
Analyzing the Evolution of Data Structures

in Trace-Based Memory Monitoring

Markus Weninger?⊗, Elias Gander⊗, Hanspeter Mössenböck?

{firstname.lastname@jku.at}
? Institute for System Software, Johannes Kepler University, Linz

⊗ Christian Doppler Laboratory MEVSS, Johannes Kepler University, Linz

Abstract

Modern software systems are becoming increasingly
complex and are thus more prone to performance
degradation due to memory leaks. Memory leaks oc-
cur if objects that are not needed anymore are still
unintentionally kept alive. While there exists a vari-
ety of state-of-the-art memory monitoring tools, most
of them only use memory snapshots, i.e., heap dumps,
to analyze an application’s live objects at a single
point in time. This does not allow developers to
identify data structures that grow over time. Trace-
based monitoring tools tackle this problem by record-
ing memory events, e.g., allocations or object moves
performed by the garbage collector (GC), throughout
an application’s run time. In this paper, we present
ongoing research on the use of memory traces for de-
tecting the root causes of memory leaks introduced
by growing data structures. This encompasses (1) a
domain-specific language (DSL) to describe arbitrary
data structures, (2) an algorithm to detect instances
of previously defined data structures in reconstructed
heaps, as well as (3) techniques to analyze the tem-
poral evolution of these data structure instances to
identify those possibly involved in memory leaks. All
these concepts have been integrated into AntTracks,
a trace-based memory monitoring tool, to prove their
feasibility.

1 Introduction

Modern programming languages such as Java use au-
tomatic garbage collection. During garbage collection,
objects that are not directly or indirectly reachable
from static fields or thread-local variables (so-called
GC roots) may be collected by the GC. We speak of a
memory leak if no longer needed objects remain reach-
able from GC roots due to a programming error. For
example, if a developer misses to remove no longer
needed objects from their containing data structures,
e.g., lists, these objects may not be collected by the
GC. Beside excessive dynamic allocations [1], memory
leaks are one of the major memory anomalies [4].

Since modern applications may involve hundreds
of millions of objects at a single point in time, tool
support to resolve memory problems is of paramount
importance. Most state-of-the-art tools, such as Vi-

sualVM [8] or Eclipse Memory Analyzer (MAT) [7],
perform heap analysis based on snapshots, i.e., heap
dumps. While a single heap dump may allow develop-
ers to detect large data structures, it provides no infor-
mation about the heap’s evolution over time. Thus,
some approaches [2, 8] take multiple snapshots and
compare them. Nevertheless, such approaches do not
allow temporal analyses on the object-level.

In contrast to snapshot-based approaches, trace-
based approaches record additional information, e.g.,
object moves executed by the GC. This allows them
to reconstruct the heap offline from the recorded trace
for any point in time, as well as to track specific ob-
jects and their evolution throughout an application.
Since it would not be feasible – due to memory re-
strictions and computational borders – to reconstruct
and remember every single change to every single ob-
ject, temporal analysis approaches need to focus on a
certain subset of objects.

In this work, we present ongoing research on the use
of memory traces. Our goal is to extract information
about the root causes of memory leaks by focusing on
the temporal development of data structures. This en-
compasses (1) a DSL that enables users to describe ar-
bitrary data structures, (2) an algorithm to detect in-
stances of previously defined data structures in recon-
structed heaps, as well as (3) techniques to analyze the
temporal evolution of these data structure instances
to identify those possibly involved in memory leaks.
To prove the feasibility of our approach, all concepts
have been integrated into AntTracks. AntTracks is
a trace-based memory monitoring tool based on the
Hotspot Java VM, initially developed by Lengauer et
al. [3] and extended by Weninger et al. [5, 6].

2 Approach

This section illustrates how data structures can be
described in our DSL, how they are detected in re-
constructed heaps, and how information about their
temporal evolution is derived from AntTracks’s mem-
ory traces.

2.1 Data Structure Definition

In object-oriented languages such as Java, data struc-
tures typically consist of a head object and multiple

other objects that reference each other according to
a specific pattern. These patterns have to be known
by a memory monitoring tool in order to enable it to
perform data structure analyses. Therefore, we devel-
oped a DSL that allows us to describe arbitrary data
structures. This allows us to ship descriptions of well-
known data structures (e.g., data structures in Java’s
java.util package) directly with AntTracks. At the
same time, tool users can extend this set of predefined
data structure descriptions with descriptions of their
own data structures.

Listing 1 shows an example of the DSL, describing
the structure of java.util.LinkedList. Every type
that is involved in the data structure needs a descrip-
tion, i.e., in our example java.util.LinkedList and
java.util.LinkedList$Node. The former represents
the head of the data structure (marked with the DS

keyword), while the latter is an internal part of a data
structure. Similar to Java syntax, the name of the
type is followed by a set of curly braces. These contain
a set of types (separated by semicolons) that may be
referenced by the respective data structure part. For
example, an instance of java.util.LinkedList may
point to instances of java.util.LinkedList$Node

(see line 2), which in turn may point to instances of
java.util.LinkedList$Node instances (see line 5),
and so on. Line 6 presents two special language fea-
tures: (1) a star (i.e., *) can be used as a wildcard
within the name of a pointed type and (2) enclos-
ing a type in parentheses declares it as a leaf. The
term (*) denotes a leaf of any type. Leaf information
is used during data structure detection to determine
the boundaries of a data structure. The DSL also
supports namespaces which allow us to omit package
declarations in type names.

2.2 Data Structure Detection

In order to detect data structures in a heap, the data
structure definitions have to be parsed first. The
parsed definitions are assigned to their correspond-
ing types. Types for which no data structure defini-
tion was parsed are assigned a non-head dummy data
structure definition that does not declare any pointed
types. Array types are an exception to this rule and
are handled in a special way. At this point, every type
has a data structure definition assigned.

A reconstructed heap contains information about
the objects live at a certain point in time (e.g., their
types), as well as their references between each other.
As a first step, the data structure detection algo-
rithm filters and remembers all objects that are data
structure heads, i.e., objects whose types have a head
data structure definition assigned. Then, to deter-
mine which objects belong to a certain data structure
instance, it recursively follows the head object’s point-
ers. The recursive descent is stopped when a pointed
object is encountered whose type is either (1) not part
of the current object’s data structure definition or (2)

1 DS java.util.LinkedList {

2 java.util.LinkedList$Node;

3 }

4 java.util.LinkedList$Node {

5 java.util.LinkedList$Node;

6 (*);

7 }

Listing 1: Definition of java.util.LinkedList

using our data structure DSL.

LL

N

DN

D

X

X

leaf

 leaf

LL

X

X

LL = java.util.LinkedList N = java.util.LinkedList$Node D = Data X = X

Figure 1: A LinkedList instance, consisting of the
head (LL), two nodes (N) and two data objects (D).

marked as a leaf in the current object’s data structure
definition. In the latter case, the object itself belongs
to the data structure instance, but none of its refer-
enced objects. Every visited object is marked to avoid
multiple visits.

For example, Figure 1 shows a
java.util.LinkedList that has been detected
using the description in Listing 1. Starting at the
head LL, the first N instance is visited. The data struc-
ture description of java.util.LinkedList$Node

then allows us to follow further nodes (line 5), or to
visit any other object as a leaf without continuing the
recursive descent (line 6). Thus, the first D instance
and the second N instance are visited, continuing the
descent from the N object. As a last step, the second
D object is visited as a leaf.

2.3 Temporal Analysis

Trace-based approaches are better suited for tempo-
ral analysis than snapshot-based ones because they al-
low to derive temporal information on the object-level.
Figure 2 illustrates this. Using only snapshots, with-
out additional temporal information, it is not possible
to decide whether two objects of type X are really the
same or just share the same type.

AntTracks is able to derive this information by re-
playing the recorded GC move events. Thus, we know
which objects survived between two points in time as
well as their updated pointers. Using this knowledge,
we can specifically search for data structure instances
which (1) survived over a certain time window (since

X

Y Y

X

Y Y

delete X create
new X

Snapshot 1 Snapshot 2

same object?

Figure 2: Analysis based on multiple snapshots lacks
information on the object-level.

2

objects that died cannot be the root cause of a mem-
ory leak) and (2) reference / keep alive more objects
than before.

Our workflow for temporal data structure evolution
analysis consists of the following steps:

1. The user chooses two garbage collection points in
time between which the temporal data structure
evolution analysis should take place.

2. The heap is reconstructed for the first point in
time and is stored. The addresses of all data
structure heads in this heap, i.e., the start ad-
dresses, are stored as well.

3. At every garbage collection, we stop tracking data
structure heads that died. For surviving heads,
their new addresses (which can be reconstructed
from GC move events) are stored alongside their
start addresses.

Following this algorithm up to the end of the se-
lected time window, we obtain (1) the reconstructed
heap at the start, (2) the reconstructed heap at the
end, and (3) a list of all data structures that survived,
more specifically, their initial and final addresses.

For every data structure head, its deep size (i.e.,
how many objects can be reached from that object)
as well as its retained size (i.e., how many objects are
kept alive by that object) can be calculated for both
points in time [5]. Based on that, the absolute and
the relative change of these sizes can be calculated.

The metric that proved the most useful to identify
problematic data structure instances in our prelimi-
nary evaluation is shown in Equation 1.

HGP (obj) =
∆retained(obj)

∆heapsize
× 100 (1)

Given that the overall heap size increased, this for-
mula calculates the ownership growth of each data
structure relative to the heap growth, i.e., the heap
growth portion. For example, assume that the overall
heap size went from 1GB to 2GB and a list’s retained
size increased by 700MB. This would result in a HGP
value of 70%, i.e., the ownership growth of this data
structure contributes 70% to the total growth of the
heap.

Sorting all data structures by this metric allows us
to easily identify those that keep more objects alive
than before. At the same time their growth is put into
perspective to the absolute heap growth. In the case
of a memory leak, objects that reveal a high HGP
value are most likely involved in it.

3 Conclusion and Future Work

In this paper, we presented a new and easy-to-use DSL
to describe arbitrary data structures and sketched an
algorithm that detects instances of those data struc-
tures in reconstructed heaps. We discussed how tem-
poral information regarding the growth of data struc-
ture instances can be derived from memory traces,

including a metric that puts data structure growth in
relation to the overall heap growth. This metric allows
us to prioritize data structure instances according to
how likely they are involved in a memory leak.

Being able to describe, detect and analyze the evo-
lution of arbitrary data structures over time, even
user-defined ones, yields many possibilities for future
work. Due to the complexity of heap object graphs, it
is not feasible to visualize and inspect them without
abstraction, e.g., by aggregating nodes. Our work can
be used to develop improved object graph visualiza-
tion techniques that perform node aggregation based
on data structure information. Data structure infor-
mation may also be used to push automatic memory
leak detection and resolution without human inter-
vention.

4 Acknowledgement

The financial support by the Austrian Federal Min-
istry for Digital and Economic Affairs, the National
Foundation for Research, Technology and Develop-
ment, and Dynatrace is gratefully acknowledged.

References

[1] C. U. Smith and L. G. Williams. “Software per-
formance antipatterns.” In: Workshop on Soft-
ware and Performance. 2000.

[2] M. Jump and K. S. McKinley. “Detecting mem-
ory leaks in managed languages with Cork”. In:
Software: Practice and Experience 40.1 (2010).

[3] P. Lengauer, V. Bitto, and H. Mössenböck. “Ac-
curate and Efficient Object Tracing for Java Ap-
plications”. In: Proc. of the 6th ACM/SPEC
Int’l. Conference on Performance Engineering.
2015.

[4] M. Ghanavati et al. “Memory and Resource Leak
Defects in Java Projects: An Empirical Study”.
In: Proc. of the 40th Int’l Conf. on Software En-
gineering: Companion Proceeedings. 2018.

[5] M. Weninger, E. Gander, and H. Mössenböck.
“Utilizing Object Reference Graphs and Garbage
Collection Roots to Detect Memory Leaks in Of-
fline Memory Monitoring”. In: Proc. of the 15th
Int’l Conf. on Managed Languages & Runtimes.
2018.

[6] M. Weninger and H. Mössenböck. “User-defined
Classification and Multi-level Grouping of Ob-
jects in Memory Monitoring”. In: Proc. of the
9th ACM/SPEC Int’l Conf. on Performance En-
gineering. 2018.

[7] Eclipse Foundation. Eclipse Memory Analyzer
(MAT) (last accessed August 13, 2018). https:
//www.eclipse.org/mat/.

[8] Oracle. VisualVM: All-in-One Java Trou-
bleshooting Tool (last accessed August 13, 2018).
https://visualvm.github.io/.

3

https://www.eclipse.org/mat/
https://www.eclipse.org/mat/
https://visualvm.github.io/

	Introduction
	Approach
	Data Structure Definition
	Data Structure Detection
	Temporal Analysis

	Conclusion and Future Work
	Acknowledgement

