeführt.

- Bei bestimmten Gelegenheiten, z.B. bei jedem Zugriff oder am Ende
jeder Transaktion, werden Validationstests durchgeführt: es wird
überprüft, ob die bisherige effektiv eingetretene Verzahnung korrekt

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 4

(also mindestens cp-serialisierbar) ist. Falls nicht, wird die Transak-
tion zurückgesetzt und automatisch neugestartet. Dies bezeichnen
wir in diesem Kapitel kurz mit Neustart. Der letzte (und oft ein-
zige) Validationstest findet im Rahmen des Commits statt. Führt
er nicht zum Neustart, ist die Transaktion insgesamt validiert.
(Üblich ist auch die Bezeichnung “zertifiziert”.)

Durch dieses Prinzip wird natürlich die Häufigkeit von Rollback
merklich erhöht. In der Konsequenz ist es dringend geboten, Fortpflan-
zung von Rollback zu verhindern. Daher nehmen wir bei allen folgenden
Verfahren das verzögerte Schreiben (deferred update) an1, wobei ver-
änderte Objekte erst bei Commit in die Datenbank geschrieben und
vorher gepuffert werden. Aus diesem Grund gibt es keine ungesicherten
Werte in der Datenbank, alle geschriebenen Werte sind von validierten
Transaktionen geschrieben worden.

1.2 Vergleich mit Sperrverfahren

Im Vergleich zum Sperren hat das Validieren folgende Vor- und Nach-
teile:

- Die validierenden Verfahren sind deadlockfrei. Weder Erkennungsme-
chanismen (Software) noch vorbereitende Maßnahmen zur Deadlock-
Erkennung sind erforderlich. Ebenso entfallen Kosten der Deadlock-
Auflösung.

- Die Vermehrung des Rollbacks von Transaktionen ist – unabhängig
von der vereinfachten Realisierung des Rollbacks durch das verzö-
gerte Schreiben – ein Nachteil.

- Zur Realisierung des verzögerten Schreibens müssen lokale Kopien
der Objekte vorgesehen werden, bei der Realisierung durch Sper-
ren ist dies nicht erforderlich. Validierende Verfahren sind daher
wenig für Anwendungsfälle geeignet, bei denen Transaktionen viele
Objekte schreiben.
1S. auch Ausführungen zum verzögerten Schreiben in Abschnitt 4.4 in [REC].

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 5

- Wenn eine Transaktion abgebrochen und neugestartet worden ist,
kann ihr dieses “Pech” beim nächsten Ausführungsversuch erneut
widerfahren. Frühere Neustarts einer Transaktion verbessern die
Wahrscheinlichkeit nicht, daß diese Transaktion bei ihrem nächsten
Ausführungsversuch nicht noch einmal neugestartet wird. Bei den
Grundformen der validierenden Verfahren kann (zumindest theore-
tisch) ein zyklischer Neustart eintreten, d.h. eine Transaktion wird
endlos neugestartet. Betroffen sind vor allem längere Transaktionen,
denn die Wahrscheinlichkeit eines Neustarts steigt mit der Länge
einer Transaktion. Alle Maßnahmen zur Lösung des Neustartpro-
blems beruhen in irgendeiner Weise auf Sperren, allerdings so, daß
keine Deadlocks möglich sind. Die Verfahren sind dann allerdings
wieder in Sperren involviert, es müssen Mechanismen zur Realisati-
on der Sperren vorgesehen werden, und die Verfahren werden relativ
kompliziert.

- Bezüglich des Aufwands für die Hilfsdaten ist keine pauschale Aus-
sage zugunsten von Neustarts oder Sperrungen möglich. Bei vali-
dierenden Verfahren entfällt zwar die Sperrtabelle (sofern Sperren
zur Lösung des Neustart-Problems nicht doch wieder eingeführt
werden), dafür sind aber andere Hilfsdaten für die Validationstests
erforderlich, die bzgl. Speicherplatzbedarf und Handhabungsaufwand
durchaus mit der Sperrtabelle vergleichbar sein können.

Eine quantitative Abwägung der Vor- und Nachteile einzelner Ver-
fahren (z.B. mit stochastischen Modellen) ist wegen der hohen Kom-
plexität und Vielfalt der Einflußfaktoren sehr schwierig und gleichzeitig
problematisch. Das CC-Verfahren ist nur einer von mehreren wesent-
lichen Einflußfaktoren, die die Gesamtleistung eines DBS bestimmen.
Wir beschränken uns deshalb im folgenden auf einen qualitativen Ver-
gleich wichtiger Einzelaspekte der Verfahren; es sei noch einmal davor
gewarnt, von der Überlegenheit eines Verfahrens in Einzelaspekten
auf eine generelle Überlegenheit unter beliebigen Einsatzbedingungen
zu schließen (einige triviale Fälle einmal ausgenommen). Für eine
Auswahl eines Verfahrens in einem konkreten Fall sind darüber hin-
aus noch andere Aspekte wesentlich, z.B. die Komplexität bzw. der

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 6

Realisierungsaufwand für die Software.

1.3 Varianten validierender Verfahren

Das Grundprinzip des Validierens läßt Raum für viele Varianten. Die
beiden wichtigsten Arten von validierenden CC-Verfahren sind:

- Zeitstempel-Verfahren und
- optimistische Verfahren.

Die Verfahren unterscheiden sich vor allem in folgenden Punkten:

Zeitpunkt der Validationstests: Wann werden Validationstests
durchgeführt?

Korrektheitsbegriff : Welche eingetretenen Verzahnungen werden als
korrekt erachtet und welche nicht?

Hilfsdaten: Welche Hilfsdaten werden für die Entscheidung benutzt?

Alle drei Aspekte hängen natürlich zusammen; wir wollen jedoch
schon vorab einige Alternativen isoliert besprechen.

Zum Zeitpunkt der Validationstests: Sinnvolle Gelegenheiten für
Validationstests sind neben dem Commit, das alle Schreib-Aktionen
enthält, nur einzelne frühere Lese-Aktionen. Zeitstempel-Verfahren füh-
ren bei jedem Zugriff einen Test durch, optimistische Verfahren nur bei
Commit.

Für die frühen Tests bei Leseaktionen spricht, daß inkorrekte effekti-
ve Verzahnungen früher erkannt werden können. Durch das Rücksetzen
der Transaktion geht dann weniger geleistete Arbeit verloren, die Tests
sind relativ einfach, allerdings häufig.

Bei späten Tests kann theoretisch das gesamte Geschehen im Verlauf
der Transaktionsausführung berücksichtigt werden, es können also un-
nötige Neustarts und viele Einzeltests vermieden werden. Jedoch steigt
die Komplexität der Tests dann ganz erheblich, so daß der Testaufwand
eher größer ist als bei frühen Tests.

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 7

Zum Korrektheitsbegriff und den Hilfsdaten: In [SPV] hatten
wir eine Verzahnung als serialisierbar definiert, wenn es zu jeder enthal-
tenen Transaktion einen Serialisierungspunkt gibt, d.h. alle Ereignisse
einer Transaktion können konfliktfrei zu ihrem Serialisierungspunkt
verschoben werden. Dieser Korrektheitsbegriff ist allerdings für die
Verhältnisse, die bei validierenden Verfahren unterstellt werden, aus
Aufwandsgründen weniger geeignet.

Hierzu müssen wir zunächst die Korrektheitsbegriffe für Verzahnun-
gen etwas näher betrachten. Serialisierungspunkte waren so motiviert,
daß hier scheinbar die gesamte Transaktion stattfinden kann. Wenn wir
alle Aktionen dementsprechend verschieben, erhalten wir einen seri-
ellen Ablauf. Die aufgetretene Verzahnung und dieser serielle Ablauf
sind dann äquivalent in dem Sinne, daß sie beide die gleiche Menge
von Aktionen umfassen und daß, dann, wenn zwei Aktionen in Kon-
flikt miteinander stehen, diese beiden Aktionen in beiden Abläufen in
der gleichen Reihenfolge auftreten, also nicht vertauscht werden. Die
vorstehende Definition der Äquivalenz zweier Abläufe wird auch cp-
Äquivalenz (conflict-preserving equivalence) genannt. Es gibt noch
andere Definitionen der Äquivalenz von Abläufen, auf die wir hier aber
nicht eingehen.

Unserer bisherige Definition von Serialisierbarkeit ist mit diesen Be-
griffen äquivalent zu der folgenden: Eine Verzahnung ist serialisierbar,
wenn es einem cp-äquivalenten seriellen Ablauf gibt.

Theoretisch kann für jeden Korrektheitsbegriff ein validierendes
Verfahren entwickelt werden: Die bis zum Testzeitpunkt abgelaufene
Verzahnung muß in ihren relevanten Details bekannt sein, d.h. ent-
sprechende Daten sind laufend zu speichern; getestet wird bei jeder
Aktion oder am Ende einer Transaktion, ob die entstandene Verzah-
nung Präfix einer korrekten Verzahnung ist, wobei mit dem Rücksetzen
aller noch nicht beendeten Transaktionen gerechnet werden muß. Fällt
der Test negativ aus, wird die Transaktion, die den Test verursachte,
zurückgesetzt und automatisch neugestartet.

Wegen der Häufigkeit, mit der die Tests durchgeführt werden, ist

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 8

deren Effizienz sehr kritisch2. Wenn man nun entscheiden will, ob
ein gegebener Ablauf serialisierbar ist, muß man prüfen, ob ein cp-
äquivalenter serieller Ablauf existiert oder nicht. Hierfür sind keine
ausreichend effizienten Verfahren verfügbar.

Bei den praktisch brauchbaren Verfahren wird ein Trick angewandt,
durch den die Korrektheitsüberprüfung stark vereinfacht wird. Für die
Serialisierbarkeit reicht es aus, wenn es irgendeinen seriellen Ablauf
gibt, der äquivalent zur vorhandenen Verzahnung ist. Die Vereinfachung
besteht darin, einen ganz bestimmten seriellen Ablauf vorzugeben. Vor-
gegeben wird natürlich ein serieller Ablauf, der mit möglichst geringer
Wahrscheinlichkeit zu einem Neustart führt. In etwa wird dieser serielle
Ablauf gemäß den Ankunftszeitpunkten der Transaktionen gebildet.

Scheduling. Eine Umformung einer Aufrufsequenz von Aktionen in
eine effektive Ausführungssequenz (s. Abschnitt 2) findet bei validie-
renden Verfahren nicht in dem Sinne wie bei Sperrverfahren statt: Die
Aufrufsequenz wird durch das Rücksetzen selbst verändert. Sofern kei-
ne Transaktion zurückgesetzt wird, ist die Aufrufsequenz gleichzeitig
effektive Ausführungssequenz. Unter der effektiven Ausführungsse-
quenz verstehen wir daher in diesem Lehrmodul die letztlich wirksame
Aufrufsequenz. Die Umformung der “ursprünglichen” Aufrufsequenz in
die effektive Ausführungssequenz ist nicht reproduzibel, denn die Zeit
bis zum Neustart einer Transaktion ist zufällig.

2 Zeitstempel-Verfahren

2.1 Die Grundform

Bei der Grundform der Zeitstempel-Verfahren wird bei jedem Zugriff
ein Validationstest durchgeführt. Getestet wird, ob die bisherige effek-
tive Ausführungssequenz cp-äquivalent zu dem seriellen Ablauf ist, der
sich aus der Ankunftszeit der Transaktionen ergibt. Für zurückgesetzte
Transaktionen ist der Zeitpunkt ihres Neustarts relevant.

2Anmerkung: bei Sperrverfahren werden solche Tests überhaupt nicht durchge-
führt, die entstehenden Verzahnungen sind automatisch serialisierbar.

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 9

Das wichtigste technische Hilfsmittel sind Zeitstempel. Jede
Transaktion Ti erhält von der CC-Komponente einen eigenen, ein-
deutigen Zeitstempel, Z(Ti). Den Zeitstempel erhält die Transaktion
bei ihrer Ankunft oder später, spätestens vor ihrem ersten lesenden
Zugriff. Einen Zeitstempel stellen wir uns vorerst am besten als die ak-
tuelle Uhrzeit, ggf. verbunden mit dem Datum, vor, und zwar in einer
Genauigkeit, daß keine zwei Transaktionen den gleichen Zeitstempel
und eine spätere Transaktion einen “größeren” Zeitstempel erhalten.
Wir werden “Zeitstempel” und “Zeitpunkt” als Synonyme benutzen.

Der Zeitstempel einer Transaktion ist der vorgegebene Serialisie-
rungspunkt dieser Transaktion in der entstehenden effektiven Ausfüh-
rungssequenz. Alle Ereignisse in der effektiven Ausführungssequenz
müssen also konfliktfrei zu den jeweiligen Zeitstempeln der Transaktio-
nen verschoben werden können. Diese Verschiebung ist nur dann nicht
möglich, wenn folgende typische Situation vorliegt:

Ti Z–––––––––––-ei
Tj Z––––-ej

In diesem und den folgenden Beispielen benutzen wir eine graphische
Notation für Abläufe, in der das Symbol ’Z’ den Zeitstempel darstellt,
r(x) und w(x) das Lesen bzw. Schreiben eines Objekts x.

Im obigen Beispiel seien ei und ej zwei Ereignisse, die in Konflikt
stehen. ei kann nicht konfliktfrei zum Zeitstempel von Ti verschoben
werden, denn ej müßte hierfür vor den Zeitstempel von Tj verschoben
werden.

Zwischen ei und ej können drei verschiedene Arten von Konflikten
bzgl. eines Objekts x bestehen:

Lese-Schreib-Konflikt: Ti Z––––––––r(x)
Tj Z––w(x)

Schreib-Lese-Konflikt: Ti Z––––––––w(x)
Tj Z––r(x)

Schreib-Schreib-Konflikt: Ti Z––––––––w(x)
Tj Z––w(x)

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 10

Da wir verzögertes Schreiben annehmen, kann nach einem Schreib-
ereignis einer Transaktion kein weiteres Ereignis von dieser Transaktion
mehr stattfinden. Bei Lese-Ereignissen können jedoch noch weitere
Ereignisse geplant sein, was durch “...” dargestellt ist.

Bei jedem Zugriff ei einer Transaktion Ti muß folgender Validati-
onstest durchgeführt werden: Ti ist abzubrechen, wenn es eine jüngere
Transaktion Tj (d.h. der Zeitstempel von Tj ist größerer als der von
Ti) gibt und wenn (a) Tj schon vor ei einen Zugriff ej durchgeführt
hat und (b) ej in Konflikt mit ei steht. Andernfalls kann der Zugriff
ausgeführt werden.

Zur Vereinfachung der Suche nach einem derartigen Tj sehen wir
bei jedem Objekt zwei Zeitstempel vor:

ZR(x): Zeitstempel der jüngsten Transaktion, die x gelesen hat (m.a.W.
gibt es ein Leseereignis, das nicht vor diesen Zeitpunkt verschoben
werden kann).

ZW(x): Zeitstempel der jüngsten Transaktion, die x geschrieben hat
(m.a.W. gibt es ein Schreibereignis, das nicht vor diesen Zeitpunkt
verschoben werden kann).

Bei jedem erfolgreichen Zugriff müssen die Hilfsvariablen ZR und
ZW auf den neuen Stand gebracht werden. Diese Aktualisierung füh-
ren wir zusammen mit dem Validationstest aus. Insgesamt erhalten wir
folgende Testalgorithmen:

- Ti will x lesen (Test auf Lese-Schreib-Konflikt; vor Commit):

IF Z(Ti) < ZW(x)
THEN NEUSTART
ELSE ZR(x) := max (ZR(x), Z(Ti)) (* und Zugriff *)

- Ti will x schreiben (Test auf Schreib-Lese- oder Schreib-Schreib-
Konflikt; nur während der Commit-Verarbeitung):

IF Z(Ti) < ZR(x) (* Schreib-Lese-Konflikt *)
OR Z(Ti) < ZW(x) (* Schreib-Schreib-Konflikt *)

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 11

THEN NEUSTART
ELSE ZW(x) := Z(Ti) (* und Zugriff *)

Die Zeitstempel an den Objekten ermöglichen einen sehr effizien-
ten Validationstest, der bei dem ursprünglichen Korrektheitsbegriff
Serialisierbarkeit nicht möglich wäre.

Das obige Kommando NEUSTART ist so zu interpretieren, daß Ti

zurückgesetzt und anschließend automatisch neugestartet wird. Dabei
erhält Ti einen neuen Zeitstempel.

Wir nehmen hier an, daß alle Validationstests automatisch inner-
halb der Aktionen durchgeführt werden und nicht etwa von Hand durch
den Programmierer. Alle Validationstests müssen unter wechselseitigem
Ausschluß auf den betroffenen Daten durchgeführt werden.

2.2 Zyklischer Neustart

Eine Transaktion, die zurückgesetzt und mit neuem Zeitstempel neu-
gestartet wurde, fängt völlig gleichberechtigt mit allen anderen noch
vorhandenen Transaktionen von vorne an. Sie kann daher wieder Opfer
eines Validationstests werden. In der Grundform des Zeitstempel-
Verfahrens gibt es keine Möglichkeit, die Zahl der Neustarts zu begren-
zen. Im schlimmsten Fall wird eine Transaktion immer wieder wegen
neu hinzukommender Transaktionen abgebrochen3. Vor allem lange
Transaktionen, die viele Lesezugriffe durchführen, können leicht das
Opfer von kurzen schreibenden Transaktionen werden.

Wenn man die Wahrscheinlichkeit eines einzelnen Neustarts einer
Transaktion als fest annimmt, dann werden häufige Neustarts zwar
immer unwahrscheinlicher. Bei langen Transaktionen ist jedoch die
Wahrscheinlichkeit eines einzelnen Neustarts relativ hoch. In jedem
Fall muß mit unvertretbaren Ausreißern bei der Zahl der Neustarts
gerechnet werden.

Unter gewissen Umständen können zwei Transaktionen immer wie-
der gegenseitig ihren Neustart verursachen. Beispiel:

3Ein ähnliches Problem besteht bei der Deadlock-Auflösung in Sperrverfahren.

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 12

T1 Z-r(x)––––w(y)N
T2 Z-r(y)–––––––w(x)N
T11 Z-r(x)–––––––w(y)N
T21 Z-r(y)–––––––w(x)N
T12 Z-r(x)––...

In diesem Beispiel wurde ein Zugriff, dessen Validationstest negativ
ausging und zu einem Neustart führte, durch “N” dargestellt. Die neu
gestarteten Transaktionen erhielten den Index 1, 2 usw. Das Beispiel
läßt sich endlos fortführen, hier liegt ein zyklischer Neustart vor, bei
dem nicht ständig neue Transaktionen hinzukommen müssen.

Wiederholter oder zyklischer Neustart sind ein Problem aller va-
lidierenden Verfahren. Bei Sperrverfahren existierte dieses Problem
praktisch nicht. Daher wurden Sperrverfahren und validierende Ver-
fahren kombiniert, um sowohl Deadlock-Freiheit wie Begrenzung der
Neustarts zu erreichen. Einige Ansätze werden wir später behandeln.

2.3 Zeitstempel

Zeitstempel können einer Transaktion irgendwann zwischen ihrem Start
durch ein Benutzerprogramm und ihrer ersten Aktion zugewiesen wer-
den. Für unsere Betrachtungen ist die Zeit vor der Zuteilung des
Zeitstempels irrelevant, d.h. für uns beginnt jede Transaktion mit der
Zeitstempelzuteilung.

Zeitstempel waren oben zunächst eingeführt worden als Angabe
einer Uhrzeit mit ausreichender Genauigkeit. Für Zeitstempel sind
folgende Eigenschaften wesentlich:

1. Zwei Transaktionen haben nie den gleichen Zeitstempel.
2. Nichtüberlappende Transaktionen erhalten Zeitstempel in aufstei-

gender Reihenfolge.
3. Nachdem eine Transaktion ihren Zeitstempel erhalten hat, erhal-

ten anschließend höchstens endlich viele andere Transaktionen einen
kleineren (“älteren”) Zeitstempel.

Die dritte Eigenschaft ist bei der Methode “Uhrzeit” in einer zentra-
len Datenbank trivialerweise erfüllt: Es gibt überhaupt keine Transakti-

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 13

on, die zukünftig einen kleineren Zeitstempel erhält. Die Abschwächung
auf “endlich viele” ist wichtig für mehrere Prozessoren mit eigener Uhr,
besonders also für verteilte Datenbanken, für die Zeitstempel-Verfahren
ursprünglich entwickelt wurden und in denen u.U. nicht alle lokalen
Uhren ausreichend synchronisiert werden können.

In zentralen Datenbanken bietet sich eine andere Lösung als die
Uhrzeit an: Transaktionsnummern. Hierzu ist ein zentraler Transak-
tionszähler zu installieren, der bei jeder neuen Transaktion um eins
erhöht wird. Transaktionsnummern haben gegenüber Uhrzeitangaben
den Vorteil, daß zu ihrer Speicherung weniger Platz gebraucht wird.

2.4 Verwaltung der Zeitstempel

Gleichgültig, ob Uhrzeiten oder Transaktionsnummern als Zeitstempel
verwandt werden, ist es nicht sinnvoll, bei jedem Objekt zwei Hilfsva-
riablen passender Größe zur Speicherung der Zeitstempel ZR und ZW
fest einzurichten: Der Platzbedarf wäre sehr hoch, während andererseits
nur ein Bruchteil dieser Zeitstempel wirklich benötigt wird. Benötigt
werden nur noch solche Zeitstempel, die größer sind als der Zeitstempel
der derzeit ältesten Transaktion, denn nur solche Zeitstempel können
noch zum Rücksetzen einer Transaktion führen.

Betrachten wir zunächst die Lese-Zeitstempel getrennt. Die Lösung
besteht in einer separaten Tabelle, die Einträge der Form (x, ZR(x))
enthält, allerdings nur für diejenigen Objekte x, deren ZR -Zeitstempel
noch benötigt wird. Nicht mehr benötigte Einträge der Tabelle wer-
den jeweils gelöscht. Zu der Tabelle gehört eine weitere Variable Rmin,
deren Wert kleiner als alle noch vorhandenen Zeitstempel in der Ta-
belle und größer als alle schon gelöschten Zeitstempel ist. Abfragen
bzw. Änderungen von ZR(x) werden mit Hilfe der Tabelle wie folgt
durchgeführt:

- Abfrage von ZR(x) : Die Tabelle wird nach einem Eintrag (x,z)
durchsucht. Wird ein solcher Eintrag gefunden, so wird z zurückge-
geben, andernfalls Rmin.

- Änderung von ZR(x) : Die Tabelle wird nach einem Eintrag (x,z)

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 14

durchsucht. Wird er gefunden, so wird z durch den neuen Wert
ersetzt, andernfalls wird ein neuer Eintrag eingefügt.

Bei bestimmten Gelegenheiten, z.B. bei Überlauf der Tabelle, wird
ein neuer Wert für Rmin festgelegt. Dieser Wert muß auf jeden Fall klei-
ner als der kleinste Zeitstempel aller noch aktiven Transaktionen sein.
In der Tabelle werden dann alle Einträge (x,z) mit z < Rmin gelöscht.

Für die ZW -Zeitstempel muß eine weitere Tabelle mit einer zugehö-
rigen Variablen Wmax eingerichtet werden. Beide Tabellen können auch
zusammengelegt werden. Diese Zeitstempel-Tabellen sind in einigen
Details der Sperrtabelle sehr ähnlich.

3 Kombinierte Sperr- und Zeitstempel-Verfah-
ren

Einige Verfahren benutzen sowohl Sperren wie auch Zeitstempel-
gesteuertes Rollback mit Neustart. Man kann sie als Sperrverfahren
auffassen, in denen Zeitstempel-gesteuertes Rücksetzen zur Verhinde-
rung von Deadlocks benutzt wird.

In [StLR76] und [RoSL78] wurden Verfahren vorgeschlagen, die das
Deadlock- bzw. Neustart-Problem lösen, indem älteren Transaktionen
höhere Priorität eingeräumt wird als jüngeren. Zunächst müssen Trans-
aktionen das 2-Phasen-Protokoll befolgen. Jede Transaktion erhält bei
ihrer Ankunft im System eine Zeitmarke. Sie behält diese Zeitmar-
ke auch im Falle eines Neustarts (im Gegensatz zur Grundform der
Zeitstempelverfahren)!

Die von den Zeitstempelverfahren her bekannten Lese- und Schreib-
Zeitstempel an Objekten (ZW(x) und ZR(x)) werden nicht mehr
direkt in dieser Form benutzt, jedoch indirekt durch Zeitstempel von
Transaktionen, die in der Sperrtabelle verwaltet werden müssen.

Abweichend vom 2-Phasen-Protokoll gelten in dem Falle, daß T1

eine Sperre beantragt, die nicht verträglich ist mit einer schon vorhan-
denen Sperre auf diesem Objekt, welche von T2 gehalten wird, folgende
Regeln:

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 15

wait-die-Verfahren:

- Wenn T1 älter als T2 ist, dann wartet T1 auf die Freigabe der
vorhandenen Sperre (“wait”).

- Wenn T1 jünger als T2 ist, dann wird T1 neu gestartet (“die”).

wound-wait-Verfahren:

- Wenn T1 älter als T2 ist, dann wird T2 neu gestartet; T2 wird
sozusagen von T1 tödlich verwundet (“wound”).

- Wenn T1 jünger als T2 ist, dann wartet T1 auf die Freigabe
der vorhandenen Sperre (“wait”).

Das erste Stichwort in wait-die und wound-wait deutet an, was pas-
siert, wenn eine ältere Transaktion auf eine jüngere warten soll, das
zweite Stichwort den anderen Fall.

Deadlockfreiheit. Der Hauptunterschied zwischen beiden Verfah-
ren ist die zulässige Wartebeziehung zwischen jüngeren und älteren
Transaktionen:

- Beim wait-die-Verfahren wartet immer eine ältere Transaktion auf
eine jüngere, nie umgekehrt.

- Beim wound-wait-Verfahren wartet immer eine jüngere Transaktion
auf eine ältere, nie umgekehrt.

In beiden Fällen geben die Zeitstempel der Transaktionen eine linea-
re Ordnung vor (aufsteigende oder fallende Reihenfolge der Zeitstempel),
in der sich die Wartebeziehungen aller Transaktionen bewegen können.
Ein Wartezyklus ist somit unmöglich, die Verfahren sind deadlockfrei.

Neustarts. Gemeinsam ist beiden Verfahren, daß immer die jüngere
Transaktion zurückgesetzt wird, wenn eine unzulässige Wartebezie-
hung droht, nie die ältere. Zyklische Neustarts sind damit ebenfalls
unmöglich. Wesentlich hierbei ist, daß – im Gegensatz zur Grundform
der Zeitstempel-Verfahren – eine Transaktion beim Neustart ihren ur-
sprünglichen Zeitstempel behält. Sie kann also höchstens durch die

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 16

endlich vielen älteren Transaktionen zurückgesetzt werden. Diese wie-
derum werden in endlicher Zeit beendet, da kein Deadlock eintreten
kann. (Auf eine spezielle Möglichkeit zur Endlosblockierung und ihre
Verhinderung gehen wir anschließend ein.)

Beim wait-die-Verfahren ist die jüngere Transaktion die aktive In-
stanz, die einen Neustart auslöst, nämlich ihren eigenen. (Beim wound-
wait-Verfahren ist dies die ältere Transaktion.) Hieraus resultiert ein
Vorteil des wait-die-Verfahrens: Sobald eine Transaktion keine Sper-
ren mehr anfordert, also alle benötigten Objekte besitzt, wird sie nicht
mehr neugestartet. Beim wound-wait-Verfahren kann eine Transaktion
dagegen jederzeit zurückgesetzt werden. Aus diesem Grund dürfte auch
die Häufigkeit von Neustarts beim wound-wait-Verfahren höher sein.

Beim wait-die-Verfahren kann eine Transaktion, die zurückgesetzt
wurde, wenn sie rasch neugestartet wird, in den gleichen Konflikt wie
vorher mit einer älteren Transaktion kommen, die nach wie vor die
gleichen Sperren hält. Besonders bei stark frequentierten, exklusiv zu
sperrenden Objekten droht, daß sehr viele Transaktionen immer wieder
wegen dieser Objekte scheitern. Hieraus leitet sich die Empfehlung ab,
nicht zu schnell neu zu starten. Beim wound-wait-Verfahren besteht
dieses Problem nicht.

Sperrenzuteilung. Ein weiteres Problem beim wait-die-Verfahren
sind Endlosblockierungen4. So kann eine ältere Transaktion, die ein
Objekt schreibsperren möchte und auf die Freigabe von vorhandenen
Lesesperren wartet, von neu gewährten Lesesperren für dieses Ob-
jekt endlos blockiert werden. Für die Aspekte, die bei der Wahl einer
Sperrenzuteilungsstrategie zu beachten sind, sei auf [SPV] verwiesen.

Bei beiden Verfahren muß in dem Fall, daß mehrere Transaktionen
auf Freigabe der gleichen Sperre warten, die “Warterichtung” berück-
sichtigt werden, sonst können Deadlocks auftreten. Hierzu betrachten
wir als Beispiel folgende Wartesituation nach dem Präfix eines Ablaufs
beim wait-die-Verfahren (XLOCK(..) fordert Schreibsperren für die
angegebenen Objekte an, . . . steht für eine anschließende Wartezeit):

4vgl. Abschnitt 4.1 in [SPV].

c©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 17

T1 Z––––––––XLOCK(x,y).............
T2 Z––––-r(y)––––––-XLOCK(x)...
T3 Z–-r(x)––––––––––––––w(z)

T1 und T2 warten auf die Freigabe der Lesesperre auf x, die T3

hält. T1 wartet außerdem auf die Freigabe der Lesesperre auf y, die
T2 hält. Angenommen, T3 endet und gibt die Sperre auf x frei. Nun
kann entweder T1 oder T2 eine Schreibsperre für x gewährt werden.
Im ersten Fall tritt ein Deadlock ein, die Sperre muß T2, der jüngeren
Transaktion gewährt werden.

Sofern bei der Zuteilung einer Sperre zwischen zwei Transaktio-
nen zu entscheiden ist, muß bei beiden Verfahren die Transaktion
bevorzugt werden, auf die die andere potentiell wartet, also beim wait-
die-Verfahren die jüngere (“älter” wartet auf “jünger”) und beim wound-
wait-Verfahren die ältere.

Abschließend sei noch bemerkt, daß die Zeitstempel bei beiden Ver-
fahren – im Gegensatz zur Grundform der Zeitstempel-Verfahren –
keine Serialisierungspunkte sind.

Literatur

[RoSL78] Rosenkrantz, D.J.; Stearns, R.; Lewis, P.M.: System le-
vel concurrency control for distributed database systems; ACM
ToDS 3:2, p.178-198; 1978/06

[StLR76] Stearns, R.E.; Lewis, P.M.; Rosenkrantz, L.J.: Concurrency
control for database systems; p.19-32 in: Annual Symposium on
Foundations of Computer Science; 1976

[REC] Kelter, U.: Lehrmodul “Recovery”; 2003
[SPV] Kelter, U.: Lehrmodul “Sperrverfahren”; 2003

c©2001 Udo Kelter Stand: 02.06.2001

Index
2-Phasen-Protokoll, 14

Äquivalenz
cp-∼, 7
von Abläufen, 7

CC-Verfahren
Hilfsdaten, 5, 6
kombinierte, 14
validierendes, 3, 6, 7
Wait-Die-, 14
Wound-Wait-, 14

Deadlock, 3
Deadlockfreiheit, 3, 4, 15

Endlosblockierung, 16

Konflikt, 9
Korrektheit

von Abläufen, 6

Neustart, 4, 14, 15
zyklischer, 4, 11

optimistische CC-Verfahren, 6

Rollback, 3, 4
Rücksetzen, siehe Rollback

Scheduling, 8
Serialisierbarkeit, 3, 7
Serialisierungspunkt, 9
serieller Ablauf, 7
Sperre

Zuteilung, 16

Validation, 3
Validationstest, 3, 6, 7, 8, 10, 11

Algorithmus, 10
verzögertes Schreiben, 4

Wait-Die-Verfahren, 14, 15, 16
Wound-Wait-Verfahren, 14, 15

Zeitstempel, 8, 12
Verwaltung, 13

Zeitstempel-Verfahren, 6, 8
ZR(x), 10, 13
ZW(x), 10, 14
zyklischer Neustart, 11

18

