
An Architectural Template for Parallel Loops and Sections

Markus Frank
markus.frank@iste.uni-stuttgart.de

University of Stuttgart
Universitätsstraße 38

70569 Stuttgart

Alireza Hakamian
alireza.hakamian@iste.uni-stuttgart.de

University of Stuttgart
Universitätsstraße 38

70569 Stuttgart

Abstract

The Palladio Component Model uses UML-like dia-
grams to specify architectural software designs, which
are used for early design-time analyses of software per-
formance metrics. As a current drawback of the PCM,
it does not support the specification of massive par-
allel software behaviour like OpenMP parallel loops.
For Software Performance Engineers this results in
complex modelling workarounds, or it is not possible
to model the software’s behaviour at all, which results
in inaccurate analyses and semantic discrepancies.

In this paper, we present a light-weight PCM meta-
model extension, allowing SPEs to easily annotate
parallel sections (similar to OpenMP) in their software
specifications. This significantly reduces the mod-
elling effort through automation.

1 Introduction

Software Performance Engineers evaluate quality at-
tributes (like response time) of software systems based
on architectural models during early design-time.
They use model-based approaches to simulate the
software’s behavior and resource consumption. One
of the sophisticated approaches is the PCM approach
[1] 1. It uses UML-like diagrams to model software,
hardware, and user behavior.

However, the PCM modeling language is not well
suited for massive parallel software behavior known
from, i.e., OpenMP parallel loops [2]. So, in order to
reflect parallel loops in the software models SPEs have
to manually model each thread—even though they are
identical or similar—by hand. This does not only re-
quire lot of effort but is also a very error-prone process.

In this paper, we introduce a new Architectural
Template for parallel loops, which allows software ar-
chitects to apply reusable parallel patterns to their
Palladio models [3]. With the parallel loop architec-
tural template, SPEs can easily specify parallel loops
and sections in their software models. Further, we
enriched the new Architectural Template with addi-
tional properties to specify the resource demand aris-
ing from thread and synchronization overhead.

1Palladio Component Model: www.palladio-simulator.

com

In the course of the paper, we describe parallel
loops and sections (see. Sec. 2), introduce the parallel
loop architectural template (see Sec. 3), and discuss
limitations and future work (see Sec. 4).

2 Parallel Loops and Sections

In this section, we shortly introduce our running
example—a matrix multiplication—and show how one
can parallelise it with OpenMP. In the following, we
show how the Service Effect Specification of the same
example looks like. We use matrix multiplication as
running example since it is easily parallelisable as
it has no dependencies between worker threads and
workload is equally distributed. For the same reason
we choose OpenMP2 as paradigm for parallelisation.

Example: Matrix Multiplication Listing 1
shows an exemplary implementation of a matrix mul-
tiplication. Three for loops are used (line 2-4.) to
iterate over the cells of the input matrices A and B.
The Results are stored in an additional matrix (line
5).

1 // omp parallel for threadNum(2)

2 for (int i = 0; i < matrixA.getWidth(); i++) {

3 for (int k = 0; k < matrixB.getHeight(); k++) {

4 for (int j = 0; j < matrixA.getHeight(); j++) {

5 result[i][j] += matrixA[i][k] * matrixB[k][j];

6 } } }

Listing 1: Sample implementation of a matrix
multiplication in Java with OpenMP annotations

Implementing with OpenMP To parallelise the
given function, we used omp4j3, which is an OpenMP
for Java precompiler. omp4j—like any other openMP
framework—parallelises loops by merely annotating
them (compare line 1 in Listing. 1). A programmer
has to annotate the loop (or section) to parallelise.
Parallel section work similar as parallel loops, but
with the difference, that OpenMP does not execute
each loop concurrent but each statement in the par-
allel section. In line 1 we further used one optional
parameter threadNum, which defines the number of

2http://www.openmp.org
3http://omp4j.org

www.palladio-simulator.com
www.palladio-simulator.com
http://www.openmp.org
http://omp4j.org


<< Fork >>
ForkedBehaviours

 << Synchronisation Point >>

ResourceDemands
0.00000069 * matrixASizeM.VALUE * 

matrixASizeN.VALUE * 
matrixBSizeJ.VALUE / 2 <CPU>

<< InternalAction >>
calculationA

ResourceDemands
0.00000069 * matrixASizeM.VALUE * 

matrixASizeN.VALUE * 
matrixBSizeJ.VALUE / 2 <CPU>

<< InternalAction >>
calculationB

Figure 1: SEFF for a two matrix multiplication with
two threads

worker threads we want to use. OpenMP now splits
the work among the specified amount of threads.

Modeling in Palladio While implementing the
matrix multiplication is straightforward, modeling it
is more challenging. To model the software behav-
ior in Palladio, SPEs have to know the characteristics
of the software. I.e., uncontended resource demands
(e.g., the CPU time) for a specific task like a sin-
gle multiplication—called action in Palladio—and the
number of action invocation. The SPE can create a
software model, with this information available.

In Figure 1 you can see a sample SEFF model of
the matrix multiplication for two worker threads. The
SEFF consists of two actions, which represents the
workload for each worker thread. We abstracted the
workload of each action by multiplying the number of
loop iterations and the resource demand for a single
multiplication (0.00000069). This has the advantage
that the actual algorithm is abstracted and the per-
formance of the analysis improves. We placed each ac-
tion within a ForkedBehaviour, which indicates that
both actions are executed concurrently.

Drawbacks The modeling of such a parallel behav-
ior in Palladio currently suffers from two drawbacks,
which we address in this paper:

I. Error-prone and time-consuming: The SPE
has to model each worker thread individually, even
though each thread is performing the same or similar
actions. For a small number of threads (i.e., 2) this
might be feasible, however for larger numbers (i.e.,
128) it is not feasible, error-prone, and requires a lot
of manual modeling.

II. Synchronization overhead missing:
Spawning new threads and synchronizing them
consumes resources as well. In our example model
this overhead is not considered.

Figure 2: AT Profile for parallel loop extension

3 Parallel Loop Architectural Tem-
plate

In this section we introduce a new Architectural
Template that addresses the two mentioned draw-
backs. Architectural Templates allow software ar-
chitects to apply reusable patterns to their Palladio
models [3]. Hence, there is no need to do a heavy
weight extension of the PCM meta-model. Instead,
the AT approach uses EMF Profiles to extend the
meta-model without changing the core elements of the
meta-model. The idea is that loop-actions can get a
parallel loop AT annotation. This loop is then auto-
matically transformed into a forked behavior.

AT Creation First step to use the AT method it
to create a new AT. For this we follow the three steps
as described in [3].

I. Create a Profile: First, we need to create a new
profile. This is done in a similar way as defining
UML2 Profiles. For this, we create a new stereotype
class called ParallelLoopAction which extends the
target class LoopAction from the PCM. In the addi-
tion, we model two properties: threadPoolSize and
overhead (see Fig. 2). The thread pool size defines
the number of worker threads available in the system
(see Lst. 1, line 1). The overhead defines an addi-
tional CPU resource demand for each worker thread,
i.e., for spawning or synchronizing a thread.

II. Define Completion: In the second step, we
need to define a model-to-model transformation. This
is done by a QVT-operational4 definition. Before Pal-
ladio performs an analysis, the AT method searches
for ATs in the model and executes the corresponding
QVT-o rules for each AT found.

III. Register AT: In the last step, we have to add
the newly created AT to the AT catalogue to make
it available to the software architect via the Palladio
tooling.

Description of the Parallel Loop Figure 3 rep-
resents the final result and includes all our extensions.
In the figure, you can see a loop action, which has an

4https://www.omg.org/spec/OCL/2.4/

2



<< loopAction >>
@Parallel

rep = matrixASizeM.VALUE * matrixASizeN.VALUE * 
matrixBSizeJ.VALUE

threadPooleSize = threadNumber
overhead = 50 * threadPoolSize <CPU>

ResourceDemands
0.00000069 <CPU>

<< InternalAction >>
calculation

Figure 3: SEFF: Annotated parallel loop action

<< Fork >>
ForkedBehaviours

 << Synchronisation Point >>

ResourceDemands
0.00000069 * matrixASizeM.VALUE * 

matrixASizeN.VALUE * 
matrixBSizeJ.VALUE / 2 <CPU>

<< InternalAction >>
calculationA

ResourceDemands
0.00000069 * matrixASizeM.VALUE * 

matrixASizeN.VALUE * 
matrixBSizeJ.VALUE / 2 <CPU>

<< InternalAction >>
calculationB

ResourceDemands
100 <CPU>

<< InternalAction >>
overhead

ResourceDemands
100 <CPU>

<< InternalAction >>
overhead

Figure 4: SEFF for a two threaded parallel loop with
synchronization overhead

applied stereotype @Parallel. This indicates that the
Parallel Loop AT is applied and models the open MP
loop annotation. Further, the AT contains the two
additional properties (thread pool size and overhead).
This value can be given as constant, stochastic expres-
sions, or function. In Figure 3 we used the number of
threads for the threadPoolSize and as an exemplary
overhead function: 50 * threadPoolSize.

Mapping and Completion Afterwards, the trans-
formation replaces the parallel loop via an in-place
model-to-model transformation to a fork behavior.
Figure 4 shows the result of the transformation of the
parallel loop from Figure 3. The total resource de-
mand is calculated from the number of loop iterations
and split equally between the two worker threads. At
the end of each thread, an additional action is added,
which models the synchronization overhead.

4 Limitations and Future Work

The proposed AT provides a mechanism for SPEs
to express OpenMP parallel constructs in a SEFF
by leveraging profiles and stereotypes. Even though
the approach allows flexible modeling of the synchro-
nization overhead, estimating the overhead function
is hard (even for experts). Therefore, our future goal
is to provide a set of characteristic curves for differ-
ent use cases, paradigms, and algorithms, enabling the
SPE to pick one of the curves for a particular scenario.

Furthermore, our current approach focuses only on
one aspect of parallel programs. Other relevant as-
pects like message passing, locks, shared variables,
and resources are abstracted by the overhead function
or not considered yet.

Another challenge we see in particular for parallel
software running on multicore systems is that per-
formance prediction models currently only support a
single parameter, which is CPU speed. However, this
might not be sufficient anymore for multicore systems
and additional properties like memory hierarchies,
cache sizes, and memory bandwidth are needed in ad-
dition. This means we have to adapt our performance
prediction model to support the new properties. This
goes hand in hand with further integration of new
parallel paradigms into our modeling languages. E.g.,
OpenMP parallel loops is only one paradigm to think
of, another one is the Actor paradigms—a message
passing-based programming model.

5 Conclusion

In this paper, we introduced a new Architectural
Template for parallel loops and sections known from
OpenMP. This AT allows SPEs to model massive par-
allelism in their software models easily. In so doing,
they save a lot of manual modeling effort due to au-
tomation. Further, we have included a concept to
also take spawn and synchronization overhead into ac-
count. In the future, we plan to provide a repository
with characteristic curves representing the overhead
and speed-up curves for different use cases, paradigms,
and algorithms.

References

[1] S. Becker, H. Koziolek, and R. Reussner. “The
Palladio component model for model-driven per-
formance prediction”. In: Journal of Systems and
Software 82.1 (2009), pp. 3–22.

[2] M. Frank and M. Hilbrich. “Performance Pre-
diction for Multicore Environments—An Experi-
ment Report”. In: Proceedings of the Symposium
on Software Performance 2016, 7-9 November
2016, Kiel, Germany. 2016.

[3] S. Lehrig. “Efficiently Conducting Quality-of-
Service Analyses by Templating Architectural
Knowledge”. Accepted for publication. PhD the-
sis. University of Stuttgart, Germany, Nov. 2017.

3


	Introduction
	Parallel Loops and Sections
	Parallel Loop Architectural Template
	Limitations and Future Work
	Conclusion

