Zeitstempelverfahren

Udo Kelter

02.06.2001

Zusammenfassung dieses Lehrmoduls

Zeitstempelverfahren sind sog. validierende Concurrency-Control-Ver-
fahren, bei denen inkorrekte Verzahungen von Transaktionsausfithrun-
gen verhindert werden, indem abhéngig von Validationstests einzelne
Transaktionen zuriickgesetzt und neugestartet werden. Die Validati-
onstests werten die Zeitpunkte von Zugriffen zu Objekten aus. Dieses
Lehrmodul erlautert zunéchst das Validationsprinzip und seine Vor-
und Nachteile. Weiter wird die Grundform der Zeitstempelverfah-
ren vorgestellt, ferner Techniken zur Erzeugung und Verwaltung von
Zeitstempeln. Eine Vereinigung der Vorteile von Sperr- und Zeit-
stempelverfahren ist in einigen kombinierten Verfahren gelungen, die
anschliefsend vorgestellt werden.

Vorausgesetzte Lehrmodule:

obligatorisch: - Transaktionen und die Integritdt von Datenbanken
- Sperrverfahren
empfohlen: - Recovery

Stoffumfang in Vorlesungsdoppelstunden: 1.0

Zeitstempelverfahren 2

Inhaltsverzeichnis

©2001 Udo Kelter Stand: 02.06.2001
Dieser Text darf fiir nichtkommerzielle Nutzungen als Ganzes und unverédndert in elektronischer oder
gedruckter Form beliebig weitergegeben werden und in WWW-Seiten, CDs und Datenbanken aufgenom-
men werden. Jede andere Nutzung, insb. die Verdnderung und Uberfiihrung in andere Formate, bedarf
der expliziten Genehmigung. Die jeweils aktuellste Version ist iiber http://kltr.de erreichbar.

Zeitstempelverfahren 3

1 Validierende Verfahren

1.1 Verhinderung inkorrekter Verzahnungen durch
Neustart

Bei Sperrverfahren werden inkorrekte Verzahnungen dadurch verhin-
dert, dak einzelne Zugriffe von Transaktionen verzogert werden. Tech-
nisches Mittel zum Verzogern waren Sperren, auf deren Freigabe eine
Transaktion ggf. warten mufl. Infolge des Wartens kénnen Deadlocks
auftreten. Deadlocks kénnen i.a. nicht durch préaventive Mafnahmen
verhindert, sondern nur entdeckt und aufgelost werden (s. [SPV]). Fiir
diesen Zweck sind zum einen Software-Komponenten innerhalb der
Concurrency-Control-Komponente vorzusehen, ferner Datenstruktu-
ren, die eine effiziente Deadlock-Erkennung ermoglichen (Wartegraph).
Auflerdem miissen laufend vorbereitende Mafnahmen zur Deadlock-
Erkennung durchgefiihrt und im Falle eines Deadlocks gewisse Trans-
aktionen zurilickgesetzt werden.

Die Mafnahmen zur Deadlock-Behandlung sind schon bei zentralen
Datenbanken aufwendig und natiirlich unerwiinscht. Bei verteilten Da-
tenbanken ist schon die Deadlock-Erkennung dufserst aufwendig: Der
Wartezyklus kann sich iiber verschiedene Rechner erstrecken, so dal zu
seiner Erkennung systemweite (und sehr teure) Kommunikation erfor-
derlich wird. Gesucht sind also deadlockfreie Verfahren, bei denen die
Transaktionen nicht vorab deklarieren miissen, zu welchen Objekten
sie insgesamt zugreifen werden. Dies ist die Hauptmotivation fiir sog.
validierende CC-Verfahren.

Die Grundidee dieser Verfahren besteht darin, iberhaupt nicht zu
warten, sondern inkorrekte Verzahnungen durch Riicksetzen einzelner
Transaktionen zu verhindern. Diese Verfahren arbeiten nach folgendem
Prinzip:

— Alle Zugriffe werden, wenn iiberhaupt, dann sofort ausgefiihrt.

— Bei bestimmten Gelegenheiten, z.B. bei jedem Zugriff oder am Ende
jeder Transaktion, werden Validationstests durchgefiihrt: es wird
iiberpriift, ob die bisherige effektiv eingetretene Verzahnung korrekt

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 4

(also mindestens cp-serialisierbar) ist. Falls nicht, wird die Transak-
tion zurilickgesetzt und automatisch neugestartet. Dies bezeichnen
wir in diesem Kapitel kurz mit Neustart. Der letzte (und oft ein-
zige) Validationstest findet im Rahmen des Commits statt. Fiihrt
er nicht zum Neustart, ist die Transaktion insgesamt validiert.
(Ublich ist auch die Bezeichnung “zertifiziert”.)

Durch dieses Prinzip wird natiirlich die Haufigkeit von Rollback
merklich erhéht. In der Konsequenz ist es dringend geboten, Fortpflan-
zung von Rollback zu verhindern. Daher nehmen wir bei allen folgenden
Verfahren das verzogerte Schreiben (deferred update) arﬂ, wobei ver-
dnderte Objekte erst bei Commit in die Datenbank geschrieben und
vorher gepuffert werden. Aus diesem Grund gibt es keine ungesicherten
Werte in der Datenbank, alle geschriebenen Werte sind von validierten
Transaktionen geschrieben worden.

1.2 Vergleich mit Sperrverfahren

Im Vergleich zum Sperren hat das Validieren folgende Vor- und Nach-
teile:

- Die validierenden Verfahren sind deadlockfrei. Weder Erkennungsme-
chanismen (Software) noch vorbereitende Mafsnahmen zur Deadlock-
Erkennung sind erforderlich. Ebenso entfallen Kosten der Deadlock-
Auflésung.

- Die Vermehrung des Rollbacks von Transaktionen ist — unabhéngig
von der vereinfachten Realisierung des Rollbacks durch das verzo-
gerte Schreiben — ein Nachteil.

- Zur Realisierung des verzogerten Schreibens miissen lokale Kopien
der Objekte vorgesehen werden, bei der Realisierung durch Sper-
ren ist dies nicht erforderlich. Validierende Verfahren sind daher
wenig fiir Anwendungsfille geeignet, bei denen Transaktionen viele

Objekte schreiben.

'S. auch Ausfiihrungen zum verzogerten Schreiben in Abschnitt in [REC].

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 5

- Wenn eine Transaktion abgebrochen und neugestartet worden ist,
kann ihr dieses “Pech” beim néchsten Ausfiihrungsversuch erneut
widerfahren. Frithere Neustarts einer Transaktion verbessern die
Wahrscheinlichkeit nicht, dafs diese Transaktion bei ihrem néchsten
Ausfiihrungsversuch nicht noch einmal neugestartet wird. Bei den
Grundformen der validierenden Verfahren kann (zumindest theore-
tisch) ein zyklischer Neustart eintreten, d.h. eine Transaktion wird
endlos neugestartet. Betroffen sind vor allem lédngere Transaktionen,
denn die Wahrscheinlichkeit eines Neustarts steigt mit der Lange
einer Transaktion. Alle Mafinahmen zur Losung des Neustartpro-
blems beruhen in irgendeiner Weise auf Sperren, allerdings so, dafs
keine Deadlocks moglich sind. Die Verfahren sind dann allerdings
wieder in Sperren involviert, es miissen Mechanismen zur Realisati-
on der Sperren vorgesehen werden, und die Verfahren werden relativ
kompliziert.

- Bezliglich des Aufwands fiir die Hilfsdaten ist keine pauschale Aus-
sage zugunsten von Neustarts oder Sperrungen moglich. Bei vali-
dierenden Verfahren entféllt zwar die Sperrtabelle (sofern Sperren
zur Losung des Neustart-Problems nicht doch wieder eingefiihrt
werden), dafiir sind aber andere Hilfsdaten fiir die Validationstests
erforderlich, die bzgl. Speicherplatzbedarf und Handhabungsaufwand
durchaus mit der Sperrtabelle vergleichbar sein kénnen.

Eine quantitative Abwigung der Vor- und Nachteile einzelner Ver-
fahren (z.B. mit stochastischen Modellen) ist wegen der hohen Kom-
plexitit und Vielfalt der Einflukfaktoren sehr schwierig und gleichzeitig
problematisch. Das CC-Verfahren ist nur einer von mehreren wesent-
lichen Einflufsfaktoren, die die Gesamtleistung eines DBS bestimmen.
Wir beschrinken uns deshalb im folgenden auf einen qualitativen Ver-
gleich wichtiger Einzelaspekte der Verfahren; es sei noch einmal davor
gewarnt, von der Uberlegenheit eines Verfahrens in Einzelaspekten
auf eine generelle Uberlegenheit unter beliebigen Einsatzbedingungen
zu schliefsen (einige triviale Fille einmal ausgenommen). Fiir eine
Auswahl eines Verfahrens in einem konkreten Fall sind dariiber hin-
aus noch andere Aspekte wesentlich, z.B. die Komplexitat bzw. der

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 6

Realisierungsaufwand fiir die Software.

1.3 Varianten validierender Verfahren

Das Grundprinzip des Validierens lafst Raum fiir viele Varianten. Die
beiden wichtigsten Arten von validierenden CC-Verfahren sind:

- Zeitstempel-Verfahren und
- optimistische Verfahren.

Die Verfahren unterscheiden sich vor allem in folgenden Punkten:

Zeitpunkt der Validationstests: Wann werden Validationstests
durchgefiihrt?

Korrektheitsbegriff: Welche eingetretenen Verzahnungen werden als
korrekt erachtet und welche nicht?

Hilfsdaten: Welche Hilfsdaten werden fiir die Entscheidung benutzt?

Alle drei Aspekte hdngen natiirlich zusammen; wir wollen jedoch
schon vorab einige Alternativen isoliert besprechen.

Zum Zeitpunkt der Validationstests: Sinnvolle Gelegenheiten fiir
Validationstests sind neben dem Commit, das alle Schreib-Aktionen
enthélt, nur einzelne frithere Lese-Aktionen. Zeitstempel-Verfahren fiih-
ren bei jedem Zugriff einen Test durch, optimistische Verfahren nur bei
Commit.

Fiir die frithen Tests bei Leseaktionen spricht, daf inkorrekte effekti-
ve Verzahnungen frither erkannt werden kénnen. Durch das Riicksetzen
der Transaktion geht dann weniger geleistete Arbeit verloren, die Tests
sind relativ einfach, allerdings h&ufig.

Bei spéten Tests kann theoretisch das gesamte Geschehen im Verlauf
der Transaktionsausfiihrung beriicksichtigt werden, es kénnen also un-
notige Neustarts und viele Einzeltests vermieden werden. Jedoch steigt
die Komplexitat der Tests dann ganz erheblich, so daf der Testaufwand
eher grofer ist als bei frithen Tests.

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 7

Zum Korrektheitsbegriff und den Hilfsdaten: In [SPV] hatten
wir eine Verzahnung als serialisierbar definiert, wenn es zu jeder enthal-
tenen Transaktion einen Serialisierungspunkt gibt, d.h. alle Ereignisse
einer Transaktion koénnen konfliktfrei zu ihrem Serialisierungspunkt
verschoben werden. Dieser Korrektheitsbegriff ist allerdings fiir die
Verhéltnisse, die bei validierenden Verfahren unterstellt werden, aus
Aufwandsgriinden weniger geeignet.

Hierzu miissen wir zunédchst die Korrektheitsbegriffe fiir Verzahnun-
gen etwas naher betrachten. Serialisierungspunkte waren so motiviert,
daf hier scheinbar die gesamte Transaktion stattfinden kann. Wenn wir
alle Aktionen dementsprechend verschieben, erhalten wir einen seri-
ellen Ablauf. Die aufgetretene Verzahnung und dieser serielle Ablauf
sind dann dquivalent in dem Sinne, daf sie beide die gleiche Menge
von Aktionen umfassen und dafs, dann, wenn zwei Aktionen in Kon-
flikt miteinander stehen, diese beiden Aktionen in beiden Ablaufen in
der gleichen Reihenfolge auftreten, also nicht vertauscht werden. Die
vorstehende Definition der Aquivalenz zweier Abldufe wird auch cp-
Aquivalenz (conflict-preserving equivalence) genannt. Es gibt noch
andere Definitionen der Aquivalenz von Abliufen, auf die wir hier aber
nicht eingehen.

Unserer bisherige Definition von Serialisierbarkeit ist mit diesen Be-
griffen dquivalent zu der folgenden: Eine Verzahnung ist serialisierbar,
wenn es einem cp-dquivalenten seriellen Ablauf gibt.

Theoretisch kann fiir jeden Korrektheitsbegriff ein validierendes
Verfahren entwickelt werden: Die bis zum Testzeitpunkt abgelaufene
Verzahnung mufs in ihren relevanten Details bekannt sein, d.h. ent-
sprechende Daten sind laufend zu speichern; getestet wird bei jeder
Aktion oder am Ende einer Transaktion, ob die entstandene Verzah-
nung Prifix einer korrekten Verzahnung ist, wobei mit dem Riicksetzen
aller noch nicht beendeten Transaktionen gerechnet werden mufs. Fallt
der Test negativ aus, wird die Transaktion, die den Test verursachte,
zuriickgesetzt und automatisch neugestartet.

Wegen der Haufigkeit, mit der die Tests durchgefiihrt werden, ist

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 8

deren Effizienz sehr kritisckﬂ Wenn man nun entscheiden will, ob
ein gegebener Ablauf serialisierbar ist, muff man priifen, ob ein cp-
dquivalenter serieller Ablauf existiert oder nicht. Hierfiir sind keine
ausreichend effizienten Verfahren verfiighar.

Bei den praktisch brauchbaren Verfahren wird ein Trick angewandt,
durch den die Korrektheitsiiberpriifung stark vereinfacht wird. Fiir die
Serialisierbarkeit reicht es aus, wenn es irgendeinen seriellen Ablauf
gibt, der dquivalent zur vorhandenen Verzahnung ist. Die Vereinfachung
besteht darin, einen ganz bestimmten seriellen Ablauf vorzugeben. Vor-
gegeben wird natiirlich ein serieller Ablauf, der mit mdoglichst geringer
Wahrscheinlichkeit zu einem Neustart fiihrt. In etwa wird dieser serielle
Ablauf geméaf den Ankunftszeitpunkten der Transaktionen gebildet.

Scheduling. Eine Umformung einer Aufrufsequenz von Aktionen in
eine effektive Ausfithrungssequenz (s. Abschnitt [2)) findet bei validie-
renden Verfahren nicht in dem Sinne wie bei Sperrverfahren statt: Die
Aufrufsequenz wird durch das Riicksetzen selbst verdndert. Sofern kei-
ne Transaktion zurlickgesetzt wird, ist die Aufrufsequenz gleichzeitig
effektive Ausfithrungssequenz. Unter der effektiven Ausfiihrungsse-
quenz verstehen wir daher in diesem Lehrmodul die letztlich wirksame
Aufrufsequenz. Die Umformung der “urspriinglichen” Aufrufsequenz in
die effektive Ausfithrungssequenz ist nicht reproduzibel, denn die Zeit
bis zum Neustart einer Transaktion ist zuféllig.

2 Zeitstempel-Verfahren

2.1 Die Grundform

Bei der Grundform der Zeitstempel-Verfahren wird bei jedem Zugriff
ein Validationstest durchgefiihrt. Getestet wird, ob die bisherige effek-
tive Ausfiihrungssequenz cp-dquivalent zu dem seriellen Ablauf ist, der
sich aus der Ankunftszeit der Transaktionen ergibt. Fir zuriickgesetzte
Transaktionen ist der Zeitpunkt ihres Neustarts relevant.

2 Anmerkung: bei Sperrverfahren werden solche Tests iiberhaupt nicht durchge-
fiihrt, die entstehenden Verzahnungen sind automatisch serialisierbar.

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 9

Das wichtigste technische Hilfsmittel sind Zeitstempel. Jede
Transaktion T; erhélt von der CC-Komponente einen eigenen, ein-
deutigen Zeitstempel, Z(T;). Den Zeitstempel erhélt die Transaktion
bei ihrer Ankunft oder spéater, spatestens vor ihrem ersten lesenden
Zugriff. Einen Zeitstempel stellen wir uns vorerst am besten als die ak-
tuelle Uhrzeit, ggf. verbunden mit dem Datum, vor, und zwar in einer
Genauigkeit, daf keine zwei Transaktionen den gleichen Zeitstempel
und eine spétere Transaktion einen “groferen” Zeitstempel erhalten.
Wir werden “Zeitstempel” und “Zeitpunkt” als Synonyme benutzen.

Der Zeitstempel einer Transaktion ist der vorgegebene Serialisie-
rungspunkt dieser Transaktion in der entstehenden effektiven Ausfiih-
rungssequenz. Alle Ereignisse in der effektiven Ausfiihrungssequenz
miissen also konfliktfrei zu den jeweiligen Zeitstempeln der Transaktio-
nen verschoben werden kénnen. Diese Verschiebung ist nur dann nicht
moglich, wenn folgende typische Situation vorliegt:

In diesem und den folgenden Beispielen benutzen wir eine graphische
Notation fiir Ablaufe, in der das Symbol "Z’ den Zeitstempel darstellt,
r(x) und w(x) das Lesen bzw. Schreiben eines Objekts x.

Im obigen Beispiel seien e; und e; zwei Ereignisse, die in Konflikt
stehen. e; kann nicht konfliktfrei zum Zeitstempel von T; verschoben
werden, denn e; miifte hierfiir vor den Zeitstempel von T; verschoben
werden.

Zwischen e; und e; konnen drei verschiedene Arten von Konflikten
bzgl. eines Objekts x bestehen:

Lese-Schreib-Konflikt: T; Z--meeeen r(x)
T, Z--w(x)
Schreib-Lese-Konflikt: T; Z-—----—-- w(x)
T; Z--r(x)
Schreib-Schreib-Konflikt: T; Z-------- w(x)
T; Z--w(x)

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 10

Da wir verzogertes Schreiben annehmen, kann nach einem Schreib-
ereignis einer Transaktion kein weiteres Ereignis von dieser Transaktion
mehr stattfinden. Bei Lese-Ereignissen kénnen jedoch noch weitere
Ereignisse geplant sein, was durch “...” dargestellt ist.

Bei jedem Zugriff e; einer Transaktion T; mufs folgender Validati-
onstest durchgefiihrt werden: T; ist abzubrechen, wenn es eine jingere
Transaktion T; (d.h. der Zeitstempel von T; ist groferer als der von
T;) gibt und wenn (a) T; schon vor e; einen Zugriff e; durchgefiihrt
hat und (b) e; in Konflikt mit e; steht. Andernfalls kann der Zugriff
ausgefiihrt werden.

Zur Vereinfachung der Suche nach einem derartigen T, sehen wir
bei jedem Objekt zwei Zeitstempel vor:

ZR(x): Zeitstempel der jiingsten Transaktion, die x gelesen hat (m.a.W.
gibt es ein Leseereignis, das nicht vor diesen Zeitpunkt verschoben
werden kann).

ZW(x): Zeitstempel der jlingsten Transaktion, die x geschrieben hat

(m.a.W. gibt es ein Schreibereignis, das nicht vor diesen Zeitpunkt
verschoben werden kann).

Bei jedem erfolgreichen Zugriff miissen die Hilfsvariablen ZR und
ZW auf den neuen Stand gebracht werden. Diese Aktualisierung fiih-
ren wir zusammen mit dem Validationstest aus. Insgesamt erhalten wir
folgende Testalgorithmen:

- T, will x lesen (Test auf Lese-Schreib-Konflikt; vor Commit):

IF Z(T;) < ZW(x)
THEN NEUSTART
ELSE ZR(x) := max (ZR(x), Z(T;)) (* und Zugriff x*)

- T, will x schreiben (Test auf Schreib-Lese- oder Schreib-Schreib-
Konflikt; nur wihrend der Commit-Verarbeitung):

IF Z(T;) < ZR(x) (* Schreib-Lese-Konflikt *)
OR Z(T;) < ZW(x) (* Schreib-Schreib-Konflikt *)

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 11

THEN NEUSTART
ELSE ZW(x) := Z(T;) (* und Zugriff *)

Die Zeitstempel an den Objekten ermdoglichen einen sehr effizien-
ten Validationstest, der bei dem urspriinglichen Korrektheitsbegriff
Serialisierbarkeit nicht moglich wére.

Das obige Kommando NEUSTART ist so zu interpretieren, daf T}
zuriickgesetzt und anschliefsend automatisch neugestartet wird. Dabei
erhalt T; einen neuen Zeitstempel.

Wir nehmen hier an, daf alle Validationstests automatisch inner-
halb der Aktionen durchgefiihrt werden und nicht etwa von Hand durch
den Programmierer. Alle Validationstests miissen unter wechselseitigem
Ausschluf auf den betroffenen Daten durchgefiihrt werden.

2.2 Zyklischer Neustart

Eine Transaktion, die zuriickgesetzt und mit neuem Zeitstempel neu-
gestartet wurde, fangt vollig gleichberechtigt mit allen anderen noch
vorhandenen Transaktionen von vorne an. Sie kann daher wieder Opfer
eines Validationstests werden. In der Grundform des Zeitstempel-
Verfahrens gibt es keine Moglichkeit, die Zahl der Neustarts zu begren-
zen. Im schlimmsten Fall wird eine Transaktion immer wieder wegen
neu hinzukommender Transaktionen abgebrochenlﬂ Vor allem lange
Transaktionen, die viele Lesezugriffe durchfithren, kénnen leicht das
Opfer von kurzen schreibenden Transaktionen werden.

Wenn man die Wahrscheinlichkeit eines einzelnen Neustarts einer
Transaktion als fest annimmt, dann werden haufige Neustarts zwar
immer unwahrscheinlicher. Bei langen Transaktionen ist jedoch die
Wahrscheinlichkeit eines einzelnen Neustarts relativ hoch. In jedem
Fall muff mit unvertretbaren Ausreiffern bei der Zahl der Neustarts
gerechnet werden.

Unter gewissen Umstédnden konnen zwei Transaktionen immer wie-
der gegenseitig ihren Neustart verursachen. Beispiel:

3Ein dhnliches Problem besteht bei der Deadlock-Auflésung in Sperrverfahren.

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 12

Tl Z-v(x)--—--w(y)N

T2 Z-r(y)------- w(x)N

T1, Z-r(x)------- w(y)N

T2 Z-r(y)------- w(x)N

Tl, Z-r(x)--...

In diesem Beispiel wurde ein Zugriff, dessen Validationstest negativ
ausging und zu einem Neustart fiithrte, durch “N” dargestellt. Die neu
gestarteten Transaktionen erhielten den Index 1, 2 usw. Das Beispiel
&t sich endlos fortfithren, hier liegt ein zyklischer Neustart vor, bei
dem nicht stdndig neue Transaktionen hinzukommen miissen.

Wiederholter oder zyklischer Neustart sind ein Problem aller va-
lidierenden Verfahren. Bei Sperrverfahren existierte dieses Problem
praktisch nicht. Daher wurden Sperrverfahren und validierende Ver-
fahren kombiniert, um sowohl Deadlock-Freiheit wie Begrenzung der
Neustarts zu erreichen. Einige Ansétze werden wir spiter behandeln.

2.3 Zeitstempel

Zeitstempel konnen einer Transaktion irgendwann zwischen ihrem Start
durch ein Benutzerprogramm und ihrer ersten Aktion zugewiesen wer-
den. Fiir unsere Betrachtungen ist die Zeit vor der Zuteilung des
Zeitstempels irrelevant, d.h. fiir uns beginnt jede Transaktion mit der
Zeitstempelzuteilung.

Zeitstempel waren oben zunéchst eingefiihrt worden als Angabe
einer Uhrzeit mit ausreichender Genauigkeit. Fiir Zeitstempel sind
folgende Eigenschaften wesentlich:

1. Zwei Transaktionen haben nie den gleichen Zeitstempel.
2. Nichtiiberlappende Transaktionen erhalten Zeitstempel in aufstei-

gender Reihenfolge.
3. Nachdem eine Transaktion ihren Zeitstempel erhalten hat, erhal-

ten anschliefend hochstens endlich viele andere Transaktionen einen
kleineren (“alteren”) Zeitstempel.

Die dritte Eigenschaft ist bei der Methode “Uhrzeit” in einer zentra-
len Datenbank trivialerweise erfiillt: Es gibt iiberhaupt keine Transakti-

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 13

on, die zukiinftig einen kleineren Zeitstempel erhélt. Die Abschwéchung
auf “endlich viele” ist wichtig fiir mehrere Prozessoren mit eigener Uhr,
besonders also fiir verteilte Datenbanken, fiir die Zeitstempel-Verfahren
urspriinglich entwickelt wurden und in denen u.U. nicht alle lokalen
Uhren ausreichend synchronisiert werden kénnen.

In zentralen Datenbanken bietet sich eine andere Losung als die
Uhrzeit an: Transaktionsnummern. Hierzu ist ein zentraler Transak-
tionszéhler zu installieren, der bei jeder neuen Transaktion um eins
erhoht wird. Transaktionsnummern haben gegeniiber Uhrzeitangaben
den Vorteil, daft zu ihrer Speicherung weniger Platz gebraucht wird.

2.4 Verwaltung der Zeitstempel

Gleichgiiltig, ob Uhrzeiten oder Transaktionsnummern als Zeitstempel
verwandt werden, ist es nicht sinnvoll, bei jedem Objekt zwei Hilfsva-
riablen passender Grofe zur Speicherung der Zeitstempel ZR und ZW
fest einzurichten: Der Platzbedarf wéire sehr hoch, wahrend andererseits
nur ein Bruchteil dieser Zeitstempel wirklich benttigt wird. Bendtigt
werden nur noch solche Zeitstempel, die grofer sind als der Zeitstempel
der derzeit altesten Transaktion, denn nur solche Zeitstempel konnen
noch zum Riicksetzen einer Transaktion fiihren.

Betrachten wir zunéchst die Lese-Zeitstempel getrennt. Die Losung
besteht in einer separaten Tabelle, die Eintrage der Form (x, ZR(x))
enthalt, allerdings nur fiir diejenigen Objekte x, deren ZR -Zeitstempel
noch benotigt wird. Nicht mehr benétigte Eintriage der Tabelle wer-
den jeweils geloscht. Zu der Tabelle gehort eine weitere Variable Ry,
deren Wert kleiner als alle noch vorhandenen Zeitstempel in der Ta-
belle und grofer als alle schon geloschten Zeitstempel ist. Abfragen
bzw. Anderungen von ZR(x) werden mit Hilfe der Tabelle wie folgt
durchgefiihrt:

- Abfrage von ZR(x) : Die Tabelle wird nach einem Eintrag (x,z)
durchsucht. Wird ein solcher Eintrag gefunden, so wird z zuriickge-
geben, andernfalls Ryn.

- Anderung von ZR(x) : Die Tabelle wird nach einem Eintrag (x,z)

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 14

durchsucht. Wird er gefunden, so wird z durch den neuen Wert
ersetzt, andernfalls wird ein neuer Eintrag eingefiigt.

Bei bestimmten Gelegenheiten, z.B. bei Uberlauf der Tabelle, wird
ein neuer Wert flir R,,,;,, festgelegt. Dieser Wert muf auf jeden Fall klei-
ner als der kleinste Zeitstempel aller noch aktiven Transaktionen sein.
In der Tabelle werden dann alle Eintrége (x,z) mit z < Ry, geloscht.

Fiir die ZW -Zeitstempel muf eine weitere Tabelle mit einer zugeho-
rigen Variablen W, eingerichtet werden. Beide Tabellen kénnen auch
zusammengelegt werden. Diese Zeitstempel-Tabellen sind in einigen
Details der Sperrtabelle sehr &hnlich.

3 Kombinierte Sperr- und Zeitstempel-Verfah-
ren

Einige Verfahren benutzen sowohl Sperren wie auch Zeitstempel-
gesteuertes Rollback mit Neustart. Man kann sie als Sperrverfahren
auffassen, in denen Zeitstempel-gesteuertes Riicksetzen zur Verhinde-
rung von Deadlocks benutzt wird.

In [StLR76] und [RoSLT78| wurden Verfahren vorgeschlagen, die das
Deadlock- bzw. Neustart-Problem 16sen, indem <eren Transaktionen
hohere Prioritdt eingerdumt wird als jiingeren. Zunéchst miissen Trans-
aktionen das 2-Phasen-Protokoll befolgen. Jede Transaktion erhalt bei
ihrer Ankunft im System eine Zeitmarke. Sie behélt diese Zeitmar-
ke auch im Falle eines Neustarts (im Gegensatz zur Grundform der
Zeitstempelverfahren)!

Die von den Zeitstempelverfahren her bekannten Lese- und Schreib-
Zeitstempel an Objekten (ZW(x) und ZR(x)) werden nicht mehr
direkt in dieser Form benutzt, jedoch indirekt durch Zeitstempel von
Transaktionen, die in der Sperrtabelle verwaltet werden miissen.

Abweichend vom 2-Phasen-Protokoll gelten in dem Falle, dafs Ty
eine Sperre beantragt, die nicht vertraglich ist mit einer schon vorhan-
denen Sperre auf diesem Objekt, welche von Ty gehalten wird, folgende
Regeln:

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 15

wait-die-Verfahren:

- Wenn T élter als T ist, dann wartet T auf die Freigabe der
vorhandenen Sperre (“wait”).

- Wenn T, jiinger als Ty ist, dann wird T neu gestartet (“die”).

wound-wait-Verfahren:

- Wenn T, <er als Ty ist, dann wird T9 neu gestartet; To wird
sozusagen von T tédlich verwundet (“wound’).

- Wenn Ty jiinger als Ts ist, dann wartet Ty auf die Freigabe
der vorhandenen Sperre (“wait’).

Das erste Stichwort in wait-die und wound-wait deutet an, was pas-
siert, wenn eine altere Transaktion auf eine jiingere warten soll, das
zweite Stichwort den anderen Fall.

Deadlockfreiheit. Der Hauptunterschied zwischen beiden Verfah-
ren ist die zuldssige Wartebeziehung zwischen jiingeren und <eren
Transaktionen:

- Beim wait-die-Verfahren wartet immer eine éltere Transaktion auf
eine jiingere, nie umgekehrt.

- Beim wound-wait-Verfahren wartet immer eine jlingere Transaktion
auf eine dltere, nie umgekehrt.

In beiden Fallen geben die Zeitstempel der Transaktionen eine linea-
re Ordnung vor (aufsteigende oder fallende Reihenfolge der Zeitstempel),
in der sich die Wartebeziehungen aller Transaktionen bewegen kénnen.
Ein Wartezyklus ist somit unméglich, die Verfahren sind deadlockfrei.

Neustarts. Gemeinsam ist beiden Verfahren, dafl immer die jingere
Transaktion zuriickgesetzt wird, wenn eine unzuldssige Wartebezie-
hung droht, nie die <ere. Zyklische Neustarts sind damit ebenfalls
unmoglich. Wesentlich hierbei ist, daff — im Gegensatz zur Grundform
der Zeitstempel-Verfahren — eine Transaktion beim Neustart ihren ur-
spriinglichen Zeitstempel behélt. Sie kann also hochstens durch die

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 16

endlich vielen dlteren Transaktionen zuriickgesetzt werden. Diese wie-
derum werden in endlicher Zeit beendet, da kein Deadlock eintreten
kann. (Auf eine spezielle Moglichkeit zur Endlosblockierung und ihre
Verhinderung gehen wir anschlieffend ein.)

Beim wait-die-Verfahren ist die jiingere Transaktion die aktive In-
stanz, die einen Neustart auslost, ndmlich ihren eigenen. (Beim wound-
wait-Verfahren ist dies die éltere Transaktion.) Hieraus resultiert ein
Vorteil des wait-die-Verfahrens: Sobald eine Transaktion keine Sper-
ren mehr anfordert, also alle bendtigten Objekte besitzt, wird sie nicht
mehr neugestartet. Beim wound-wait-Verfahren kann eine Transaktion
dagegen jederzeit zuriickgesetzt werden. Aus diesem Grund diirfte auch
die Haufigkeit von Neustarts beim wound-wait-Verfahren hoher sein.

Beim wait-die-Verfahren kann eine Transaktion, die zuriickgesetzt
wurde, wenn sie rasch neugestartet wird, in den gleichen Konflikt wie
vorher mit einer alteren Transaktion kommen, die nach wie vor die
gleichen Sperren hélt. Besonders bei stark frequentierten, exklusiv zu
sperrenden Objekten droht, daf sehr viele Transaktionen immer wieder
wegen dieser Objekte scheitern. Hieraus leitet sich die Empfehlung ab,
nicht zu schnell neu zu starten. Beim wound-wait-Verfahren besteht
dieses Problem nicht.

Sperrenzuteilung. Ein weiteres Problem beim wait-die-Verfahren
sind Endlosblockierungenﬂ So kann eine édltere Transaktion, die ein
Objekt schreibsperren mochte und auf die Freigabe von vorhandenen
Lesesperren wartet, von neu gewdhrten Lesesperren fiir dieses Ob-
jekt endlos blockiert werden. Fiir die Aspekte, die bei der Wahl einer
Sperrenzuteilungsstrategie zu beachten sind, sei auf [SPV]| verwiesen.
Bei beiden Verfahren mufs in dem Fall, dafs mehrere Transaktionen
auf Freigabe der gleichen Sperre warten, die “Warterichtung” bertick-
sichtigt werden, sonst konnen Deadlocks auftreten. Hierzu betrachten
wir als Beispiel folgende Wartesituation nach dem Préfix eines Ablaufs
beim wait-die-Verfahren (XLOCK(..) fordert Schreibsperren fiir die
angegebenen Objekte an, . ..steht fiir eine anschliefende Wartezeit):

tvgl. Abschnittin [SPV].

(©2001 Udo Kelter Stand: 02.06.2001

Zeitstempelverfahren 17

T1 Z-mmmmmmm XLOCK(X,¥) o v evevenen
T2 Z----- r(y)------- XLOCK(x) . ..
T3 Z--1r(X)-==mmmooo - w(z)

Ty und Ty warten auf die Freigabe der Lesesperre auf x, die Tj
halt. Ty wartet aulerdem auf die Freigabe der Lesesperre auf y, die
Ty hélt. Angenommen, T3 endet und gibt die Sperre auf x frei. Nun
kann entweder T oder Ty eine Schreibsperre fiir x gewéhrt werden.
Im ersten Fall tritt ein Deadlock ein, die Sperre muft Ts, der jlingeren
Transaktion gewahrt werden.

Sofern bei der Zuteilung einer Sperre zwischen zwei Transaktio-
nen zu entscheiden ist, mufs bei beiden Verfahren die Transaktion
bevorzugt werden, auf die die andere potentiell wartet, also beim wait-
die-Verfahren die jlingere (“Alter” wartet auf “jiinger”) und beim wound-
wait-Verfahren die <ere.

Abschliefsend sei noch bemerkt, daf die Zeitstempel bei beiden Ver-
fahren — im Gegensatz zur Grundform der Zeitstempel-Verfahren —
keine Serialisierungspunkte sind.

Literatur

[RoSL78] Rosenkrantz, D.J.; Stearns, R.; Lewis, P.M.: System le-
vel concurrency control for distributed database systems; ACM
ToDS 3:2, p.178-198; 1978 /06

[StLR76| Stearns, R.E.; Lewis, P.M.; Rosenkrantz, L.J.: Concurrency
control for database systems; p.19-32 in: Annual Symposium on
Foundations of Computer Science; 1976

[REC| Kelter, U.: Lehrmodul “Recovery”; 2003
[SPV] Kelter, U.: Lehrmodul “Sperrverfahren”; 2003

(©2001 Udo Kelter Stand: 02.06.2001

Index

2-Phasen-Protokoll, 14 Algorithmus, 10
. verzogertes Schreiben, 4
Aquivalenz
cp-~, 7 Wait-Die-Verfahren, 14, 15, 16
von Ablaufen, 7 Wound-Wait-Verfahren, 14, 15
CC-Verfahren Zeitstempel, 8, 12
Hilfsdaten, 5, 6 Verwaltung, 13
kombinierte, 14 Zeitstempel-Verfahren, 6, 8
validierendes, 3, 6, 7 ZR(x), 10, 13
Wait-Die-, 14 ZW(x), 10, 14
Wound-Wait-, 14 zyklischer Neustart, 11
Deadlock, 3

Deadlockfreiheit, 3, 4, 15
Endlosblockierung, 16

Konflikt, 9
Korrektheit
von Ablédufen, 6

Neustart, 4, 14, 15
zyklischer, 4, 11

optimistische CC-Verfahren, 6

Rollback, 3, 4
Riicksetzen, siehe Rollback

Scheduling, 8
Serialisierbarkeit, 3, 7
Serialisierungspunkt, 9
serieller Ablauf, 7
Sperre

Zuteilung, 16

Validation, 3
Validationstest, 3, 6, 7, 8, 10, 11

18

