Performance analysis of a virtualized vehicle-compute platform:

An experience report

Christopher Hesse, Tim Welsch

{christopher.hesse, tim.welsch}@aptiv.com

Aptiv, Hildesheim, Germany

Abstract

Compute platforms for modern automotive systems
tend to combine embedded properties, increasingly
complex architectures and even virtualization. How-
ever, analyzing the performance of such systems, e.g.,
to identify performance bottlenecks, is not trivial.

In this paper, we report our experience in analyzing
the performance of a camera-vision application on a
virtualized vehicle-compute platform. We discuss is-
sues that we faced during the analysis, impacts of the
virtualization on the performance as well as causes.

1 Introduction

In upcoming vehicle architectures, a plethora of par-
allel running, but physically separated electronic con-
trol units tend to be replaced by centralized, complex
compute platforms [2]. For various reasons, e.g., to
separate safety domains [2], virtualization is desirable
on such platforms. Although modern processors pro-
vide virtualization support, running and separating
multiple virtual domains on the same processor causes
overhead. This overhead may impact the applications,
in particular if (soft-)realtime processing is required.
Aptiv developed the Connected Server Platform
(CSP) as a technology demonstrator for the next gen-
eration architecture on head units for cockpit comput-
ing. The aim is to serve all cockpit and cabin function-
ality on a single platform while separating functional-
ity in (virtualized) domains. One specific use case of
CSP is to run computer vision algorithms such as face
recognition, eye gaze detection, background segmen-
tation within multiple cockpit, cabin monitoring and
infotainment services. As a requirement, CSP shall
render 30 frames per second (fps). However, the vir-
tualized CSP lead to unexpected performance issues,
e.g., a stuttering or flickering display as well as a gen-
eral impression of a slower system. No issues were
noticed when running CSP without virtualization.
While it is not surprising that virtualization may
cause a noticeable overhead, a more detailed analysis
is needed to detect the root causes. In this paper, we
report on a measurement-based performance analysis
of the CSP. Based on a cause tree of potential rea-
sons, we define a set of metrics that can be attributed
to each reason and apply systematic experimentation

Holger Eichelberger
eichelberger@sse.uni-hildesheim.de
University of Hildesheim, Germany

to analyze the causes. We identify the overhead of
virtualized CPU- and GPU-based rendering, issues in
the virtualization setup as well as problematic system
services. Related work usually focuses on comparison
of virtualization approaches [1] or on GPU virtual-
ization [3] rather than their combination (in an em-
bedded system). We believe that our results can help
developing and improving similar systems.

Structure of this paper: In Section 2, we introduce
our approach and the metrics. We detail our setup for
the experiments in Section 3 and discuss the obtained
results in Section 4. Finally, in Section 5, we conclude
and provide an outlook on future work.

2 Approach

In this section, we describe our approach! for a per-
formance analysis of the CSP. We start with a system
description, discuss then potential causes for perfor-
mance issues and runtime metrics to trace the issues.
On the hardware side, CSP is based on standard
consumer components, in particular three AsRock
7270 mainboards, each equipped with an Intel® Core
i5-7600 (Kaby Lake) processor, integrated GPU 630,
16 GB memory, and a Samsung SSD SM961-NVMe
128 GBytes. CSP utilizes multiple cameras as input,
which are connected through USB ports. On the soft-
ware side, we use as operating system Yocto Linux?,
a popular Linux variant for embedded systems. For
virtualization, we use Xen3, a hardware-based (type
1) hypervisor with XenGT* supporting for the Intel®
GPU. In the virtualized setup, a privileged domain
hosts the hardware drivers, while guest domains run
the applications and indirectly access the hardware
such as the GPU through the privileged domain.
Inspired by [4], we build a cause tree for potential
performance issues based on the involved components.
Figure 1 depicts a simplified version of the cause tree.
The CSP can be set up directly on the hardware/
operating system (bare metal) or may be subject to
virtualization. In the virtualized setup, the num-
ber of domains and their assignment to (virtual) CPU

IMore details, e.g., the underlying BSc thesis will be made
available before publication.

2https:/ www.yoctoproject.org

Shttps://www.xenproject.org

4https://github.com/intel/XenGT-Preview-xen

Kaby Lake
services
915

operating system

bare metal
(no virt.)

virtualization

video capture
application

GPU support (XenGT)

Figure 1: Cause tree for performance issues in CSP.

cores may affect the performance of the CSP. Here,
the idea is to compare results for the same metrics for
bare metal and (different) virtualized setups.

The fundamental parts of CSP are the operating
system, the video capture through the cameras as well
as the application executing the computer vision algo-
rithms. The Yocto operation system is mostly used
without modifications. Specific drivers for the Kaby
Lake processor as well as its GPU (i915) are required
as otherwise the CSP cannot boot. Operating system
services and their configuration may be a reason for
performance problems [4]. The video capture links
the cameras and the CSP application by a stream of
video frames. In the virtualized setup, passing the
video stream from the USB driver through the privi-
leged domain to the guest domains may cause perfor-
mance issues. Also the configuration of the CSP ap-
plication may impact the performance, e.g., if CPU
rendering is used instead of the GPU. In virtualiza-
tion, GPU rendering is done by the privileged domain,
i.e., inefficient communication among the guest and
the privileged domain may affect the performance.
Due to space limitations, the SSD is out of scope here.

To measure the performance impact for the poten-
tial causes, we apply the metrics summarized in Ta-
ble 1 including system (load and memory use), video,
GPU and graphic benchmark-specific metrics.

3 Experimental Setup

Now, we detail the experiment setup, i.e., we discuss
the installation(s) of CSP for measurement, the mea-
surement tools, the measurement procedure and the
analysis of the gathered data.

We use the original hardware of the CSP system as
described above. However, we utilize Onsemi AR0144
monochrome cameras, because the original cameras
are highly sensitive to ambient lighting, i.e., the input
frame rate was massively fluctuating. This is accept-

Cause Metric type

system & process load,

system & process memory use
fps, system & process load

fps, system & process load

busy, active, stall, gl2mark score

operating system

video capture
application

GPU

Table 1: Metric types for detecting potential causes.

able for our setup, as the replacement cameras lead to
representative and stable video streams.

Regarding the software, we set up several installa-
tions of the CSP, including variants for bare metal and
virtualization, all based on Yocto Linux 2.3 Pyro, Xen
4.6 with one guest domain. Different versions of Xen
or Yocto may lead to different results. However, due
to technical dependencies, e.g., to the hardware, only
some combinations can be executed at all on the CSP
and, thus limit the subjects in the experiment. To
consider the impact of the installed software, we pre-
pare a fully patched native variant (FPN) with all Ap-
tive patches on bare metal, a partially patched variant
only with Kaby Lake and i915 support (PPN) as well
as similar virtualized variants for Xen (FPX, PPX).

Most of the metrics can be obtained from the oper-
ating system via /proc. For measuring the frame rate,
we developed a simple benchmarking application. For
obtaining the GPU metrics, we use GPUTop® as al-
ternatives such as Intel® VTune® or intel_gpu_top”
are either not available or only scarcely documented.
However, in a virtualized setup, the GPU performance
counters are not accessible in a guest domain as they
are not passed through by the 1915 driver and XenGT.
Thus, we obtain the GPU measures only for the priv-
ileged domain and mirror them into the guests. To
analyze the GPU rendering, we use glmark2%, an
OpenGL graphics benchmark for embedded systems.

For measuring the performance of the CSP applica-
tion, instrumentation of the original C code would be
required, e.g., to track the number of rendered frames.
Moreover, the application performs asynchronous ren-
dering and includes functionality that is not required
for the experiments. To avoid unintended distur-
bances, but also to experiment with on/off screen
CPU/GPU frame processing and rendering, we use
a representative simplified single-threaded benchmark
application called opencv_mog2, which is based on the
code of the original CSP application, performs similar
computations and collects the required metrics.

We obtain measurements by querying met-
rics/running the benchmarks as a script on the system
variants. We execute the script for one hour and col-
lect/store the measurements in a file once per minute
as some of the (system) metrics are not updated more
frequently. Before running the script, we reboot the
CSP and between two subsequent benchmarks, we ap-
ply a waiting time of 1 minute for cool down.

For data analysis, we apply Python scripts to pre-
process the data and to calculate descriptive statistics.
For visualizing the results, we use gnuplot, e.g., to
draw boxplots, histograms or time series diagrams.

Shttps://github.com/rib/gputop
Shttps://software.intel.com/en-us/intel-vtune-amplifier-xe
Thttp://cgit.freedesktop.org/xorg/app/intel-gpu-tools
8https://github.com/glmark2/glmark2

4 Experimental Results

In this section, we summarize our results.

For the operating system, we observed the CSP
application in CPU-only rendering mode. As indi-
cated in Figure 2, the performance loss in terms of
rendered fps between bare metal (FPN) and the de-
fault FPX setup at Aptive with 2 virtual CPU cores
for each, privileged and guest domain, is about 36%.
Allocating 4 virtual CPU cores to the guest domain
(irrespective whether the privileged domain receives
2 or 4 virtual cores) reduces the performance drop
to 24%. Despite the performance differences, process
and system load are roughly the same for FPN/FPX
with 4 virtual cores for the privileged domain. In con-
trast, the FPX configurations with 2 virtual cores for
the privileged domain increases both, process and sys-
tem load by 4% up to 21%. This is caused by con-
tinuously rendering guest requests in the privileged
domain and leads to a bottleneck at low resources.
However, we did not notice significant differences be-
tween FPN/PPN or FPX/PPX, respectively.

While monitoring the memory consumption of all
processes over time, we observed a slightly increasing
memory use of the operating system. As cause, we
identified a mis-configured systemd service and po-
tential memory leaks in a zabix monitoring daemon.

The performance difference for the video capture
was not significant, i.e., the variants achieved a mean
of 25 frames/s at a standard deviation of 0.3.

Due to these results, we focus for the remaining
discussion on the FPN and the FPX configuration
with 4 virtual cores for privileged and guest domain.
All configurations for on/off screen CPU/GPU frame
processing and rendering of the application caused
a performance loss between FPN and FPX of around
25%, e.g., the CPU-only application renders in av-
erage around 88 fps on FPN and 66 fps on FPX.
Typically, system and process load are rather simi-
lar for the FPN and FPX setup. However, a more
detailed analysis shows that the FPX setup produces
more load variations and even spikes that we can at-
tribute to stolen and I/O waiting caused by the ren-
dering communication between the domains.

Frames per second (#)

J
1 o P

30 -

FPN FPX (2-9) FPX (2-4) FPX (4-4)

Figure 2: Frames/s in opencv_mog2.

18000
16000 [

14000 desktop =2

o

shadow =
ract ——
10000 [conditionals ===
tion ===
loop ===

8000

Category FPS (cumulated)

6000

4000

2000

FPN FPY.4.4

Figure 3: glmark2 off-screen results.

Regarding GPU capabilities, we compare the re-
sults of glmark2 for FPN and FPX. We run glmark?2
for both, on-screen and off-screen rendering. Figure 3
illustrates the off-screen rendering for FPN and FPX.
Regarding the overall glmark2 score, the performance
loss by virtualization is here 57% for off-screen and
62% for on-screen rendering, i.e., more demanding
rendering also leads to a higher performance impact.

5 Conclusions and Future Work

Developing embedded, virtualized automotive archi-
tectures is challenging and systematic performance
measurements can significantly support system devel-
opment. In this paper, we analyzed the performance
of the Aptiv CSP. The measurements indicate that
virtualization allows running a demanding application
with the required performance, while high demanding
loads can lead to a performance loss of more than
50%. Moreover, we identified a better setup of the
virtualization and of some system services. As we uti-
lized available components and system measures, we
believe that our approach can be applied to similar
systems, even outside the vehicle domain.

In the future, we aim at experiments with more
recent versions of Yocto and Xen. We also envision to
integrate measurements into the Aptiv development,
e.g., to detect performance regressions early.

References

[1] J. Hwang et al. “A component-based perfor-
mance comparison of four hypervisors”. In:

IM’13. May 2013, pp. 269-276.

[2] C. Patsakis, K. Dellios, and M. Bouroche. “To-
wards a Distributed Secure In-vehicle Commu-
nication Architecture for Modern Vehicles”. In:
Comput. Secur. 40 (2014), pp. 60-74.

[3] H. Chen et al. “GaaS workload characterization
under NUMA architecture for virtualized GPU”.
In: IISPASS’17. 2017, pp. 65-76.

[4] H. Knoche and H. Eichelberger. “Using the Rasp-
berry Pi and Docker for Replicable Performance
Experiments: Experience Paper”. In: ICPE’1S.
2018, pp. 305-316.

	Introduction
	Approach
	Experimental Setup
	Experimental Results
	Conclusions and Future Work

